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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

The article “Machine Learning Aided Construction of the Quorum Sensing Communication Network 

for Human Gut Microbiota” by Wu et al. describes the construction of a new biological database, 

QSHGM, that contains information on the quorum sensing (QS) repertoire of 818 human gut 

microbial species. The database was constructed by a computational workflow that uses verified 

QS-related amino acid sequences, genome annotations, and a machine learning workflow to mine 

proteomes for thus far missed QS traits. The database is then used to construct potential 

communication networks between gut microbial species. The work is important and the way it was 

conducted appears appropriate, but it suffers from a lack of clarity which needs to be improved 

upon. The work is of interest to the microbiome field, but several major points ought to be 

addressed before publication. 

Major comments: 

- The language throughout must be improved, e.g. L22 (limited QS entries?), L181: What does 

overlap relate to here? L211ff- sentence unclear. 

- Why was “two-component” used as a QS search term? This should yield numerous false 

positives. 

- Data provision & clarity: 

While the authors provide a web interface (which is nice), the intermediate datasets must be 

provided in a computer readable format for reproducibility, especially Dataset I, IV, III. In 

particular, 

o please provide dataset 1 obtained from Sigmol and QuorumPeps; what are the 213 QS entries 

(and why is this number different from the supplementary table of the cited resource by Bernard 

et al, 2020? 

o Why are there some amino acid sequences in the “positive samples” that are annotated as 

irrelevant for QS (why are they “positive”), e.g. Figure 3B? 

o Figure 1 needs numbers of sequences for each of the data sets. 

o Please provide the final QSHGM as a csv/machine readable file (the web interface is nice for 

browsing, but without an API it would be good to share the final data in a way that facilitates 

future work). 

- Why did you only use receptors for Gram positive, but synthases and receptors for gram 

negatives? 

- Machine learning: did you truncate / normalize amino acid sequences (features) to a consistent 

length to predict labels (negative/positive)? The text needs some improvements to clarity what 

was done. What exactly were features? Why did you choose multiple classifiers, all of which seem 

to perform similarly? How did you perform ensemble predictions (majority across the classifiers)? 

Can you comment on the potential that there different numbers of positive samples from Gram 

positive vs negative QS systems, i.e. can that confound downstream analyses? 

- Please justify and explain better what negative samples are. Are they aminoacids that do not 

have a relationship with QS, sampled from the proteomes of the named organisms? Why was this 

approach chosen to build a training set (as opposed to perhaps selecting from other secretion- but 

not QS related sequences)? I do not think anything is wrong here, necessarily, but a better 

explanation would help. 

- Figure 2 (panel F in particular) needs much more annotation and explanation in the caption. 



- Explain better what the communication networks are showing. E.g. Figure 5A) Does this mean 

both E. coli and Bacteroides pectinophilus could be ‘listening to’ and ‘speaking’ the AI-2 language? 

Figure 5D shows arrows and lines, and a thick white arrow, what do they mean? Please improve 

the clarity of the figure an annotate all that is shown in the figure or the caption. 

- Could you provide a computer readable table for the calculated communication networks? 

Minor comments: 

L53: re: AHL signal incorporation into plasma membranes — the reference is talking about lung 

epithelia. This seems not a relevant point unless also true in the gut. 

L388: Doubtful that evolution works for the good of the population. 

L361 and 439: I was confused by the use of the word “familial” and genus in the same sentence 

Reviewer #2: 

Remarks to the Author: 

In the present work, the authors built a workflow for QS entries collecting, expanding and mining. 

All these QS entries are proteins. Then four ML-based models were trained to check if a protein is 

a QS entry. There are 21,410 positive samples were collected manually and 7,157 QS entries were 

predicted by ML-based models, and the total 28,567 QS entries contain 1,882 QS synthases and 

26,685 receptors. Based on QS entries and QS-based microbial interactions, the authors developed 

the QSHGM database. Finally, a network was used to visualize the relationships among microbes 

based on the QSHGM database. 

My major concern is how this QS-based communication network help improves our understanding 

of the dynamics and organizational principles of microbial ecosystems, which originally is 

considered largely based on metabolic interactions. The authors just briefly mentioned this in the 

discussion part. But a quantitative model/analysis (as an example) is needed, which is quite 

important. 

Other comments/questions are as follow: 

1. About the workflow 

1.1 The schematic diagram of the workflow with too many different datasets, styles, colours, and 

unclear description is very hard to follow. The input (data source), output and filtering rules should 

be defined clearer for each step. A table would be quite helpful. 

2. ML-based models 

2.1 The authors used 4 different models: random forest (RF), KNN, SVM, and DNN. The authors 

claimed that “the RF classifier achieves the best performance” based on accuracy and F1 score 

(line 204). Why did the authors use all four models instead of the best model? 

2.2 The authors mentioned “four ensemble classifiers” (line 126). How did the authors combine 4 

different algorithms together by ensemble learning? 

2.3 There are 21,410 positive samples (line 248), but the number of total samples (proteins) in 

818 gut microbes and the number of negative samples is unclear. Is a sample either positive 

sample or negative sample? 

2.4 The authors mentioned that 21,410 positive samples were collected manually. The search was 

based on four commonly used QS annotations, i.e., “quorum sensing”, “LuxR”, “two-component”, 

and “tryptophanase” (line 131). Do all “two-component regulatory systems” work as quorum 

sensing? Are these four keywords specific enough to narrow the searching scope and reduce the 

false-positive QS entry? 

2.5 The authors mentioned that “All the four classifiers were applied to predict that whether the 

input amino acid sequences are QS entries or not with the output being 1 or 0, respectively” (line 

488). However, the input for each algorithm, which is how to represent an amino acid sequence 



with variable length, was not mentioned in the draft. 

2.6 There are two different QS entry types: QS synthase and receptor, and the total 28,567 QS 

entries contain 1,882 QS synthases and 26,685 receptors. Receptors must also dominate the 

training set. Is there any bias when we predict QS synthases since the sequences of QS synthases 

may be different from receptors’ dramatically? 

3. QS-based microbial interactions 

3.1 The authors claimed that “according to the collected data in the QSHGM database, we can 

predict various potential pairwise QS-based microbial interactions” (line 289) and “predict more 

sophisticated interaction networks” (line 298). However, the details of this prediction method 

cannot be found in this draft. Did the relation between two microbes include in the database? If so, 

the data source should be pointed out. 

3.2 According to Fig. 7B, one microbe (such as E. coli) can produce compounds (such as CAI-1) by 

QS synthases, and another microbe (such as Bacteroides vulgatus) can receive the same 

compound by its receptor, so they can communicate with each other. Since each microbe can 

produce so many compounds and each microbe also can receive so many different compounds, 

Fig. 7A gives a complete graph that links every node to every other node for the 40 core microbes. 

We cannot figure out that what information this graph can provide. 

3.3 Same concern as 2.4 and described in 3.2, there are so many links between each different 

species. The false-positive relations between each different species should be tackled carefully. 



Response to Reviewer #1 (Expertise: microbiome, computational biology, Machine 

learning): 

 

The article ―Machine Learning Aided Construction of the Quorum Sensing 

Communication Network for Human Gut Microbiota‖ by Wu et al. describes the 

construction of a new biological database, QSHGM, that contains information on the 

quorum sensing (QS) repertoire of 818 human gut microbial species. The database was 

constructed by a computational workflow that uses verified QS-related amino acid 

sequences, genome annotations, and a machine learning workflow to mine proteomes 

for thus far missed QS traits. The database is then used to construct potential 

communication networks between gut microbial species. The work is important and the 

way it was conducted appears appropriate, but it suffers from a lack of clarity which 

needs to be improved upon. The work is of interest to the microbiome field, but several 

major points ought to be addressed before publication. 

Response: 

Thanks for the positive comments. The point-to-point response to individual comments 

is listed as follows. 

 

Major comment 

Major comment 1: The language throughout must be improved, e.g. L22 (limited QS 

entries?), L181: What does overlap relate to here? L211ff- sentence unclear. 

Response: 

Sorry for these ambiguities. The language has been re-edited carefully.  

 

―limited QS entries‖ has been re-edited as ―a small number of QS entries‖ in the revised 

manuscript. 

 

―Overlap‖ means that one protein belongs to different protein clusters. For example, 

P69409, P0ACZ6, P0AGA8, P66798, P0AF30, P0AEL9, and Q8XE66 in the E. coli 

O157:H7 are both LuxR-type and TCS receptors (Fig. 2E). 

 

We have re-edited this part in the revised manuscript. Hope the revised version is easier 

to understand.  

 

Major comment 2: Why was ―two-component‖ used as a QS search term? This should 

yield numerous false positives. 

Response: 

We recognize the possible confusion around the two concepts of QS and 

Two-component signal transduction systems (TCSs) in this work and would like to 

clarify this important issue. TCSs play an important role in microbial communications, 



which have a certain overlap with QS [2], but it is difficult to separate the two clearly. 

Generally, various QS systems can be roughly divided into three types: (i) acylated 

homoserine lactones (AHLs) and other autoinducers received by LuxR-type receptors 

utilized by Gram-negative bacteria; (ii) auto-inducing peptides (AIPs) and other 

autoinducers sensed by two-component systems utilized by Gram-positive bacteria; 

and (iii) autoinducer 2 (AI-2) and indole for interspecies communication of microbial 

communities [3]. Here, we have listed functions of the 213 QS entries collected into 

Dataset I (more details in Supplementary Table 1) in Figure R3 (Figure S6) to indicate 

the overlap of QS and TCS, which shows that TCSs form an important part of QS 

entries. Therefore, the search for positive samples was based on three commonly used 

QS (―quorum sensing‖, ―LuxR‖, ―tryptophanase (indole synthase)‖) and one TCS 

(―two-component‖) annotations to collect the reported QS&TCS entries. 

 

Figure R3. Function distribution for the 213 collected QS entries. 

 

While there is strong evidence from the 213 entries mentioned above that many TCS 

entries possess QS functionality, we agree that not all of them would do so, which 

would apply to a portion of the TCS entries collected into our Dataset III which was 

built with the intention of collecting as many potentially QS-relevant entries as we can. 

On the other hand, we would like to point out that the entries in Dataset III (QS&TCS) 

was subsequently used as positive samples to train the classifiers; the predicted positive 

entries by applying the trained classifiers to the Dataset VII (resulting from Local 

BLASTP) were eventually checked manually to confirm QS functions. Out of 9253 

entries (Dataset VII), 7184 were confirmed to be QS relevant, which represents a very 

high percentage. Therefore, although it is difficult to say exactly what is the proportion 

of the TCS entries collected in our final database that are not QS relevant, we anticipate 

that the proportion is likely to be moderate. Nevertheless, there is a need to make an 

explicit statement about the existence of such proportion so that the users are warned of 

encountering none-QS TCS entries, even though these entries would still be relevant to 

inter-cellular communication. 

 



Note that we have modified the corresponding descriptions in the revised manuscript 

and supplementary material to illustrate the above problem to avoid misunderstanding. 

 

Major comment 3 (Data provision & clarity): While the authors provide a web 

interface (which is nice), the intermediate datasets must be provided in a computer 

readable format for reproducibility, especially Dataset I, IV, III. 

Response: 

Thanks for the good suggestion. In the revised supplementary material, we have added 

the summary table (Table R3, see also Table S2) and .xlsx files for all the datasets that 

appear in Figure 1 (Supplementary Tables 1-10).  

 

Table R3. The details for the datasets listed in the Figure 1. 

Dataset Input Output Suppl. Table 

I 
Reported entries from Sigmol and 

Quorumpeps database 

213 reported QS 

entries 
1 

II 
Proteomes of human gut microbes from 

UniProt 

Proteomes of 818 

gut microbes from 

VMH. 

https://pan.baidu.c

om/s/1o46nn1b7L

5nvCqgpwW7Zlw  

Password: tfnx 

III 
Collected QS and TCS entries from 

Dataset II 

Positive samples 

(21,383 entries) 
2 

IV 
Remove QS and TCS entries in cluster 

rules from typical strains in Dataset II 

Negative samples 

(22,780 entries) 
3 

V Results of the Local BLASTP 

Results of local 

BLASTP with E ≤ 

10
-5

 (14,573 entries) 

4 

VI Overlaps of entries in Dataset III and V 
5,320 reported 

entries 
5 

VII 
Entries by excluding Dataset VI for 

Dataset V 

9,253 entries to be 

classified 
6 

VIII 

Union of uncharacterized proteins from 

the positives of RF, SVM, KNN, or 

DNN classifiers 

534 un-annotated 

entries to be mined 
7 

IX 
The extended QS entries obtained by 

the union of four classifiers 

7,184 extended 

entries 
8 

Output 

S3 
Proteins without QS functions 438 false positives 9 

X 
The total entries from the reported and 

extended QS&TCS entries 

28,567 redundancy 

removal entries 
10 

 

Major comment 4 (Data provision & clarity): please provide dataset 1 obtained from 

Sigmol and QuorumPeps; what are the 213 QS entries (and why is this number different 

from the supplementary table of the cited resource by Bernard et al, 2020? 



Response: 

Thanks, we have provided the details for the 213 QS entries from Sigmol and 

QuorumPeps database in the Supplementary Table 1. 

 

The reasons for the difference in the counts of QS entries between our study and the 

work from Bernard et al, 2020 [4] are explained below: 

(1) Due to the QS information required being different between the two studies, the 

number of QS entries we used in our work is different from that in Bernard et al, 

2020. In our work, we not only need to collect the record of QS entries, but more 

importantly, we need to obtain the relevant amino acid sequences. Therefore, the 

QS entries in Sigmol and QuorumPeps database without corresponding amino acid 

sequences were firstly discarded in our dataset I. 

(2) Further choices about the entries from Sigmol and QuorumPeps database were 

made to improve the efficiency of the local BLASTP. For example, we kept only 

one related entry for the same QS entries, such as the S-ribosylhomocysteine lyase 

(LuxS), Acyl-homoserine-lactone synthase LuxM, and accessory gene regulator C 

(AgrC). 

(3) We have also excluded the autoinducer peptides (AIPs), such as Nisin precursor 

peptide (NisA) and competence stimulating peptide AgrD from our Dataset I to 

improve the accuracy of the local BLASTP. This is because the sequences of the 

communication peptides from Gram-positive strains are relatively short (about 

10~30 amino acids), which could easily increase the false positives for the local 

BLASTP. We believe that reliable inclusion of the AIPs requires some other 

methods, which is the subject of our future work. 

Note that Dataset I was used to blast with the Dataset II to expand the reported QS 

entries for human gut microbes, which is not the only way by which we have collected 

QS entries: A much larger set of reported QS entries was separately collected into 

Dataset III which includes entries curated in Sigmol, QuorumPeps database, the work 

from Bernard et al, 2020, and other QS entries. 

 

Major comment 5 (Data provision & clarity): Why are there some amino acid 

sequences in the ―positive samples‖ that are annotated as irrelevant for QS (why are 

they ―positive‖), e.g. Figure 3B? 

Response: 

We have revised the original Figure 1 and Figure 3B to make our workflow easier to 



follow, which we believe will also resolve the issue raised here. As illustrated in the 

Mining module of the revised Figure 1, the expanded proteins from Dataset VII (9,253) 

were classified by the four ensemble classifiers, respectively. The union of the four 

positives were then divided into the annotated positives (AP) and uncharacterized 

positives (UP) (Dataset VIII). With the help of the function analysis (Supplementary 

Table 11), we re-annotated the 534 uncharacterized entries and mined new potential QS 

proteins. Furthermore, we (manually) conducted the function analysis and checked 

their specific annotations, sequence similarity, and domains for the 

annotated/re-annotated union of positives (Supplementary Table 11) to decide whether 

the entry has QS function (true positives) (Dataset IX, 7,184 entries, more details in 

Supplementary Table 8) or not (false positives) (Output S3, 438 entries, more details in 

Supplementary Table 9). In other words, the some of the “positive entries” predicted by 

the classifiers were determined to be “false positive” by a subsequent step of manual 

checking. The ―irrelevant for QS‖ listed in the original Figure 3B were the false 

positives without QS function. Note that users can find the details for the ―irrelevant for 

QS‖ in the Supplementary Table 9.  

 

Major comment 6 (Data provision & clarity): Figure 1 needs numbers of sequences 

for each of the data sets. 

Response: 

OK. Thanks, Done. Numbers of sequences for Dataset I~X have been added in the 

revised Figure 1. 

 

Major comment 7 (Data provision & clarity): Please provide the final QSHGM as a 

csv/machine readable file (the web interface is nice for browsing, but without an API it 

would be good to share the final data in a way that facilitates future work). 

Response: 

OK. Thanks, Done. We named the data of the QSHGM as Dataset X, and the details 

have been listed in Supplementary Table 10. 

 

Major comment 8: Why did you only use receptors for Gram positive, but synthases 

and receptors for gram negatives? 

Response: 

Good question! Firstly, we want to stress that BLASTP-based QS entries expanding 

and reported entries collection were combined together in this study (Figure 1) to study 



the QS-based communication among the human gut microbes. 

With respect to the BLASTP-based QS entries expanding, just as you pointed out, we 

only use receptors for Gram-positive strains, but synthases and receptors for 

Gram-negative strains. The reasons are listed as follows: 

(1) The signal peptide sequences of Gram-positive strains are relatively short (about 

5~30 amino acids), which can easily lead to increased false positives from the 

BLASTP process. To improve the accuracy of the local BLASTP, we have 

removed the autoinducer peptides (AIPs) from Gram-positive strains. 

(2) Short peptides and proteins are not generally placed together for sequence 

BLASTP and functional analysis because proteins generally have a fixed structure 

while short peptides do not. Therefore, we specifically removed entries with length 

less than 100 in Dataset I to make the samples uniform and ensure the reliability of 

the BLASTP.  

With regard to the reported entries collection, we have collected the QS&TCS entries as 

many as possible for the reported QS-related entries (Dataset III, 21,383 entries). 

Diverse autoinducer peptides of Gram-positive strains were included in the Dataset III 

(see more details in Supplementary Table 2), such as competence stimulating peptide 

AgrD and cyclic lactone autoinducer peptide. 

 

To sum up, the synthases of the Gram-positive strains were considered in this work, but 

only through the reported entries collection rather than the BLASTP-based expanding 

to improve reliability of the latter. 

 

Major comment 9: Machine learning: did you truncate / normalize amino acid 

sequences (features) to a consistent length to predict labels (negative/positive)? The 

text needs some improvements to clarity what was done. What exactly were features? 

Why did you choose multiple classifiers, all of which seem to perform similarly? How 

did you perform ensemble predictions (majority across the classifiers)? Can you 

comment on the potential that there different numbers of positive samples from Gram 

positive vs negative QS systems, i.e. can that confound downstream analyses? 

Response: 

Firstly, we would like to offer more details regarding our selection of features. The 

amino acid composition (AAC) calculates the frequency of each amino acid type in a 

protein or peptide sequence. We calculated the frequency of each amino acid type in 

each entry sequence as the protein features. The frequencies of all 20 natural amino 



acids are the percent of the number of amino acid type divided by the length of a protein 

sequence [5], which is listed as follows: 

f(t) = N(t)/N, t∈{A, C, D, …, Y}    (1) 

where N(t) is the number of amino acid type t, while N is the length of a protein or 

peptide sequence. 

 

Note that AAC features [5] we extracted are based on the frequencies of all 20 natural 

amino acids, there is no need to supplement the length of protein. Therefore, we didn‘t 

normalize amino acid sequences to a consistent length for the negative or positive 

samples. 

 

Secondly, we would like to explain our reasons to choose to create and utilize multiple 

classifiers for entries classification: 

(1) We want to mine potential QS entries for human gut microbes as inclusively as 

possible. Different classifiers can help us obtain different positives to mine more 

potential QS entries. We have manually checked their annotations and divided the 

union of positives into annotated positives (AP) and uncharacterized positives (UP) 

(Figure 3B), which were analyzed further for their specific overlaps (Figure R4, 

Figure S2) (see more details in Supplementary Table 12). As illustrated in the red 

box of Figure R4, there are 882 and 34 entries shared only by one classifier for 

annotated and uncharacterized positives, respectively, which indicates the need for 

the union of the four positives to cover more potential QS entries. Note that the 

union of positives from SVM and KNN classifiers are predominant, the positives 

from RF (65 entries for AP, 7 entries for UP) or DNN (134 entries for AP, 8 entries 

for UP) classifier can supplement entries to some extent. When the positives of 

three classifiers are combined together, such as SVM/KNN/RF and 

SVM/KNN/DNN, the positives from the fourth classifier will contribute even less. 

This indicates that the positives from the above classifiers can cover most of the 

entries, which is why we did not use any further classifiers. 

(2) We use these four representative machine learning models (SVM, KNN, RF, and 

DNN) as basic classifiers to construct the ensemble model for potential QS entries 

prediction. The data distribution assumption of each ideal model is different, and 

we used four classifiers to build an integration model that can describe different 

perspectives of real data. The integrated model can select more abundant and 

diverse proteins, overcome the over-fitting phenomenon of single model, and make 



the prediction results more robustness. Therefore, the union of the four classifiers 

can minimize the classification bias from the scale difference of synthases and 

receptors to some extent. 

 

Figure R4. The overlaps for the AP and UP from the four ML-based classifiers. 

 

The AAC features we calculated from the positive and negative samples were used for 

the training of the ensemble classifiers based on four different machine learning 

algorithms (SVM, RF, KNN, and DNN). ―model.py‖ was created for training samples 

with SVM, KNN and RF (random forest), ―nn.py‖ was the script used for training 

samples with Neural Network. Performances of the four ML-based classifiers were 

measured based on the accuracy, precision, recall, and F1 score. All the four classifiers 

were then applied to predict the entries in dataset VII are QS entries or not with the 

output being 1 (yes) or 0 (no), respectively. We have also added or modified some 

descriptions for the conduction of the four classifiers in the revised manuscript. 

 

Finally, the numbers of positive samples from Gram-positive and Gram-negative QS 

systems were indeed different, but only modestly and not in the order of magnitude, 

which means the influence for the downstream analyses was limited. Furthermore, we 

did not specifically distinguish the specific entry sequence differences. We mixed them 

together in our proposed workflow which includes entries collecting, expanding, and 

mining processes. Analysis of the structure and function of a protein depends on its 

annotation, sequence similarity, and domains (see more details in Supplementary Table 

11), regardless of whether its source is Gram-negative or Gram-positive microbes. 



Major comment 10: Please justify and explain better what negative samples are. Are 

they aminoacids that do not have a relationship with QS, sampled from the proteomes 

of the named organisms? Why was this approach chosen to build a training set (as 

opposed to perhaps selecting from other secretion- but not QS related sequences)? I do 

not think anything is wrong here, necessarily, but a better explanation would help. 

Response: 

Thanks for your suggestion. The negative samples are the proteins that do not have a 

relationship with QS. We constructed negative samples by removing QS-related 

components from well-studied Gram-negative bacteria (Aliivibrio fischeri, Escherichia 

coli, Pseudomonas aeruginosa, Salmonella typhimurium, and Vibrio parahaemolyticus) 

and Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus, and Lactococcus 

lactis). More specifically, we have removed the proteins that directly and indirectly 

associated with QS, such as quorum sensing, luxR, two-component, 

homoserine-lactone synthase, histidine kinase, biofilm, autoinducer, bacteriocin, 

competence, virulence, signal, sensor, response, regulator, membrane, binding, 

transcriptional activator etc. 

 

In order to improve the training of classifier as much as possible, the number of 

negative samples should be comparable to that of positive samples, and the randomness 

and diversity should be maintained. It is not easy to randomly obtain more than 20,000 

sequences with high diversity without QS function. Therefore, we prepared negative 

samples based on the large dataset dataset II (818 proteomes), with the hope that (1) 

protein diversity of negative samples could be well guaranteed based on some whole 

proteomes excluding QS-related entries and (2) the accuracy of samples could be well 

controlled. 

 

Major comment 11: Figure 2 (panel F in particular) needs much more annotation and 

explanation in the caption. 

Response: 

Sorry for the ambiguity. We have modified Figure 2 captions in the revised manuscript. 

Major comment 12: Explain better what the communication networks are showing. 

E.g. Figure 5A) Does this mean both E. coli and Bacteroides pectinophilus could be 

‗listening to‘ and ‗speaking‘ the AI-2 language? Figure 5D shows arrows and lines, and 

a thick white arrow, what do they mean? Please improve the clarity of the figure an 

annotate all that is shown in the figure or the caption. 



Response: 

Sorry for the ambiguity. Microbes communicate via various languages, and it is 

possible to predicted various microbial communication and even construct a cell-cell 

communication network among different gut microbes based on diverse QS languages, 

which we termed as ―QS communication network‖. 

 

Figure 5A (the revised Figure 4A) means that both E. coli and Bacteroides 

pectinophilus can speak the AI-2 language. 

 

Note that the line represents that both of the strains can speak the language; black arrow 

means that one strain can speak the language to the other one; the thick white arrow 

shows that all the three strains can communicate with AHL language.  

 

We have also supplemented the caption for the original Figure 5 (the revised Figure 4) 

to improve its clarity. 

 

Major comment 13: Could you provide a computer readable table for the calculated 

communication networks? 

Response: 

OK, Thanks, Done. The details for calculated communication networks have been 

listed in Supplementary Table 13. We have also added the ―QSCN.net‖ file, which can 

be viewed in the Pajek software. 

 

Minor comments: 

Minor comment 1: L53: re: AHL signal incorporation into plasma membranes — the 

reference is talking about lung epithelia. This seems not a relevant point unless also true 

in the gut. 

Response: 

Sorry for the mistake. We have replaced it with another AHL-relevant cases, which are 

linked to the modulation of the gut immune system. 

―For example, N-(3-oxodecanoyl)-L-homoserine lactone, a common AHL-type signal, 

plays an important role in the modulation of the gut immune system by inducing 

neutrophils apoptosis [6] and attenuating innate immune responses via disruption of 

NF-kB signalling [7], thus providing a better colonization for Pseudomonas aeruginosa 

in the host.‖ 



Minor comment 2: L388: Doubtful that evolution works for the good of the 

population. 

Response: 

For many years, bacterial cells were considered primarily as selfish individuals. 

Recently, more and more studies showed that microbes could coordinate collective 

behaviour in response to environmental challenges using sophisticated intercellular 

communication networks [8]. These cell-cell communications are mediated by quorum 

sensing. For example, Atkinson et al. [9] presented that bacteria are not limited to 

communication within their own species but are capable of listening in and 

broadcasting to unrelated species to intercept messages and coerce cohabitants into 

behavioural modifications, either for the good of the population or for the benefit of one 

species over another. Furthermore, Collins et al.[10] found that the indole-based 

communication will promote a population-based resistance mechanism constituting a 

form of kin selection whereby a small number of resistant mutants can, at some cost to 

themselves, provide protection to other, more vulnerable, cells, enhancing the survival 

capacity of the overall population in stressful environments. To track the emergence 

and fixation of each mutation in their evolution experiment, they genotyped, using 

mass spectrometry, their daily E. coli populations to estimate the allelic frequency of 

each single nucleotide polymorphisms. Finally, they established a population-based 

antibiotic-resistance mechanism based on indole as a cell-signaling molecule. 

 

We have also added this indole-based citation to the revised manuscript to support this 

statement. 

 

Minor comment 3: L361 and 439: I was confused by the use of the word ―familial‖ 

and genus in the same sentence 

Response: 

Sorry for the confusion. We have replaced the ―familial‖ to be ―conserved‖. Hope this 

will be better. 



Response to Reviewer #2 (Expertise: complex networks, microbiome, Machine 

Learning, metabolic networks): 

In the present work, the authors built a workflow for QS entries collecting, expanding 

and mining. All these QS entries are proteins. Then four ML-based models were trained 

to check if a protein is a QS entry. There are 21,410 positive samples were collected 

manually and 7,157 QS entries were predicted by ML-based models, and the total 

28,567 QS entries contain 1,882 QS synthases and 26,685 receptors. Based on QS 

entries and QS-based microbial interactions, the authors developed the QSHGM 

database. Finally, a network was used to visualize the relationships among microbes 

based on the QSHGM database. 

My major concern is how this QS-based communication network help improves our 

understanding of the dynamics and organizational principles of microbial ecosystems, 

which originally is considered largely based on metabolic interactions. The authors just 

briefly mentioned this in the discussion part. But a quantitative model/analysis (as an 

example) is needed, which is quite important. 

Response: 

Thanks. QS-based communication network (QSCN) is helpful for investigating and 

understanding the communication principles of the more sophisticated microbial 

communities, including cells from the same or different kingdoms [11]. As stated in our 

previous review (DOI: 10.1016/j.tim.2021.04.006) [8], QS can be vertically and 

horizontally applied to natural microbial systems and synthetic microbial consortia, 

respectively. Vertically, QS plays an important role in maintaining the symbiotic 

relationship among phages, microbes, and hosts. Horizontally, dynamic manipulations 

of synthetic microbiota have offered encouraging examples for further exploration of 

the role of QS-based interactions in the construction of diverse consortia, possibly with 

greater sizes and richer interactions. 

 

Unlike metabolic interactions, most of the QS-based interactions can only improve our 

understanding of ecological communication principles qualitatively for now. In this 

work, we mainly predict the existence of various microbial communication, but we 

cannot give the specific intensity for them. There are mainly the following difficulties: 

(1) The reliable construction of directed QS networks including QS languages 

sender and receiver still faces many challenges, such as the huge network scale, 

multi-layer control structures, complex QS crosstalk, intricate social cheating, 

diverse environmental factors, different spatial distributions, and insufficient QS 



entries for many uncultured microbes. 

(2) The vast majority of QS-based interaction strengths are unknown, and the 

quantitative interactions of several QS systems were heterologous expressed in 

specific strains, such as Escherichia coli and Salmonella typhimurium (Table R4). 

Certainly, it is possible to quantitatively predict the stable synthetic microbial 

consortia based on these data. However, quantitative prediction of QS-based 

interactions in the natural microbial systems is currently difficult to achieve. 

 

Table R4. Previous studies with quantitative QS-based interactions. 

QS systems Strians Functions Refs 

lux 
Escherichia 

coli 

Programmed population control of an Escherichia coli 

population by QS-regulated killing. 
[12] 

lux, las E. coli Construct a E. coli predator–prey ecosystem. [13] 

lux, las E. coli 
Analyze the spatial and temporal dynamics of a 

QS-regulated synthetic, chemical-mediated ecosystem. 
[14] 

lux E. coli Construct a synchronized QS-regulated genetic clocks. [15] 

cin, rhl E. coli 
Investigate emergent genetic oscillations in a synthetic 

microbial consortium.  
[16] 

lux, las, rpa, 

tra 
E. coli 

Investigate QS communication modules for microbial 

consortia.  
[17] 

esa E. coli 
Construct a QS-based metabolic toggle switch (QS-MTS) 

in engineered bacteria for myo-inositol production. 
[18] 

lux, rpa 
Salmonella 

typhimurium 

Construct a stabilized microbial ecosystem by QS-based 

synchronized lysis circuits (QS-SLC). 
[19] 

rhl, lux, tra, 

las, cin, rpa 
E. coli 

Engineer the coordinated system behavior in synthetic 

microbial consortia. 
[20] 

lux, 

inducible 

rpa 

E. coli 
Construct inducible QS-regulated synthetic microbial 

communities. 
[21] 

lux, las E. coli 
Combinational quorum sensing devices for dynamic 

control in cross-feeding cocultivation 
[22] 

 

(3) The quantitative prediction for microbial consortia is integral to the growth 

dynamics of microbial communities, so it is incomplete to talk about regulation 

network when the growth and metabolism of microbial communities are excluded. 

At the same time, it is also incomplete to discuss only metabolism-based 

interactions while ignoring QS-based interactions for the study of microbial 

interactions. We will gain a more comprehensive understanding of the dynamics 

and organizational principles of microbial ecosystems by combining metabolic 

interactions and QS-based regulations. For example, Karkaria et al. [23] proposed a 



methodology for designing robust synthetic communities that include competition 

for nutrients, and use QS to control amensal bacteriocin interactions in a chemostat 

environment. In our another work (DOI: 10.1016/j.ymben.2021.07.002) [22], we 

found that the combination of different QS devices across multiple members offers 

a new tool with the potential to effectively coordinate synthetic microbial consortia 

for achieving high product titer in cross-feeding cocultivation. 

 

To sum up, the main outcome of this work is to reveal that microbial communication 

interactions exist in large quantities in diverse microbial communities by presenting the 

QSCN qualitatively, which is constructed based on the data collection in the QSHGM 

database. At the same time, we also call for more researchers to integrate 

metabolism-based interactions with communication-based regulations together to 

make the study of microbial interactions more complete. Certainly, the establishment of 

a more comprehensive network to achieve quantitative prediction of microbial 

interactions is also the priority of our next work. We have added corresponding context 

for the revised manuscript to stress the above points. 

 

Major comment 1 (1.1 About the workflow): The schematic diagram of the 

workflow with too many different datasets, styles, colours, and unclear description is 

very hard to follow. The input (data source), output and filtering rules should be defined 

clearer for each step. A table would be quite helpful. 

Response: 

Thanks for the suggestion. We have revised the original Figure 1. Note that positive 

dataset is coloured in red; negative, green; both of them, grey. Your suggested table has 

been added in the Supplementary material Table S2 (Table R3 in the response to the 

Major comment 3 from Reviewer #1). 

 

Major comment 2 (2.1 ML-based models): The authors used 4 different models: 

random forest (RF), KNN, SVM, and DNN. The authors claimed that ―the RF classifier 

achieves the best performance‖ based on accuracy and F1 score (line 204). Why did the 

authors use all four models instead of the best model? 

Response: 

There are two reasons for us to choose to create and utilize multiple classifiers for 

entries classification, which have been detailed in the response to the Major comment 9 

from Reviewer #1. 



Major comment 3 (2.2 ML-based models): The authors mentioned ―four ensemble 

classifiers‖ (line 126). How did the authors combine 4 different algorithms together by 

ensemble learning? 

Response: 

Sorry for the ambiguity. As illustrated in the revised Figure 1, the four classifiers were 

utilized to classified the dataset VII (9,253 entries), respectively. We take the union of 

the positives obtained by the four classifiers to obtain more extended QS entries. The 

union of the positives was then divided into uncharacterized (Dataset VIII) and 

annotated positives. The former was re-annotated, mined, and sorted out manually with 

the help of UniProt, NCBI, and Phyre
2
. The latter was combined with the re-annotated 

positives from Dataset VIII to decide whether the entries have QS function or not by 

function analysis, which was based on the specific annotations, sequence similarity, and 

domains (more details in Supplementary Table 11). 

 

Major comment 4 (2.3 ML-based models): There are 21,410 positive samples (line 

248), but the number of total samples (proteins) in 818 gut microbes and the number of 

negative samples is unclear. Is a sample either positive sample or negative sample? 

Response: 

This seems to be a concern also shared by Reviewer #1. There are 22,780 entries we 

collected as the negative samples. More details for negative samples have been given in 

the response to the Major comment 10 from Reviewer #1. 

 

Major comment 5 (2.4 ML-based models): The authors mentioned that 21,410 

positive samples were collected manually. The search was based on four commonly 

used QS annotations, i.e., ―quorum sensing‖, ―LuxR‖, ―two-component‖, and 

―tryptophanase‖ (line 131). Do all ―two-component regulatory systems‖ work as 

quorum sensing? Are these four keywords specific enough to narrow the searching 

scope and reduce the false-positive QS entry? 

Response: 

Sorry for the ambiguity. Generally, various QS systems can be roughly divided into 

three types: (i) acylated homoserine lactones (AHLs) and other autoinducers received 

by LuxR-type receptors utilized by Gram-negative bacteria; (ii) auto-inducing peptides 

(AIPs) and other autoinducers sensed by two-component systems (TCSs) utilized by 

Gram-positive bacteria; and (iii) autoinducer 2 (AI-2) and indole for interspecies 

communication of microbial communities [3]. ―quorum sensing‖ can cover some 



entries with obvious QS-based function; ―LuxR‖ can cover a very common type of QS 

receptor; ―two-component‖ can cover TCSs, which play an important role in microbial 

communications; ―tryptophanase‖ represents for indole-based communication. The 

dataset created based on these four keywords is big enough to cover the data from 

SigMol, Quorumpeps, and other reported QS entries. 

TCS entries play an important role in microbial communications, which have a 

certain overlap on QS [2], but it is difficult to separate them clearly for now. In this 

study, due to the intricate overlaps on QS and TCS entries, we collected the TCS entries 

as one of the important parts for the reported QS&TCS entries of 818 human gut 

microbes. The specific reasons have been listed in the response to the Major comment 2 

from Reviewer #1. 

 

Major comment 6 (2.5 ML-based models): The authors mentioned that ―All the four 

classifiers were applied to predict that whether the input amino acid sequences are QS 

entries or not with the output being 1 or 0, respectively‖ (line 488). However, the input 

for each algorithm, which is how to represent an amino acid sequence with variable 

length, was not mentioned in the draft. 

Response: 

This is again a point shared by Reviewer #1. The the Amino Acid Composition (AAC) 

calculates the frequency of each amino acid type in a protein or peptide sequence. We 

calculated AAC in each entry sequence as the protein features (more details for this 

have been listed in the response to the Major comment 9 from Reviewer #1). 

 

Major comment 7 (2.6 ML-based models): There are two different QS entry types: 

QS synthase and receptor, and the total 28,567 QS entries contain 1,882 QS synthases 

and 26,685 receptors. Receptors must also dominate the training set. Is there any bias 

when we predict QS synthases since the sequences of QS synthases may be different 

from receptors‘ dramatically? 

Response: 

Thanks. We admit that due to the differences in the scale of the corresponding data used 

for training, there will be potential deviations in the accuracy of the classifier in 

identifying the corresponding entries. The union of the four classifiers we constructed 

can minimize the classification bias from the scale difference of synthases and 

receptors to some extent (More details have been listed in the response to the Major 

comment 9 from Reviewer #1).  



Furthermore, it is expected for the number of receptors to be more than synthases, 

which is not a problem of our data. There are many cases in nature where there are only 

receptors but no synthases in one specific organism. For example, although most E. coli 

have acylated homoserine lactones (AHL) receptor (SdiA), they lack AHL synthase. 

Therefore, the uneven data of QS synthases and receptors coincides with their natural 

distribution. 

 

Major comment 8 (3.1 QS-based microbial interactions): The authors claimed that 

―according to the collected data in the QSHGM database, we can predict various 

potential pairwise QS-based microbial interactions‖ (line 289) and ―predict more 

sophisticated interaction networks‖ (line 298). However, the details of this prediction 

method cannot be found in this draft. Did the relation between two microbes include in 

the database? If so, the data source should be pointed out. 

Response: 

Thanks for the suggestion. We mean that the new QS-based communication interaction 

can be searched in our QSHGM database. To make it easier, we have illustrated these 

interactions in our QSCN. The details for calculated communication networks have 

been listed in Supplementary Table 13. We have also added the ―QSCN.net‖ file, which 

can be viewed in the Pajek software. 

 

Major comment 9 (3.2 QS-based microbial interactions): According to Fig. 7B, one 

microbe (such as E. coli) can produce compounds (such as CAI-1) by QS synthases, 

and another microbe (such as Bacteroides vulgatus) can receive the same compound by 

its receptor, so they can communicate with each other. Since each microbe can produce 

so many compounds and each microbe also can receive so many different compounds, 

Fig. 7A gives a complete graph that links every node to every other node for the 40 core 

microbes. We cannot figure out that what information this graph can provide. 

Response: 

Sorry for the ambiguity. The QSCN we constructed (Figure 5A) can be projected to a 

one-mode network (Figure S4) that visualizes microbial communication-based 

interactions directly. This one-mode network is characterized by a large number of 

highly connected nodes. To obtain the core microbes in our proposed QSCN, we shrunk 

the network to get key nodes with large degree and high betweenness centrality. 

Therefore, such a dense network (original Figure 7A) was provided to indicate the 40 

core gut microbes with excellent microbial communications. As such, what is 



visualized here is essentially a sub-network with a particularly high ―density‖, not 

representative of the entire network of the whole gut environment. We would also like 

to point out that, although each microbe can produce so many QS languages in the 40 

core gut microbes, the specific intensity for each language cannot be provided in this 

work; the intention is that we first determine the existence of the QS-based 

communications (as done in this work), and then to investigate its corresponding 

intensity (future work), eventually bringing a comprehensive understanding of the 

communication-based microbial interactions. 

 

To avoid misunderstanding, we have moved it from the revised manuscript into the 

supplementary material as Figure S5. We have also added some corresponding context 

in the revised manuscript. 

 

Major comment 10 (3.3 QS-based microbial interactions): Same concern as 2.4 and 

described in 3.2, there are so many links between each different species. The 

false-positive relations between each different species should be tackled carefully. 

Response: 

Thanks. We admit that there will be inevitably some false positive entries in our 

QSHGM database and the proposed QSCN, even if there is no problem at the level of 

individual nodes, the relations we have predicted were not necessarily always true in 

reality. On the one hand, we want to stress that manual curation, BLASTP-based 

expanding, and ML-based classifications were combined together in this work to 

minimize false positives as possible. On the other hand, QS links we predicted based on 

the database would be ―possibilities‖, not reality and still require experimental 

verification. However, we offered a tool to allow users with various applications in 

mind to see the ―possibilities‖ in the first place, which allows them to subsequently 

focus their experimental verification. 

 

Furthermore, we have added some corresponding statements for this concern in the 

revised discussion section of the new manuscript. 
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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

The authors have addressed most of my comments and improved the manuscript. I now 

recommend publication with some minor improvements. 

- A comment on my previous “Major point 8: Why did you only use receptors for Gram positive, 

but synthases and receptors for gram negatives?” I understand the explanation provided. 

However, false positives due to short length of the peptides could be accounted for differently, 

instead of removing them entirely. For starters, a lower e-value threshold could have been chosed 

to only allow for exact matches; secondly, exact matches that are otherwise unlikely genes for 

small peptide production (e.g. occurring within an ORF) could be removed. I do not expect the 

authors to change their methodology, but explain their choices (for the e-value threshold applied, 

and to remove the peptides entirely rather than curate them) in the methods. However, these 

points lead to an actionable request: please address in the discussion of the communication 

networks that a class of signals were excluded and thus did not inform the networks inferred. 

- In the discussion, mention that the machine learning methods were run on AA frequencies. 

Explain and discuss that potentially important information on the AA sequence is lost and not 

considered by the machine learning tools. What that might that imply? This seems particularly 

important for short sequences. 

- Explain the output of “Positive and negative samples construction.” at the end of the method 

section: Presumably, an array of 22,780 AAs FREQUENCIES found in 8 organisms calculated from 

the AA sequences of proteins after removing QS related proteins. 

- Regarding reply to minor comment 2: the sentence on line 383, “...’broadcasting‘ to unrelated 

species for the good of the population” is implausible as an evolutionary statement. It is 

unsubstantiated by the presented work because no experiments were performed. And it does not 

follow from the references, which study a population of a single species. 

Reviewer #2: 

Remarks to the Author: 

I appreciate the improvement and major revision of the manuscript by the authors, especially on 

the role and limitation of QSCN in understanding the dynamics and organizational principles of 

microbial ecosystems. Most of the questions I asked are much clearer now. I anticipate that the 

authors will be further encouraged to explain or address the following issues to improve the 

manuscript and its understanding to a broad readership and quantify the claims. 

1. QSCN – QS language 

Since QSCN is one of the most important contributions in this article, it’s better to clarify the 

hypothesis and related definitions clearly in this manuscript instead of letting the reader read the 

previously published work. 

The authors defined 9 types of QS language (Line 46, essentially they are small molecules or 

peptides). It looks like “QS signals” has the same meaning as “QS language”. Two of them 

involved in the communication of interspecies (AI-2 and indole) and the others involved in the 

communication of intraspecies (L46 – L50). The amount of QS language can affect the QSCN 

dramatically. Let’s say there is only one QS language “QSL”, all of the related QS entries can be 

connected by QSL and an extremely simple network will be built. If there are 100 different QS 

languages, however, this network will become much more complicated. I would like to ask: 

a) How did the authors define 9 types of QS language? 

b) Is there any other QS languages? 

2. QSCN – The hypothesis in each talk 

As far as I understand, a single communication (talk) should have both QS signals producer 



(maybe related enzyme) and QS signals receiver (maybe related receptor). Same example in Fig. 

6 (previous Fig. 7B): one microbe (such as E. coli) can produce compounds (such as CAI-1) by QS 

synthases, and another microbe (such as Bacteroides vulgatus) can receive the same compound 

by its receptor. So E. coli can speak to B. vulgatus and each talk should be directional naturally. I 

would like to ask why QSCN is not a directed graph. 

Furthermore, how to differentiate a bacteria as a producer or receiver is unclear. When I search 

“AI-2” in QSHGM website, I can find 567 QS entries. The first entry is W1Q6C6 and the annotation 

in UniProt of this entry is: “Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by 

bacteria and is used to communicate both the cell density and the metabolic potential of the 

environment …”. In my understanding, the strains (or species) that can express protein W1Q6C6 

should be a producer (whether they are receivers is unclear). However, the authors connected all 

these producers together by AI-2 in Fig. 5A and explained further in Fig. S7c: “One can find that 

ten members of the community can communicate based on the AI-2 language (Figure S7c), thus 

leading to a potentially dense QSCN.” (L100 – L102 in supplementary material). I also noticed the 

response of “major comment 12” from the first reviewer: “Note that the line represents that both 

of the strains can speak the language; black arrow means that one strain can speak the language 

to the other one”. I would like to ask how they can talk with each other if there are only producers 

and devoid of receivers. It seems like that the authors had a strong hypothesis when the network 

was built: all producers (speakers) should be receivers to the same QS language as well. Is this 

hypothesis reasonable? Is there any other hypothesis didn’t describe explicitly? 

One more question about QSCN. There are 2 different types of QS languages, one for the 

communication of interspecies and another for the communication of intraspecies. They may have 

different abilities of connecting gut microbes. But I cannot see any different connection patterns in 

Fig. 5A. 

3. ML – the evaluation of model performance 

According to my experience, the evaluation of model performance should be depended on the test 

set or cross-validation first. Since the authors used 5-fold cross-validation on the whole dataset 

(21,383 positive samples in Dataset III and 22,780 negative samples in Dataset IV), 5 different 

accuracies (same to precision, recall and F1 score) should be got and finally the average accuracy 

(same to precision, recall and F1 score) should be reported. Once the model was well-trained, it 

can be applied to other datasets (model prediction), such as uncharacterized positives (Dataset 

VII). 

The authors explained how the rate of false positives was addressed on pages 1-2 of “to editor” 

part. However, the prediction result of Dataset VII was discussed simultaneously. It makes me 

confused about how the model was evaluated. Was the reported accuracy calculated based on the 

result of 5-fold cross-validation or based on the re-annotated result (the union of the positives in 

the prediction result of Dataset VII)? 

I noticed that the authors stated that “Classifiers were trained and validated based on the positive 

and negative samples, and then tested on the dataset V (Fig. 2).” (L563-L564). Another thing I 

would like to point out is that Dataset V is not a valid test set, since not all of the QS entries were 

determined as positive or negative samples. Only if the re-annotation steps did before model 

prediction (all of the QS entries in Dataset V were determined as positive samples or not), Dataset 

V can be used as a valid test set. 

4. ML – the key hyper-parameters 

How did the authors determine the key hyper-parameters, such as the number of layers and 

learning rate in the DNN model and SVM? I noticed that only the hyper-parameter in the KNN 

model was mentioned (L573 – L604). 



Dear reviewers, 

Machine Learning Aided Construction of the Quorum Sensing Communication 

Network for Human Gut Microbiota 

Shengbo Wu, Jie Feng, Chunjiang Liu, Hao Wu, Zekai Qiu, Jianjun Ge, Shuyang Sun, 

Xia Hong, Yukun Li, Xiaona Wang, Aidong Yang, Fei Guo, and Jianjun Qiao. 

 

We are very grateful for the valuable comments from reviewers, which have now all 

been carefully considered in the revision of our manuscript. In the revised manuscript, 

all the changes are marked in red. 

The following is the point-to-point response to individual comment marked in blue. 

 

Response to Reviewer #1: 

Reviewer #1 (Remarks to the Author): 

The authors have addressed most of my comments and improved the manuscript. I 

now recommend publication with some minor improvements. 

Response: 

Thanks for your interest in this work. We have further revised the manuscript 

carefully. 

Minor comment 1: 

- A comment on my previous “Major point 8: Why did you only use receptors for 

Gram positive, but synthases and receptors for gram negatives?” I understand the 

explanation provided. However, false positives due to short length of the peptides 

could be accounted for differently, instead of removing them entirely. For starters, a 

lower e-value threshold could have been chosed to only allow for exact matches; 

secondly, exact matches that are otherwise unlikely genes for small peptide 

production (e.g. occurring within an ORF) could be removed. I do not expect the 

authors to change their methodology, but explain their choices (for the e-value 

threshold applied, and to remove the peptides entirely rather than curate them) in the 

methods. However, these points lead to an actionable request: please address in the 

discussion of the communication networks that a class of signals were excluded and 

thus did not inform the networks inferred. 

Response: 

Thanks for the good suggestion. We have revised the corresponding content in both 

the “Discussion” part and the “Data acquisition” part in the “Methods” section. 

 

Minor comment 2: 

In the discussion, mention that the machine learning methods were run on AA 

frequencies. Explain and discuss that potentially important information on the AA 

sequence is lost and not considered by the machine learning tools. What that might 

that imply? This seems particularly important for short sequences. 



Response: 

Thanks for the good suggestion. We have added some sentences in the revised 

“Discussion” part marked in red. Hope these will be better. 

 

The four ML-based classifiers were trained on amino acids frequencies, which did not 

include the physicochemical properties (such as hydrophobicity, charge and molecular 

size) 
1
 and the information on amino acids combinations with fixed length 

2
. The 

above features are particularly important for the accurate prediction of the short 

sequences such as the AIPs (about 5~30 amino acids).  

Note that short peptides (such as AIPs) and proteins are not generally placed 

together for sequence BLASTP and functional analysis, because proteins generally 

have a fixed structure while short peptides do not. AIPs sequences can also easily lead 

to increased false positives from the BLASTP process. Therefore, to increase the 

reliability of the expansion, we have removed the signal peptides in the 

BLASTP-related datasets (I and VII), thus leading to the sparse edges for the “AIPs” 

node in our QSCN (Fig. 5A). This calls for a more accurate method to cover more 

aforementioned amino acids features for short sequences to mine the potential signal 

peptides in the future to make the QSCN more complete. 

 

Combined with excellent suggestions from comments 1 and 2, we have stressed the 

above discussion about the future improvements for QSCN in the expansion and 

prediction of AIPs, which will be the focus of our next work in the near future. 

 

Minor comment 3: 

Explain the output of “Positive and negative samples construction.” at the end of the 

method section: Presumably, an array of 22,780 AAs FREQUENCIES found in 8 

organisms calculated from the AA sequences of proteins after removing QS related 

proteins. 

Response: 

Thanks for the advice. We have added further clarifications at the “Positive and 

negative samples construction” section. 

 

Minor comment 4: 

Regarding reply to minor comment 2: the sentence on line 383, “...‟broadcasting„ to 

unrelated species for the good of the population” is implausible as an evolutionary 

statement. It is unsubstantiated by the presented work because no experiments were 

performed. And it does not follow from the references, which study a population of a 

single species. 

Response: 

Thanks for the suggestion. We have removed this inappropriate description in the 



revised manuscript. 

Response to Reviewer #2 (Remarks to the Author): 

I appreciate the improvement and major revision of the manuscript by the authors, 

especially on the role and limitation of QSCN in understanding the dynamics and 

organizational principles of microbial ecosystems. Most of the questions I asked are 

much clearer now. I anticipate that the authors will be further encouraged to explain 

or address the following issues to improve the manuscript and its understanding to a 

broad readership and quantify the claims. 

Response: 

Thanks for good suggestions on our work. We have revised the manuscript carefully. 

Comment 1 (QSCN-QS language): Since QSCN is one of the most important 

contributions in this article, it‟s better to clarify the hypothesis and related definitions 

clearly in this manuscript instead of letting the reader read the previously published 

work. 

Response: 

Thanks. We have now considered this together with your other Comments, and 

revised the corresponding descriptions in the new manuscript. 

 

Comment 2 (QSCN-QS language): The authors defined 9 types of QS language (Line 

46, essentially they are small molecules or peptides). It looks like “QS signals” has 

the same meaning as “QS language”. Two of them involved in the communication of 

interspecies (AI-2 and indole) and the others involved in the communication of 

intraspecies (L46 – L50). The amount of QS language can affect the QSCN 

dramatically. Let‟s say there is only one QS language “QSL”, all of the related QS 

entries can be connected by QSL and an extremely simple network will be built. If 

there are 100 different QS languages, however, this network will become much more 

complicated. I would like to ask: 

a) How did the authors define 9 types of QS language? 

b) Is there any other QS languages? 

Response: 

Generally, microbes communicate via various QS signals, which are also termed 

(informally) as microbial languages by other researches 
3-5

. Same as in these previous 

studies, “QS signals” has the same meaning as “QS languages” In this work. 

 

Regarding the number of QS languages, it is to a large extent a matter reflecting the 

progress in QS research which has evolved from the initial work by Fuqua et al. 
6
 (in 

1994) on the discovery of cell-density-dependent bioluminescence. Subsequently, as 

summarized in the Table R1 (Table S2), various QS signals (QS languages), such as 

acyl-homoserine lactones (AHLs) and diffusible signaling factors (DSFs) were found 

in various bacterial cells 
7
. In this work, based on a large amount of the reported 



lectures and some existing databases (SigMol
8
 and Quorumpeps

9
), we decided to 

focus on the commonly reported nine types of QS languages, i.e., AHLs, DSFs, HAQs, 

CAI-1, AIPs, Photopyrones, Dialkylresorcinols, indole, and AI-2. Due to the lack of 

the sequence information for the corresponding synthases, which is needed by the 

approach taken in this work, some other QS languages, such as autoinducer-3 (AI-3) 
10

, were not considered. 

Table R1. Details for the selected nine types of QS languages 

Type Languages Acronym Synthase Reported microbes Refer. 

Intra-s

pecies 

Acyl-homoser

ine lactones 
AHLs 

Diverse I 

proteins 

(e.g., LuxI) 

Most of 

Gram-negative 

bacteria (e.g., Vibrio 

fischeri) 

6
 

Diffusible 

signal factors 
DSFs RpfF 

Xanthomonas 

campestris 

5
 

4-hydroxy-2-a

lkylquinoline 
HAQs PqsA 

Pseudomonas 

aeruginosa 

11
 

Cholera 

autoinducer 1 
CAI-1 CqsA Vibrio spp. 

12
 

Dialkylresorci

nols 
DARs DarB 

Photorhabdus 

asymbiotica 

13
 

Photopyrones - PpyS 
Photorhabdus 

luminescens 

14
 

Auto-inducing 

peptides 
AIPs 

Synthases 

of signal 

peptides 

(e.g., NisA) 

Most of 

Gram-positive 

bacteria (e.g., 

Lactococcus lactis) 

15
 

Inter-s

pecies 

Indole - TnaA 
Some microbes (e.g., 

Escherichia coli) 

16
 

Autoinducer 2 AI-2 LuxS 
Most of microbes 

(e.g., Vibrio harveyi) 

17
 

 

New QS languages are not always easy to be discovered, because they tend to 

autoregulation (i.e., languages positively regulate their own activity via expression of 

their synthase) and binding to their corresponding receptor to form complexes. 

Nevertheless, it is foreseeable that some novel QS languages belonging to various 

chemical classes will be discovered and identified in the future. Although the current 

work has been based on the above nine languages, we will gradually update the 

QSHGM and the QSCN with new discoveries. 

 

To highlight the limitation of considering the specific nine QS languages, we have 



added some notes to the section of “QS communication network construction” and 

“Discussion”, in the revised manuscript. 

Comment 3 (QSCN – The hypothesis in each talk): As far as I understand, a single 

communication (talk) should have both QS signals producer (maybe related enzyme) 

and QS signals receiver (maybe related receptor). Same example in Fig. 6 (previous 

Fig. 7B): one microbe (such as E. coli) can produce compounds (such as CAI-1) by 

QS synthases, and another microbe (such as Bacteroides vulgatus) can receive the 

same compound by its receptor. So E. coli can speak to B. vulgatus and each talk 

should be directional naturally. I would like to ask why QSCN is not a directed graph. 

Response: 

The QSCN shown in Fig. 6 is actually a directed graph. The accurate QSCN for 

human gut microbes should also be a directed graph including QS languages 

producing and receiving. However, there are many challenges to construct the 

accurate directed large-scale QSCN. We have made some revisions in the new 

manuscript to stress the direction properties and challenges for the construction of the 

accurate QSCN. 

 

In this study, we developed the QSHGM database to bridge the gap between QS 

repositories and human gut microbiota. With the help of QSHGM, the QSCN could be 

further constructed for human gut microbes. As stated in the third paragraph of first 

part of the “Discussion” section, by differentiating QS signals producing and 

receiving with the help of both QS synthases and receptors, there is potential to 

construct a directed and more precise QSCN. However, the reliable construction of 

the precise QSCN still faces many challenges, such as the huge network scale, 

multi-layer control structures, complex QS crosstalk, intricate social cheating, diverse 

environmental factors, different spatial distributions, and insufficient QS entries for 

many uncultured microbes. Therefore, we firstly constructed a preliminary and 

undirected QSCN based on the connections of nine QS languages (AHLs, DSFs, 

HAQs, CAI-1, AIPs, Dialkylresorcinols, Photopyrones, indole, and AI-2) without 

differentiating QS signals producing and receiving. As you can see, while pointing out 

the challenge of constructing a complete QSCN, we used a simplified 7-strain model 

from Colosimo et al
18

 as an example (Fig. 6) to illustrate the directed properties of the 

QSCN. Based on the prediction of QS languages producing and receiving, more 

future work will be conducted to develop a directed and complete QSCN, including as 

many QS languages and receptors as possible. 

 

Comment 4 (QSCN – The hypothesis in each talk): Furthermore, how to differentiate 

a bacteria as a producer or receiver is unclear. When I search “AI-2” in QSHGM 

website, I can find 567 QS entries. The first entry is W1Q6C6 and the annotation in 

UniProt of this entry is: “Involved in the synthesis of autoinducer 2 (AI-2) which is 



secreted by bacteria and is used to communicate both the cell density and the 

metabolic potential of the environment …”. In my understanding, the strains (or 

species) that can express protein W1Q6C6 should be a producer (whether they are 

receivers is unclear). However, the authors connected all these producers together by 

AI-2 in Fig. 5A and explained further in Fig. S7c: “One can find that ten members of 

the community can communicate based on the AI-2 language (Figure S7c), thus 

leading to a potentially dense QSCN.” (L100 – L102 in supplementary material). I 

also noticed the response of “major comment 12” from the first reviewer: “Note that 

the line represents that both of the strains can speak the language; black arrow means 

that one strain can speak the language to the other one”. I would like to ask how they 

can talk with each other if there are only producers and devoid of receivers. It seems 

like that the authors had a strong hypothesis when the network was built: all producers 

(speakers) should be receivers to the same QS language as well. Is this hypothesis 

reasonable? Is there any other hypothesis didn‟t describe explicitly? 

Response: 

Sorry for the ambiguity on our hypothesis. Indeed, there were some hypotheses in the 

construction of the undirected and preliminary QSCN, which was based on the 

connections of nine types of QS languages. 

 

QS is a cell-cell communication mechanism that consists of QS signal producing by 

QS synthase (such as LuxI) and signal receiving by its corresponding QS receptor 

(such as LuxR). It indicates that when a microbe owns a complete QS system, it can 

play the role of speaker and receiver to the same language at the same time. However, 

as we replied in the Comment 3, it is difficult to match the receptor and QS language 

for the gut microbiome due to the multi-layer control structures, complex QS 

crosstalk, and other complexities associated with the 818 human gut microbes. 

Although it is known that some specific microbial cheaters only have orphan 

LuxR-type QS receptors, such as PluR and PauR, without the corresponding AHLs 

synthase 
19

, such information is still far from complete. Note that in the context of 

microbial social evolution, one process that stabilizes cooperation is to avoid the 

displacement of cooperative cells by noncooperative cheater mutants 
20

. This suggests 

that most of microbes contain a complete QS system compared to cheaters that only 

contain part of the QS modules. In the lack of more complete information, we 

therefore think that it is reasonable to hypothesize in the present work that all 

producers (speakers) should be receivers to the same QS language as well. 

 

To make such hypotheses more explicit, we have now introduced a table of the 

relevant hypotheses and future improvements for this work (see Discussion and Table 

S4 which is shown below as Table R2). Among the five hypotheses, the first four have 

been explained and listed in the revised manuscript and supplementary materials. The 



last one is about the hypothesis of QS signal crosstalk, that is, considering the QS 

crosstalk widely exists in nature 
21

, we hypothesize that species using (same or 

different) QS signal molecules within the same type of QS language, such as AHLs, 

can communicate with each other. 

 

Table R2. Hypotheses and future improvements for the QSCN 

Items Hypotheses Future improvement for QSCN 

Microbe 

Human gut microbiome consists 

of 818 microbes from VMH 

database. 

Enlarge the number and range of gut 

microbes. 

Language 
There are nine types of QS 

languages. 

Develop the QSCN for more AIPs 

and novel QS languages. 

TCS 
TCS entries possess QS 

functionality. 

Figure out the differences and 

connections between QS and TCS. 

Cheating 
All producers are also receivers 

to the same QS language. 

Construct a directed and more 

accurate QSCN differentiating QS 

languages producing and receiving. 

QS 

Crosstalk 

Microbes that speak the same 

type of languages can 

communicate with each other. 

Quantify the intensity of QS 

crosstalk for the same type of QS 

languages to develop a weighted 

QSCN. 

 

In the content of the new manuscript and supporting material, we have provided the 

hypotheses on cheating and crosstalk, discussed the potential future improvements for 

the QSCN (Table S4), and rearranged the corresponding content in a clearer layout. 

 

Comment 5 (QSCN – The hypothesis in each talk): One more question about QSCN. 

There are 2 different types of QS languages, one for the communication of 

interspecies and another for the communication of intraspecies. They may have 

different abilities of connecting gut microbes. But I cannot see any different 

connection patterns in Fig. 5A. 

Response: 

Thanks for the helpful comment. We have now revised Fig. 5 to add two patterns for 

generally recognized intra-species (AHLs, DSFs, HAQs, CAI-1, AIPs, 

Dialkylresorcinols, and Photopyrones) or inter-species (indole and AI-2) QS 

languages. The former was marked in blue, and the latter was marked in red. As a 

result, there are significant genus-level overlaps between microbes on what are 

commonly regarded as intra-species languages, which suggests that these languages 

may also be involved in some interspecies communications. This indicates that the 

distinction between intra-species and inter-species communication languages can 



become blurred, and there is no significant difference between the two patterns in the 

undirected and preliminary QSCN as constructed in this present work. 

 

Comment 6 (ML – the evaluation of model performance): According to my 

experience, the evaluation of model performance should be depended on the test set or 

cross-validation first. Since the authors used 5-fold cross-validation on the whole 

dataset (21,383 positive samples in Dataset III and 22,780 negative samples in Dataset 

IV), 5 different accuracies (same to precision, recall and F1 score) should be got and 

finally the average accuracy (same to precision, recall and F1 score) should be 

reported. Once the model was well-trained, it can be applied to other datasets (model 

prediction), such as uncharacterized positives (Dataset VII). 

The authors explained how the rate of false positives was addressed on pages 1-2 of 

“to editor” part. However, the prediction result of Dataset VII was discussed 

simultaneously. It makes me confused about how the model was evaluated. Was the 

reported accuracy calculated based on the result of 5-fold cross-validation or based on 

the re-annotated result (the union of the positives in the prediction result of Dataset 

VII)? 

Response: 

Sorry for the confusion. Indeed, as you stated above and also as illustrated in Fig. 1, 

we conducted 5-fold cross-validation on the whole dataset (21,383 positive samples in 

Dataset III and 22,780 negative samples in Dataset IV), calculated the average 

accuracy (same to precision, recall and F1 score), and listed them in Fig. 3A. Then, 

the uncharacterized dataset VII was predicted and classified by the trained ML-based 

classifiers. 

 

In the previous response to the editor, what we wanted to stress is the classified results 

from the four well-trained ML-based classifiers and the process followed.  

 

We have now revised the manuscript to distinguish the model training and application 

process to avoid misunderstanding in the section of “Expanded and new QS entries”. 

 

Comment 7 (ML – the evaluation of model performance): I noticed that the authors 

stated that “Classifiers were trained and validated based on the positive and negative 

samples, and then tested on the dataset V (Fig. 2).” (L563-L564). Another thing I 

would like to point out is that Dataset V is not a valid test set, since not all of the QS 

entries were determined as positive or negative samples. Only if the re-annotation 

steps did before model prediction (all of the QS entries in Dataset V were determined 

as positive samples or not), Dataset V can be used as a valid test set. 

Response: 

Sorry for the mistake. As stated in the response to Comment 6, the four ML-based 



classifiers were applied to the classification in Dataset VII. Indeed, after excluding 

from Dataset V the entries which were already collected as the reported QS&TCS 

entries in dataset III (Dataset VI, 5,320 entries), the remaining entries (Dataset VII, 

9,253 entries) were then classified by the four ML-based classifiers. We have revised 

the manuscript to correct the mistake in the section of “ML-based classifiers” of 

“Method”. 

 

Comment 8 (ML – the key hyper-parameters): How did the authors determine the 

key hyper-parameters, such as the number of layers and learning rate in the DNN 

model and SVM? I noticed that only the hyper-parameter in the KNN model was 

mentioned (L573 – L604). 

Response: 

For SVM and RF models, we used GridSearchCv 
22

 to select and determine the 

optimal combination of hyper-parameters automatically to achieve best performance. 

 

For the DNN model, as shown in the “Methods” section, we have added two hidden 

layers after the one-to-one layer. The first hidden layer is fully connected with 

one-to-one layer and the second hidden layer is fully connected with the first hidden 

layer. The last layer is an output layer which has two neurons. We use softmax as the 

output function of the last layer in neural networks, which turns the score produced by 

the neural network into values that can solve our problem. Batch normalization was 

applied to the one-to-one layer and each hidden layer to accelerate the training 

process. The SGD optimizer was used to train the DNN model and the learning rate 

was fixed as 0.01. Values of the other hyper-parameters of the DNN model were set to 

default ones without tuning. 

 

We have added some content to the end part of each ML-based algorithm in “Methods” 

section to provide the above information on the generation and selection of key 

hyper-parameters for the four ML models.
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Reviewer #1: 

Remarks to the Author: 

The authors have addressed my remaining comments sufficiently. 

Reviewer #2: 

Remarks to the Author: 

The authors have satisfactorily addressed my questions/comments. I now recommend publication. 
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