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S1. THEORY

In this section we present details of our theoretical approach to calculate the band structure and Zeeman e�ect
in perovskite crystals. We outline the microscopic DFT and tight-binding methods as well as the k · p-model and
formulate the atomistically-inspired procedure for the estimation of the g-factors in perovskites.

A. Preliminaries

According to the Bloch theorem the electron wavefunctions in a crystal can be recast in the form

Ψn,s;k(r) =
eikr√
V
un,s;k(r), (S1)

where r is the real space coordinate, n enumerates the bands, s is the spin index, k is the quasi-wavevector, V is the
normalization volume and un,s;k(r) is the periodic Bloch amplitude. In the presence of a weak magnetic �eld B, such
that all characteristic energies related to the �eld are much smaller than the energy separations between the bands,
the Zeeman splitting of the electron states is given by the Hamiltonian with the matrix elements

HZ,ss′ =
1

2
g0µB(σss′ ·B) + µB(Lss′ ·B). (S2)

Here s, s′ = ±1/2 are the spin indices, g0 = 2 is the free-electron Land�e factor, µB = |e|~/(2m0c) is the Bohr magneton
with m0 being free-electron mass, e being the electron charge, and c being the speed of light, σ= (σx, σy, σz) is the
vector composed of the Pauli matrices and L = −i[r × (∂/∂r)] is the angular momentum operator. Combining the
�rst and second terms, Eq. (S2) can be rewritten in the simple form

HZ =
µB
2
gαβσαBβ , (S3)

where α, β = x, y, z denote the Cartesian components, gαβ are the elements of the g-factor tensor. Using the com-
pleteness relation for the Bloch functions one can recast the components of the g-factor tensor in the form, see e.g.,
Refs. [S1�S4]

gαβσα,ss′Bβ =
∑

γ=x,y,z

Bγ

g0σγns,ns′ − 2i

m0

∑
m,t
α,β

εαβγ
pαns;mtp

β
mt;ns′

En − Em

 . (S4)

Here summation over the repeated subscripts is implied, σγns,ns′ = 〈n, s|σγ |ns′〉, εαβγ is the Levi-Civita symbol, En
and Em are the band energies at the corresponding point of the Brillouin zone, the pαns;mt are the interband momentum
operator matrix elements. In Eq. (S4) summation over all bands except for the selected band n is carried out, they
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are enumerated by the orbital index m and the spin index t. For completeness we give the expression for the inverse
e�ective mass tensor mαβ at a band extremum

1

mαβ
=
δαβ
m0

+
1

m2
0

∑
m,t

pαns;mtp
β
mt;ns + pβns;mtp

α
mt;ns

En − Em
, (S5)

where δαβ is the Kronecker symbol. Both the e�ective masses and Land�e factors are determined by the set of the
band structure parameters, namely, the band gaps and the interband momentum matrix elements. Thus, simulta-
neous calculation of both quantities by various methods allows one to improve the parametrization of the e�ective
Hamiltonians [S5]. Note that if relativistic e�ects are included, the momentum matrix elements pαns;mt should be
replaced by the appropriate matrix elements of the operator π which includes the spin-orbit coupling term [S2].

B. Band structure in the tight-binding and DFT approaches

For a realistic description of the band structure of perovskites we use a tight-binding model based on DFT calcula-
tions, see Ref. [S6]. Such a combination of ab initio and empirical methods allows us to gain access to the details of
the band structure and provides ground for a simpli�ed k · p-modeling of the bands. In our analysis, we consider the
high-symmetry cubic structure. This is a good starting point: the energy bands of lower symmetry crystal phases may
be then described as a folded and distorted band structure of this most symmetric phase [S7]. The standard approach
for the description of the electronic properties of the cubic phase of the prototype hybrid organic-inorganic perovskite
CH3NH3PbI3 is to consider its all-inorganic analogue, CsPbI3 [S7]. The DFT calculations are performed using the
WIEN2k package [S8] with the modi�ed Becke-Johnson exchange-correlation potential [S9] in Jishi parametrization
[S10], for details see Ref. [S6]. Note that for cubic CsPbI3 with the lattice constant 6.289 �A, this approach gives
the band gap Eg = 1.366 eV, while the experimental value is Eg = 1.65 eV [S11]. The di�erence between the DFT
results and experimental data for this material is attributed to the renormalization of the band structure by the
electron-phonon interaction [S12] which is estimated as hundreds of meV [S13]. The DFT calculations of the band
structure of cubic CsPbBr3 and CsPbCl3 are performed in the same way. The lattice constants, 5.992 �A and 5.605 �A,
respectively, are taken from Ref. [S10]. The value of the radius of the mu�n tin used is RMT = 2.5 Bohr, except for
Cl in which case RMT = 2.37 Bohr. The parameters controlling the numerical precision are RMT ·KMAX = 13 and
EMAX = 14. With these parameters, the band gap for the cubic phase is Eg = 2.52 eV for CsPbBr3 and Eg = 3.09 eV
for CsPbCl3. The dispersions for the CsPbBr3 cubic crystal calculated by the DFT approach are shown by the green
dashed curves in Fig. S1.

For the tight-binding calculations, we use the empirical tight-binding model with the sp3d5s∗ basis in the nearest
neighbor approximation. It gives a precise description of the band structure of bulk III�V [S14] and group IV [S15]
semiconductors. Recently, it has been shown that the extended sp3d5s∗ tight-binding method can be used to describe
the band structure of inorganic perovskites with a meV-range precision [S6]. For CsPbI3 we refer to the parameters
from Ref. [S6]. For the two other perovskites, CsPbBr3 and CsPbCl3, we use the results of the tight-binding �t
to the DFT approach outlined in Ref. [S6], they are given in Table S1; these materials are not stable in the cubic
phase so that corresponding experimental data are not available. Note that the relative error in the DFT band
gap is signi�cantly smaller for Br- and Cl-based materials since their band gap is much larger. The corresponding
tight-binding dispersion curves for CsPbBr3 are shown in Fig. S1 by the solid thin black lines and demonstrate good
agreement with the DFT calculations.

C. E�ective Hamiltonian model

In this section we present the basic information about the k · p model applied to calculation of the conduction
and valence band states in bulk perovskites and their key properties: the e�ective masses and g-factors. Following
Refs. [S16�S18] we start our description with the minimum model which includes the topmost two-fold degenerate
valence band and the nearest conduction bands. In the high-temperature cubic crystalline modi�cation of the per-
ovskites the direct band gap is formed at the R-point of the Brillouin zone (corner of the cube in the [111] direction).
The schematics of the band structure in the vicinity of the R-point are shown in Fig. S2(a). For a tetragonal perovskite
the bands are folded and the band gap is located at the Γ point of the Brillouin zone due to the band folding [S19],
Fig. S2(b).
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Table S1: Tight-binding parameters �tted to the DFT calculations. All values are given in eV. In addition to the
parameters presented in the table, the parameters scs

∗
aσ, s

∗
adcσ, pcdaσ, padcπ and those involving the sa and s∗c

orbitals are taken to be zero. The parameters of CsPbI3 are reproduced from Ref. [S6].

CsPbI3 CsPbBr3 CsPbCl3

Esc −5.7767 −4.9645 −4.5816

Es∗a 19.6780 19.7944 8.6310

Epa −2.3350 −2.5653 −3.4496

Epc 4.4825 5.5804 6.4591

Eda 10.8491 12.9468 14.1585

Edc 13.9357 15.9568 15.9638

scpaσ 1.0421 1.0288 1.1429

s∗apcσ 2.7092 2.5482 1.3349

scdaσ 0.3749 −0.7094 0.7972

ppσ −1.8838 −1.8488 −2.0710

ppπ 0.1955 0.1990 0.1183

padcσ 1.0341 −1.1460 1.4326

pcdaπ −0.7960 −0.7768 −0.9618

ddσ −1.1231 −1.1429 −1.1768

ddπ 2.0000 2.0000 2.0000

ddδ −1.4000 −1.4000 −1.4000

∆a/3 0.3250 0.0944 0.2290

∆c/3 0.4892 0.5469 0.7071

Figure S1: Comparison of the CsPbBr3 band structure calculated in DFT and in the empirical tight-binding
method. The DFT calculations are shown by the green dashed lines, the tight-binding results are given by the thin
black lines. The blue dotted rectangle shows the topmost valence band and the lowest conduction bands in the

vicinity of the R-point, see Fig. S2(a).

In both the cubic and tetragonal cases the valence band Bloch amplitudes can be recast in the form

valence band:

{
uv, 12 (r) = iS(r)↑,
uv,− 1

2
(r) = iS(r)↓,

(S6a)

where ↑, ↓ denote the basic spinors, and S(r) is the invariant function. The conduction band states are formed from
the three orbital Bloch amplitudes X (r), Y(r), and Z(r) which transform as the corresponding coordinates: in the
cubic modi�cation the axes x ‖ [100], y ‖ [010], z ‖ [001] are equivalent, and in the tetragonal perovskite the z-axis
is the C4-axis with x and y being equivalent. The Bloch states are determined by the interplay of the crystalline
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Figure S2: Schematic illustration of the band structure of a bulk (a) cubic perovskite crystal in the vicinity of the
R-point of the Brillouin zone and (b) tetragonal perovskite crystal in the vicinity of the Γ-point.

splitting and spin-orbit interaction and can be described as

bottom conduction band (c.b.):


uc, 12 (r) = − sinϑZ(r)↑ − cosϑ

X (r) + iY(r)
√

2
↓,

uc,− 1
2
(r) = sinϑZ(r)↓ − cosϑ

X (r)− iY(r)
√

2
↑,

(S6b)

excited (light electron) c.b.:


ule, 12 (r) = cosϑZ(r)↑ − sinϑ

X (r) + iY(r)
√

2
↓,

ule,− 1
2
(r) = cosϑZ(r)↓ + sinϑ

X (r)− iY(r)
√

2
↑,

(S6c)

excited (heavy electron) c.b.:


uhe, 32 (r) = − X

(r) + iY(r)
√

2
↑,

uhe,− 3
2
(r) =

X (r)− iY(r)
√

2
↓,

(S6d)

In the cubic modi�cation the light and heavy electron states at the R-point are degenerate, Fig. S2(a). In the
tetragonal modi�cation a splitting between the light and heavy electrons arises, as Fig. S2(b). We introduce the band
gap Eg as the energy gap between the bottom conduction band and the valence band, Eg + ∆le is the gap between
the light electron band and valence band, Eg + ∆he is the gap between the heavy electron band and the valence band,
see Fig. S2(b). The interband momentum matrix elements de�ned by (we assume that p‖ and p⊥ are real) are given
by

p⊥ = i〈X |px| S〉 = i〈Y |py| S〉, p‖ = i〈Z |pz| S〉. (S7)

The parameter ϑ determines the relation between the crystalline splitting and the spin-orbit interaction. Naturally,
in the cubic approximation cosϑ =

√
2/3, sinϑ = 1/

√
3, ∆le = ∆he ≡ ∆, and p‖ = p⊥ ≡ p. In the quasi-cubic

approximation [S2, S17, S18] the anisotropy parameters can be expressed in terms of the bare spin-orbit splitting
energy ∆so and the crystal �eld splitting ∆c as

∆le =

√
∆2
so + ∆2

c −
2

3
∆so∆c, ∆he =

∆le + ∆so + ∆c

2
, tan 2ϑ =

2
√

2∆so

∆so − 3∆c
. (S8)

Within this minimum model we calculate the e�ective masses and g-factors for electrons and holes. For the electron
at the bottom of the conduction band (c,±1/2), see Fig. S2, we obtain:

1

me‖
=

1

m0
+

2p2‖

m2
0

sin2 ϑ

Eg
, (S9a)
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1

me⊥
=

1

m0
+
p2⊥
m2

0

cos2 ϑ

Eg
. (S9b)

Here the symbols ‖ and ⊥ denote the direction of the electron propagation, namely, along and perpendicular to the
C4 ‖ z axis, respectively. In the valence band the hole e�ective masses take the form

− 1

mh‖
=

1

mv.b.‖
=

1

m0
−

2p2‖

m2
0

(
sin2 ϑ

Eg
+

cos2 ϑ

Eg + ∆le

)
, (S10a)

− 1

mh⊥
=

1

mv.b.⊥
=

1

m0
− p2⊥
m2

0

(
cos2 ϑ

Eg
+

sin2 ϑ

Eg + ∆le
+

1

Eg + ∆he

)
. (S10b)

Note that the hole masses, mh, have opposite signs as compared to the valence band electron masses, mv.b.. Evidently,
for the cubic crystal the e�ective masses and Land�e factors become isotropic. In particular,

1

me‖
=

1

me⊥
=

1

m0
+

2p2

m2
0Eg

, − 1

mh‖
= − 1

mh⊥
=

1

m0
− 2p2

3m2
0

3Eg + ∆

Eg(Eg + ∆)
. (S11)

Equations (S10) transform into the standard expression (2.48) of Ref. [S3] for cubic III-V semiconductors when
neglecting the non-parabolicity and making the natural replacements Eg → −(Eg + ∆), Eg + ∆ → −Eg that are
related to the di�erence in the band order in perovskites and GaAs-like crystals.
We now turn to the Land�e factors. For the bottom conduction band one has

ge‖ = −2

3
+

2p2⊥
m0

cos2 ϑ

Eg
, (S12a)

ge⊥ = −2

3
+

2
√

2p‖p⊥

m0

cosϑ sinϑ

Eg
. (S12b)

Here the subscripts ‖ and ⊥ of the Land�e factors denote the direction of the magnetic �eld with respect to the C4

axis. In these expressions we took into account the di�erence from the value of 2 of the free-electron spin contribution
to the g-factor due to the mixed form of wavefunctions (S6b), see the �rst term on the r.h.s. of Eq. (S4). For the
valence band we obtain

gh‖ = 2− 2p2⊥
m0

(
cos2 ϑ

Eg
+

sin2 ϑ

Eg + ∆le
− 1

Eg + ∆he

)
, (S13a)

gh⊥ = 2−
2
√

2p‖p⊥

m0
cosϑ sinϑ

(
1

Eg
− 1

Eg + ∆le

)
. (S13b)

Note that the valence band g-factors in the electron and hole representation have the same sign because the transfor-
mation from the electron to the hole representation includes both a change in the sign of energy and the time reversal.
We de�ne the Land�e factor in such a way that, e.g., for B ‖ z the splitting E+1/2 − E−1/2 between the states with
spin projection +1/2 and −1/2 onto the z axis is given by ge‖µBBz, gh‖µBBz, see Eq. (S3).
The expressions for the valence band g-factor in the cubic limit transform into the well-known formula (2.48) of

Ref. [S3] with the same replacements Eg → −(Eg + ∆), Eg + ∆→ −Eg as for the e�ective mass. The contributions
due to the k · p interaction of the conduction and valence bands are also in agreement with Yu [S16], both in terms
of magnitudes and signs. When comparing with Ref. [S16], one has to keep in mind that in the notations of Yu the
energy is reckoned from the heavy electron band and P‖,⊥ = (~/m0)p‖,⊥. Also ~−2 is omitted in Eqs. (11)-(14) of
Ref. [S16].
Importantly, in Ref. [S16] the remote band contributions to the conduction band Land�e factors were included through

the `magnetic' Luttinger parameters κ1,2. The importance of the remote band contributions for the conduction band
parameters is highlighted by our microscopic calculations, see below. To illustrate their role let us estimate, within
the cubic approximation, the contribution of the remote band with the orbital Bloch functions XY, XZ, and YZ



6

(F+
1 or R+

5 ) to the e�ective mass and g-factor of the conduction band electron. The importance of this band will
be clari�ed below from the comparison of the k · p-method with the atomistic approaches. Due to their even parity,
these bands do not contribute to the hole mass and Land�e factor. We denote

q = 〈XY|px|Y〉 = 〈XY|py|X 〉, etc., (S14)

and select the phases of the wavefunctions in such a way that q is real. We also neglect the spin-orbit splitting of the
remote band as compared to the distance E′g between the remote band and the conduction band. The contribution
to the inverse e�ective mass reads

∆
(
m−1e

)
=

4

3

q2

m2
0E
′
g

⇒ 1

me
=

1

m0
+

2p2

m2
0

1

3Eg
+

4

3

q2

m2
0E
′
g

, (S15)

while the contribution to the Land�e factor takes the form

∆ge = −4

3

q2

m0E′g
. (S16)

In the cubic approximation this correction is isotropic, the di�erence of the remote bands contribution to the Land�e
factor ∆ge‖−∆ge⊥ appears due to the crystalline splitting of the remote F+

1 orbitals and the anisotropy of the matrix
elements in Eq. (S14).

D. Results

To compute the g-factor in the empirical tight-binding (ETB) model we directly use Eq. (S4). We construct the
tight-binding Hamiltonian in the R-point of the Brillouin zone, and �nd the eigenvalues as well as the eigenvectors
that represent the energies and wave functions at the R-point. The resulting eigenvectors should be �symmetrized�
to form the canonical basis of irreducible representations in the R point (R+

6 for the valence band and R−6 for the
conduction band [S7]), in order to exclude an arbitrary phase of the computed eigenvectors from the g-factor values.
Then, in this basis, we calculate the matrix elements of the spin operator and the velocity operator in the standard
manner [S20], and use them in Eq. (S4) to �nd the g-factors.

Table S2: Band gap, spin-orbit splitting, e�ective masses and g-factors for di�erent perovskite materials extracted
from DFT and ETB calculations. The band gap and spin-orbit splitting from DFT are reproduced in the ETB

exactly, while there is a small di�erence in the masses. The g-factors are extracted only from the ETB calculations.
Subscripts e and h denote the bottom conduction band electron states and the top valence band hole states.

Eg (eV) ∆ (eV) mh/m0 (DFT) mh/m0 (ETB) me/m0 (DFT) me/m0 (ETB) gh (ETB) ge (ETB)

CsPbI3 1.366 1.266 0.16 0.191 0.18 0.184 −0.108 1.660

CsPbBr3 2.520 1.431 0.26 0.298 0.30 0.291 1.343 0.127

CsPbCl3 3.090 1.526 0.28 0.348 0.36 0.398 1.527 −0.080

The calculated values of the Land�e factors are summarized in Tab. S2. It also presents the values of the e�ective
masses found by �tting the numerically calculated dispersion curves with parabolas in the vicinity of the R-point. Note
that the direct application of Eq. (S5) yields similar values for the conduction band e�ective masses, but larger values
for the valence band e�ective masses because of the k2 diagonal terms appearing in the tight-binding Hamiltonian,
see the discussion in Ref. [S20]. We note that the g-factor dependence on the band gap corresponds well to the
experiment. The incomplete agreement with the measured data of the g-factors are mainly related to the di�erence in
the band gap energies of our DFT and ETB atomistic calculations and those observed for the studied crystals, as well
as to limitations in the extraction of the momentum matrix elements in the state-of-the-art DFT→ ETB procedures.
The open circles in Fig. S3 show the Land�e factors from the ETB procedure as function of the band gap energy. It
is seen that the atomistic approach gives reasonable values of the Land�e factor with the right trends: the electron
g-factor decreases with increasing band gap energy Eg, while the hole g-factor increases with increasing Eg.
To gain further insight into the key band parameters and to provide atomistic empirical expressions for the g-

factors within the e�ective Hamiltonian model we have analyzed the contributions of the di�erent bands to the
e�ective masses and g-factors, Fig. S4. Namely, we evaluated the di�erent terms in Eqs. (S4) and (S5) resulting
from band mixing and plotted them in arbitrary units as function of the energy Em of the corresponding state
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involved in the summation. Larger values indicate larger contributions to the inverse e�ective mass and Land�e factor.
The calculations clearly show that, for the valence band, the e�ective mass and the g-factor are dominated by the
contribution of the conduction band (blue rectangle in Fig. S4, left panels). For the bottom conduction band, both
the topmost valence band (magenta) and the remote valence bands (yellow) are important. Furthermore, it follows
from our parametrization that the Kane matrix element P = (~/m0)p depends weakly on the material ranging from
4.4 eV·�A to 5.5 eV·�A. This enables us to use the atomically-inspired e�ective k · p-approach formulated in Sec. S1C
to evaluate the Land�e factors for the perovskite crystals in the cubic phase. To that end we use Eq. (S13)

gh = 2− 4p2

3m0

(
1

Eg
− 1

Eg + ∆

)
, (S17)

for the hole g-factor and a combination of Eqs. (S12) and (S16)

ge = −2

3
+

4p2

3m0Eg
+ ∆ge, (S18)

for the electron g-factor. We recall that p = p‖ = p⊥ in the cubic case. Taking ∆ = 1.5 eV, P = ~p/m0 = 5.1 eV·�A, and
∆ge = −0.94 we simultaneously reproduce the band gap dependence of the Land�e factors found in the ETB approach,
see the dashed lines in Fig. S3. Equations (S17) and (S18) clearly highlight the physics behind the dependences: The
contributions to the g-factors due to the conduction band-valence band mixing have opposite signs for the electron
(positive) and hole (negative) and decrease in absolute value with increasing band gap energy. That is why the
electron g-factor decreases with increasing Eg (from large positive values at small Eg to −2/3 + ∆ge) and the hole
g-factor increases (from large negative values, it passes through zero and reaches +2 at large band gaps).

1.0 1.5 2.0 2.5 3.0 3.5

-2

0

2

4

6

1.0 1.5 2.0 2.5 3.0 3.5

-2

0

2

4

6

Eg (eV)

g
-
fa
ct
or

Figure S3: Summary of the calculated and measured Land�e factors for electrons and holes in the perovskites as
function of the band gap. Blue symbols and lines show the electron g-factors, red symbols and lines show the hole

g-factors. Open circles are ETB calculations from Table S2. Dashed lines are calculated within the
atomically-inspired k · p-approach after Eqs. (S17) and (S18) with ∆ = 1.5 eV, P = ~p/m0 = 5.1 eV�A, and

∆ge = −0.94, closely matching the ETB calculations. Filled squares show the experimental data (see main text for
details). Solid lines are calculated within the k · p-approach after Eqs. (S17) and (S18) with ∆ = 1.5 eV,

P = ~p/m0 = 6.8 eV�A, and ∆ge = −1 in reasonable agreement with the experiment.

Choosing reasonable values P = ~p/m0 = 6.8 eV·�A, ∆ = 1.5 eV, and ∆ge = −1, we obtain good agreement with
the experimental data, see the solid lines in Fig. S3.
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Conduction band parametersValence band parameters

Figure S4: Contributions to the e�ective masses and g-factors from various bands calculated for CsPbBr3 after
Eqs. (S4) and (S5). Blue, magenta and yellow rectangles show the energy ranges of the conduction band, the

topmost valence band and a bunch of remote valence bands of F+
1 symmetry, respectively. The contributions are

given in arbitrary units.

Using Eqs. (S12) and (S13) we evaluate also the bright exciton g-factor which describes the splitting of the exciton
radiative doublet into circularly polarized components, by gX = ge + gh. For the magnetic �eld along the main axis
we have

gX‖ =
4

3
− 2p2⊥
m0

(
sin2 ϑ

Eg + ∆le
− 1

Eg + ∆he

)
+ ∆ge, (S19a)

gX⊥ =
4

3
+

2
√

2p‖p⊥

m0

cosϑ sinϑ

Eg + ∆le
+ ∆ge. (S19b)

It is noteworthy that the contributions to the individual g-factors due to the k · p-mixing of the valence band with
the bottom conduction band ∝ 1/Eg cancel in the exciton g-factor.

E. g-factor anisotropy in CsPbBr3

It is instructive to analyze in more detail the anisotropy of the g-factor components for the case of CsPbBr3, where
this anisotropy is most clearly pronounced. in particular, the experiment shows that

ge‖ = 1.69, ge⊥ = 2.06; gh‖ = 0.85, gh⊥ = 0.65. (S20)

Our model has the following parameters: p‖, p⊥, ∆le, ∆he, and ϑ. The interband momentum matrix elements p‖
and p⊥ can be considered as independent parameters, but the three remaining parameters which deteremine the
conduction band structure, can be expressed by virtue of Eq. (S8) via two energies, namely the spin-orbit energy
∆so and the crystalline splitting ∆c. The four parameters (p‖, p⊥,∆so,∆c) can be determined via the four measured
values of the g-factors, Eq. (S20), and the band gap energy Eg = 2.352 eV.
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We use a least squares �t and �nd the parameter set to be

P⊥ =
~p⊥
m0

= 6.55 eV ·�A, P‖ =
~p‖
m0

= 7.92 eV ·�A, ∆so = 1.29 eV, ∆c = −0.11 eV, (S21)

which yields cos2 ϑ ≈ 0.7, ∆le = 1.34 eV, and ∆he = 1.26 eV. The obtained values of the g-factors coincide with the
experimental data, see Eq. (S20), within the numerical accuracy.
In this work, we abstain from a precise �tting of the parameters for all perovskites, since, for their unambiguous

determination, DFT+ETB calculations are needed for low-symmetry phases on the theory side, and a detailed analysis
of the g-factor anisotropy across di�erent perovskites on the experimental side.

S2. ADDITIONAL EXPERIMENTAL DATA FOR MAPbI3

Three dimensional presentations of the electron and hole g-factor tensors measured by TRKR on the MAPbI3
crystal are given in Fig. S5.
The SFRS measured on the MAPbI3 crystal is shown in Fig. S6a. Similar to the FA0.9Cs0.1PbBr0.2I2.8 crystal in

Fig. ??a, three Raman lines can be well resolved. They correspond to the hole (h), electron (e) and combined (e+h)
spin-�ip processes. The magnetic �eld dependences of their Raman shifts are given in Fig. S6b.

Figure S5: g-factor tensors of the MAPbI3 crystal measured by TRKR at T = 7 K. a-c, Electron g-factor
tensor. d-f, Hole g-factor tensor. Stars are experimentally measured data points.

Figure S6: Spin-�ip Raman scattering on the MAPbI3 crystal. a, SFRS spectrum measured in Faraday
geometry at B = 9 T and T = 1.6 K. Excitation/detection polarization is σ+/σ−. b, Magnetic �eld dependence of
the Raman shifts of the hole (green), electron (purple) and combined e+h (red) symbols. The experimental data are

shown by symbols, the lines are linear �ts.
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S3. X-RAY CHARACTERIZATION

The crystallographic structure of the investigated samples was characterized using various X-ray-based methods.
Mainly, powder and single crystal X-ray di�raction (XRD) measurements were performed for all materials at room
temperature. The amount of results of these measurements exceed the limits of the current studies and we want to
refer to the publications [S21] for FA0.9Cs0.1PbBr0.2I2.8, [S22] for MAPbI3, [S23] for CsPbBr3, [S24] for MAPbBr1.5I1.5
and MAPb(Br0.05I0.95)3 single crystals.

However, the carrier g-factor anisotropy for MAPbI3 single crystals demands a deep analysis. We have explicitly
repeated the results of Ref. [S22], in terms of the performed rocking scan for the used sample. The rocking scan is a
method which allows one to quantify the quality of the sample crystal structure. In essence it is an XRD measurement
whereby the detector position is �xed at the position of a Bragg re�ex and the sample is rotated instead. For a
perfect single crystal this results in a sharp peak, while any deviation from the single crystal structure will lead to
a broadening. The experiment was performed with a Cu(copper)-Kα1 radiation source providing radiation with a
wavelength of λ = 1.5406 �A. The result of the rocking curve scan is shown in Fig. S7. The full width of half maximum
of 0.01596◦ (57.46 arc sec) was evaluated by �t. This values re�ects the high MAPbI3 crystal quality, as compared to
the ten times broader (0.16◦) peak obtained for CsPbBr3 single crystals grown with the electronic dynamic gradient
(EDG) method in Ref. [S26] and that is on the same order of magnitude as the 0.0096◦ width for MAPbBr3 crystals
grown using the in liquid di�used separation induced crystallization (LDSC) method Ref. [S25].

Figure S7: Rocking scan. Performed along (400)-Bragg re�ex for the MAPbI3 sample at room temperature, with
a used radiation source Cu-Kα1. Blue line data and red dashed line �t.

[S1] L. M. Roth, B. Lax, and S. Zwerdling, Theory of optical magneto-absorption e�ects in semiconductors, Phys. Rev. 114,
90 (1959)
.

[S2] G. L. Bir and G. E. Pikus, Symmetry and Strain-induced E�ects in Semiconductors (Wiley/Halsted Press, 1974).
[S3] E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science Int., Harrow, UK, 2005).
[S4] G. Wang, L. Bouet, M. M. Glazov, T. Amand, E. L. Ivchenko, E. Palleau, X. Marie, and B. Urbaszek, Magneto-optics

in transition metal diselenide monolayers, 2D Materials 2, 034002 (2015).
[S5] C. Hermann and C. Weisbuch, Chapter on "Optical detection of conduction electron spin resonance in semiconductors

and its application to k · p perturbation theory" in Optical Orientation (North Holland, 1984).
[S6] M. O. Nestoklon, Tight-binding description of inorganic lead halide perovskites in cubic phase, Computational Materials

Science 196, 110535 (2021).
[S7] J. Even, Pedestrian guide to symmetry properties of the reference cubic structure of 3D all-inorganic and hybrid per-

ovskites, J. Phys. Chem. Lett. 6, 2238 (2015).
[S8] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. H. Madsen, and L. D. Marks, WIEN2k: An APW+lo program for

calculating the properties of solids, J. Chem. Phys. 152, 074101 (2020).
[S9] F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation

potential, Phys. Rev. Lett. 102, 226401 (2009).
[S10] R. A. Jishi, O. B. Ta, and A. A. Sharif, Modeling of lead halide perovskites for photovoltaic applications, J. Phys. Chem.

C 118, 28344 (2014).

https://doi.org/10.1103/PhysRev.114.90
https://doi.org/10.1103/PhysRev.114.90
http://stacks.iop.org/2053-1583/2/i=3/a=034002
https://doi.org/https://doi.org/10.1016/j.commatsci.2021.110535
https://doi.org/https://doi.org/10.1016/j.commatsci.2021.110535
https://doi.org/10.1021/acs.jpclett.5b00905
https://doi.org/10.1063/1.5143061
https://doi.org/10.1103/PhysRevLett.102.226401
https://doi.org/10.1021/jp5050145
https://doi.org/10.1021/jp5050145


11

[S11] M. Yuan, L. Yuan, Z. Hu, Z. Yu, H. Li, E. M. Barea, J. Bisquert, and X. Meng, In situ spectroscopic ellipsometry for
thermochromic CsPbI3 phase evolution portfolio, J. Phys. Chem. C 124, 8008 (2020).

[S12] M. Cardona, Renormalization of the optical response of semiconductors by electron-phonon interaction, Phys. Stat Sol.
(a) 188, 1209 (2001).

[S13] J. Wiktor, U. Rothlisberger, and A. Pasquarello, Predictive determination of band gaps of inorganic halide perovskites,
J. Phys. Chem. Lett. 8, 5507 (2017).

[S14] J.-M. Jancu, R. Scholz, F. Beltram, and F. Bassani, Empirical spds∗ tight-binding calculation for cubic semiconductors:
General method and material parameters, Phys. Rev. B 57, 6493 (1998).

[S15] Y. M. Niquet, D. Rideau, C. Tavernier, H. Jaouen, and X. Blase, Onsite matrix elements of the tight-binding Hamiltonian
of a strained crystal: Application to silicon, germanium, and their alloys, Phys. Rev. B 79, 245201 (2009).

[S16] Z. G. Yu, E�ective-mass model and magneto-optical properties in hybrid perovskites, Scienti�c Reports 6, 28576 (2016).
[S17] P. C. Sercel, J. L. Lyons, D. Wickramaratne, R. Vaxenburg, N. Bernstein, and A. L. Efros, Exciton �ne structure in

perovskite nanocrystals, Nano Lett. 19, 4068 (2019).
[S18] P. C. Sercel, J. L. Lyons, N. Bernstein, and A. L. Efros, Quasicubic model for metal halide perovskite nanocrystals, J.

Chem. Phys. 151, 234106 (2019).
[S19] J. Even, L. Pedesseau, M.-A. Dupertuis, J.-M. Jancu, and C. Katan, Electronic model for self-assembled hybrid or-

ganic/perovskite semiconductors: Reverse band edge electronic states ordering and spin-orbit coupling, Phys. Rev. B 86,
205301 (2012).

[S20] M. Graf and P. Vogl, Electromagnetic �elds and dielectric response in empirical tight-binding theory, Phys. Rev. B 51,
4940 (1995).

[S21] Nazarenko, O., Yakunin, S., Morad, V., Cherniukh, I. & Kovalenko, M. V. Single crystals of caesium formamidinium
lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Materials 9, e373 (2017).

[S22] H�ocker, J., Brust, F., Armer, M. & Dyakonov, V. A temperature-reduced method for the rapid growth of hybrid perovskite
single crystals with primary alcohols. Cryst. Eng. Comm. 23, 2202�2207 (2021).

[S23] Dirin, D. N., Cherniukh, I., Yakunin, S., Shynkarenko, Y. & Kovalenko, M. V. Solution-grown CsPbBr3 perovskite single
crystals for photon detection. Chemistry of Materials 28, 8470�8474 (2016).

[S24] Dirin, D. N. unpublished - available on request. (2022).
[S25] Yao, F., Peng, J., Li, R., Li, W., Gui, P., Li, B., Liu, C., Tao, C., Lin, Q. & Fang, G. Room-temperature liquid di�used

separation induced crystallization for high-quality perovskite single crystals. Nat. Comm. 11 1194 (2020).
[S26] Zhang, M., Zheng, Z., Fu, Q., Chen, Z., He, J., Zhang, S., Yan, L., Hu, Y. & Luo, W. Growth and characterization of

all-inorganic lead halide perovskite semiconductor CsPbBr3 single crystals. CrystEngComm 19 6797�6803 (2017).

https://doi.org/10.1021/acs.jpcc.0c01231
https://doi.org/https://doi.org/10.1002/1521-396X(200112)188:4<1209::AID-PSSA1209>3.0.CO;2-2
https://doi.org/https://doi.org/10.1002/1521-396X(200112)188:4<1209::AID-PSSA1209>3.0.CO;2-2
https://doi.org/10.1021/acs.jpclett.7b02648
https://doi.org/10.1103/PhysRevB.57.6493
https://doi.org/10.1103/PhysRevB.79.245201
https://doi.org/10.1038/srep28576
https://doi.org/10.1021/acs.nanolett.9b01467
https://doi.org/10.1063/1.5127528
https://doi.org/10.1063/1.5127528
https://doi.org/10.1103/PhysRevB.86.205301
https://doi.org/10.1103/PhysRevB.86.205301
https://doi.org/10.1103/PhysRevB.51.4940
https://doi.org/10.1103/PhysRevB.51.4940

	Theory
	Preliminaries
	Band structure in the tight-binding and DFT approaches
	Effective Hamiltonian model
	Results
	g-factor anisotropy in CsPbBr3

	Additional experimental data for MAPbI3
	X-Ray characterization
	References

