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Materials and Methods

Unless otherwise noted, all reactions were performed in oven-dried glassware and carried out under an atmosphere of
nitrogen with magnetic stirring. All photochemical reactions were run in 1.5 dram vials fitted with Teflon caps under
irradiation from a PR-160 Kessil 40W LED lamp with Teflon stir-bars under vigorous magnetic stirring. All
photochemical reactions were set up in a nitrogen glovebox, although optimization experiments showed that the
reactions could also be set up on the benchtop without significant loss of yield. Thin layer chromatography was
performed on SiliCycle® 250 um 60 A plates. Visualization was accomplished with 254 nm ultraviolet light, 2,4-
dinitrophenylhydrazine, iodine or potassium permanganate stains.

'H NMR spectra were recorded on Bruker 400 or 500 MHz spectrometers at ambient temperature. Chemical shift is
reported in parts per million (ppm) from CDCl; (7.26 ppm) with multiplicity (s = singlet, bs = broad singlet, d =
doublet, t = triplet, g = quartet, and m = multiplet) and coupling constants (Hz). *3C NMR was recorded on Bruker
500 or 400 MHz spectrometers (126 MHz) at ambient temperature. Chemical shifts are reported in ppm from CDCl3
(77.15 ppm). Mass spectra were recorded on an Agilent 7890B GC System 5977B MSD GCMS with an El ionization
method. High resolution mass spectra (HRMS) were obtained from the Columbia University Chemistry Department
Mass Spectrometry Facility on a Waters XEVO G2XS QToF mass spectrometer equipped with a UPC2 SFC inlet and
a LockSpray source with one of the following three probes: electrospray ionization (ESI) probe, atmospheric pressure
chemical ionization (APCI) probe, or atmospheric pressure solids analysis probe (ASAP). Infrared spectra were
collected on a Perkin EImer Spectrum Two FT-IR Spectrometer. UV-vis spectra were recorded on a Beckman-Coulter
DU720 General Purpose UV/Vis Spectrophotometer.

Unless otherwise mentioned, all starting materials were obtained from commercial sources including Millipore-Sigma,
TCI, and Alfa-Aesar. Anhydrous FeCls and anhydrous acetonitrile were obtained from Millipore-Sigma.
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Optimization Studies

(o)
Me CO,Bn
0 FeCl; (25 mol%)  Mmé Me
Me Me _~co,gn o) -
A D '
2 t, 0.30 M, 36h M€ s 08"
Entry Deviation from Yield (%) ir (3a:3b)
Standard Conditions
1 none 64 1:1.4
2 60°C,0.10M 67 1:10
3 60°C 65 1:4
4  added LiCl (62.5 mol%) 52 1:1
5 0% FeCl3 0 -
6 inthe dark 0 -
7  irradiate at 390nm 1 h, then dark 2 n.d.
8 427 nm LEDs 3 n.d.
9  under air 47 1:1
10 10 yL H,O as an additive 12 1.5:1

To an oven-dried 1.5 dram vial was added FeCls (25 mol%). A magnetic stir bar was added and the vial was transferred
to a glovebox. Anhydrous acetonitrile (1 mL, 0.30 M) was then added, followed by pinacolone (5 equiv., 1.5 mmol)
and benzyl acrylate (1 equiv., 0.3 mmol). The vial was sealed and then placed on a stir plate 2-3 inches away from a
390 nm Kessil lamp. Ambient temperature (28 °C) was maintained with the use of a fan above the set-up. After 36
hours, the reaction mixture was concentrated in vacuo and flushed through a silica plug using dichloromethane as the
eluent. The solvent was removed again in vacuo and the reaction yield and isomeric ratio determined by NMR using
1,3,5-trimethoxybenzene as the internal standard.

Experiments at 60 °C were carried out with the fan turned off.

Mass balance

Control experiments in the absence of FeCls (Table 1, Entry 5) resulted in complete polymerization of benzyl acrylate,
likely promoted by the intense 390 nm LED irradiation. Thus, oligomerization pathways may unproductively consume
some of the acceptor (the limiting reagent), leading to lowered yields. However, the fact that we are able to observe
effective reaction (with yields of up to 70-80% with some substrates) suggests that the iron catalyst must play a role
in suppressing runaway chain processes like polymerization. Even in sluggish reactions that do not reach completion,
there is often unreacted benzyl acrylate remaining in the crude mixture. There is precedent for FeCls acting as a
polymerization inhibitor through chlorination of alkyl radical species.®® Given the proposed mechanism of our
reaction, with an Fe(11) species trapping the radical formed after Giese addition to form an Fe(l11) enolate, it is possible
that the structurally similar radical from a growing polymer chain could also be similarly trapped, which would also
further chain growth.
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UV-vis studies

Sample preparation (75 uM FeCls in MeCN)

FeCls (12.1 mg, 0.075 mmol) was dissolved in 1.0 mL of acetonitrile. The resultant solution was stirred for 15 minutes,

and a 3.0 pL aliquot was drawn and added to 3.0 mL of acetonitrile in a quartz cuvette.

0.8
0.7 239 nm
0.6 |
0.5
04 || /| 313nm 361nm

0.3

L v

Absorbance

0.2

01

o]
200 250 300 350 400 450 500 550 600 650 700 750 800

Wavelength (nm)

Sample preparation (75 uM FeCls, 187.5 uM LiCl in MeCN)

FeClz (12.1 mg, 0.075 mmol) and LiCl (7.9 mg, 0.1875 mmol, 2.5 equiv.) were dissolved in 1.0 mL of acetonitrile.
The resultant solution was stirred for 15 minutes, and a 3.0 pL aliquot was drawn and added to 3.0 mL of acetonitrile

in a quartz cuvette.
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Mechanistic and Kinetic Studies

Relationship between acrylate concentration and Rum

To oven-dried 1.5 dram vials were added FeCls (25 mol%). Magnetic stir bars were added and the vials were
transferred to a glovebox. Anhydrous acetonitrile (0.4 — 4.0 mL) was then added, followed by pinacolone (5 equiv.,
1.0 mmol) and benzyl acrylate (1 equiv., 0.2 mmol). The initial concentration of benzyl acrylate was therefore varied
from 0.05M to 0.50 M. The vials were sealed and then placed on a stir plate 2-3 inches away from a 390 nm Kessil
lamp. No fan was used, allowing the temperature to reach 60 °C. After 36 hours, the reaction mixture was concentrated
in vacuo and flushed through a silica plug using dichloromethane as the eluent. The solvent was removed again in
vacuo and the ratio of unrearranged over rearranged product, the isomeric ratio (ir), was determined by NMR using
1,3,5-trimethoxybenzene as the internal standard.
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On the basis of the observed linear dependence of ir on [benzyl acrylate]o, we propose the following model of the
1,2-rearrangement Kinetics.

o
&Me—» )l\K )5(\/\
“Me /\COan Me CO,Bn

Me Me
Unrearranged product
kzl
O Me O Me  Me

Me Me /\co Bn COBn
A 2 Rearranged product

) [Unrearranged pdt.] k.[A][B] Kk, (B] kqy
r = = = — ~ —

[Rearranged pdt. ] k,[A] k, k,
Abstraction of a C-H bond from pinacolone yields a primary radical A, which can be consumed by two possible
reaction pathways. Direct addition to benzyl acrylate (ki) yields the unrearranged product. Rearrangement via a
cyclopropyl intermediate to the more stable tertiary radical A’ (kz2) may also occur. A’ may then be trapped by benzyl
acrylate to yield the rearranged product.

The strong dependence of ir on the concentration of acrylate suggests against a Curtin-Hammett kinetics regime
wherein A and A’ are in rapid equilibrium and the ratio of products depends mainly on the barrier to radical addition
to the acrylate. We would expect concentration to have little to no effect on ir in a Curtin-Hammett scenario, since
both radical additions (of either the primary or tertiary radical) to benzyl acrylate would be bimolecular.
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Determining Kk via initial rate experiments

0 25% FeCl, 0 OMe Me
—_—
Me Me )W
>|)l\ﬁ + /\COZBn 390 nm LED tBu)S(\/\COZBn * tBu CO,Bn
Me' Me ’ Me Me
Me Me MeCN, N, 26b
26, 2.5 equiv. 2, 1 equiv. rt 26a

To an oven-dried 1.5 dram vial was added FeCls (25 mol%). A magnetic stir bar was added and the vial was transferred
to a glovebox. Anhydrous acetonitrile (3 mL) was then added, followed by di-tert-butyl ketone (2.5 equiv.) and benzyl
acrylate (1 equiv., 0.20 M). The vial was sealed and then placed on a stir plate 2-3 inches away from a 390 nm Kessil
lamp. Ambient temperature (28 °C) was maintained with the use of a fan above the set-up. After 3 hours, the reaction
mixture was concentrated in vacuo and flushed through a silica plug using dichloromethane as the eluent. The solvent
was removed again in vacuo and the reaction yield and Ry determined by NMR using 1,3,5-trimethoxybenzene as the
internal standard.

From the earlier equation, we can find ki, the rate constant for addition of the primary radical to benzyl acrylate. The
value of k for di-tert-butylketone is known to be 1.7 x 10> s~* at 25 °C in CCl,.*

_ky B
”"—kz[ To

We found a ir value of 0.272. This gave ki = 2.3 x 10°> M~ s~ under our reaction conditions (28°C in MeCN).
Given the similar structure of the primary radical formed from initial HAT, we assumed an equivalent k1 value for the
addition of the pinacolone primary radical to benzyl acrylate.

The experiment was then repeated with pinacolone as the substrate in place of di-tert-butyl ketone. We found an ir
value of 1.6. Using the same equation above, we obtained a value for the rate constant of 1,2-migration for pinacolone,
k2=2.9 x 10* s, This value was then used to calculate the values of ki for acceptors other than benzyl acrylate.

Initial rate experiments with other acceptors

o 25% FeC|3 [o)

M > O Me Me

e

Me&Me + Z EWG 390 nm LED, Me)S(\/\Ewe + Me)WEWG
Me MeCN, N, Me Me

1, 2.5 equiv. 1 equiv. rt

To an oven-dried 1.5 dram vial was added FeCls (25 mol%) and the appropriate acceptor (if solid) (2 equiv., 0.20 M).
A magnetic stir bar was added and the vial was transferred to a glovebox. Anhydrous acetonitrile (3 mL) was then
added, followed by pinacolone (2.5 equiv.) and the appropriate acceptor (if liquid) (1 equiv., 0.20 M). (In the reaction
with acrylic acid, 1 equiv. of trifluoroacetic acid was also added at this point). The vial was sealed and then placed on
a stir plate 2-3 inches away from a 390 nm Kessil lamp. Ambient temperature (28 °C) was maintained with the use of
a fan above the set-up. After 1-12 hours, the reaction mixture was concentrated in vacuo and flushed through a silica
plug using dichloromethane as the eluent. The solvent was removed again in vacuo and the reaction yield and ir
determined by NMR using 1,3,5-trimethoxybenzene as the internal standard.

Reaction time used:

e Maleic anhydride, N-methylmaleimide: 1 hour
e  All other acceptors: 3 hours
o Dimethyl maleate: 12 hours

The reaction yields were generally below 20% within the time frame with accompanying low conversion of starting
material, and the effective concentration of the acceptor was assumed to be equal to the initial concentration of
acceptor (i.e. 0.20 M). For dimethyl maleate, no clear peak for the minor isomer could be observed even after 12 hours,
so the ir is taken to be <1:10.
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Comparison of rate constants to literature values

o R 25% FeCl, o Ry O Me Me Rz
)S(\ + \)\2 390nmLED M WEWG M WEWG
Me H Rz e e
Me Me EWG MeCN, N, Me Me R, R
5 equiv.
ﬁo ﬁo N Me N
Electrophile Z>c0,B 7 ZS0,Ph
3 o 3 N 2Bn A CN )\coza )
Kaaa (M s71) 4.7 x 105 3.4 x 10° 2.3 x10° 2.1 x10° 1.9 x 10° 1.3 x 10°
at 301 K
NHPh CN
=z N NC.__~ MeO,C._~ Z ~CO,Me
/\c[)r Z ~COOH NP NeN \/\coZMe Ph\/\CN (gz\l\lle
1.2 x 10° 1.0 x 10° 7.8 x 10% 5.2 x 10* 2.4 x 104 <1.5x 10*
Alkene Kadda(Me*) Kadga(tBue) Kaga(pinacolyle)
Methyl acrylate 3.4 x 105[Ref. 58] 1.1 X 10°[Ref- 581
3.8 x 10°[Ref.7]
Benzyl acrylate 2.3 x 10°
Methyl methacrylate 4.9 x 105[Ref.56] 6.6 x 105[Ref. 56
Ethyl methacrylate 1.9 x 10°
Acrylonitrile 6.1 x 105[Ref. 561 5.2 X 106[Ref. 561 2.1 x 10°
Acrylic acid 3.0 x 100[Ref. 8} 1.0 x 10°
Fumaronitrile 1.7 x 10°[Ref- 91 (338 K) 7.8 X 10*
Diethyl fumarate 1.7 x 108[Ref-€1 (338 K)
7.5 x 10°[Ref. 6]
Dimethyl fumarate 2.0 x 105[Ref. 6] 5.2 x 10*
Diethyl maleate 2.9 x 105[Ref-91 (338 K)
7.5 x 104[Ref. 6]
Dimethyl maleate 7.7 X 10*[Ref 6] < 1.5x10*

All rate constants given in units of M s at temperatures near 300K unless otherwise noted. *At pH 2.

We compared our measured rate constants with literature values for the addition of methyl and tert-butyl radicals.>°
Our rate constants were generally in reasonable agreement with the literature values. Broadly speaking, our values
were almost always smaller than the corresponding values for methyl radical or tert-butyl radical, which can be
rationalized in terms of the pinacolyl radical being (1) significantly more sterically hindered than a methyl radical,
though less so than a tert-butyl radical, (2) less nucleophilic than a tert-butyl radical (pentyl radical adds to methyl
acrylate at a sixth of the rate of the 1,1-dimethylpropyl radical’) and (3) close to an electron-withdrawing carbonyl
group. Comparing the rate constants for methyl/ethyl methacrylate and acrylonitrile, the pinacolyl radical has a rate
constant of approximately one-third that of methyl radical. For disubstituted alkenes, the rate constant is roughly an
order of magnitude smaller than that of methyl radical, which is likely due to the increased importance of steric effects
in the addition to these acceptors. Tert-butyl radical adds to terminal alkenes (methyl acrylate and acrylonitrile) faster
than methyl radical, but only adds at comparable or lower rates to the disubstituted alkenes (fumarate and maleate).
Similar steric effects are likely at play for the neopentyl-like pinacolyl radical in our reactions.

Besides 8 alkenes for which absolute rate constant data was available (rate constants for the addition of hydroxyalkyl
radicals to maleic anhydride are known?), we were also able to measure the rate constants for the 4 other alkenes for
which the rate constants of alkyl radical addition were not known, to the best of our knowledge. As noted in the
discussion, the rate constants for addition to maleic anhydride, N-methylmaleimide and benzylidenemalononitrile are
significantly lower than expected on the basis of ionic electrophilicity. All three are much stronger electrophiles than
the acrylates and acrylonitriles, but the rate constants of the former two are only slightly higher and that of the latter
is significantly lower. Part of this discrepancy is likely attributable to the strong steric effects of the neopentyl radical,
leading to a high sensitivity towards B-substitution on the alkene. With a large phenyl substituent,
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benzylidenemalononitrile likely causes significant steric hindrance for the approach of the bulky neopentyl radical to
the alkene. The other factor that causes general ‘compression’ of the rate constant data to a fairly small range (only
slightly more than an order of magnitude in our case) is the generally high exothermicity of Giese additions, given the
formation of a C-C sigma bond at the expense of a pi bond. Giese addition transition states are therefore generally
early,® and hence broadly less sensitive to the electrophilicity or structural features of the acceptor compared to
analogous ionic reactions that may be less thermodynamically downhill.

Increased concentration

o 25% FeCl, o 0 Me
/U\)\/\
iPr)H/\H +  Z>co,Bn 390 nm LED iPr)WCOZBn * ipr CO,Bn
Me 2 MeCN, N, Me 25a 25b
25, 5 equiv. 0.75M, 36 h

To an oven-dried 1.5 dram vial was added FeCls (25 mol%). A magnetic stir bar was added and the vial was transferred
to a glovebox. Anhydrous acetonitrile (0.4 mL, 0.75 M) was then added, followed by 2,4-dimethyl-3-pentanone (5
equiv.) and benzyl acrylate (1 equiv., 0.3 mmol). The vial was sealed and then placed on a stir plate 2-3 inches away
from a 390 nm Kessil lamp. Ambient temperature (28 °C) was maintained with the use of a fan above the set-up. After
36 hours, the reaction mixture was concentrated in vacuo and flushed through a silica plug using dichloromethane as
the eluent. The solvent was removed again in vacuo and the reaction yield and ir determined by NMR using 1,3,5-
trimethoxybenzene as the internal standard.

Portionwise addition of electrophile

o 25% FeClj o] O Me
JI\/K/\
iPr)H/\H +  ZcoBn 390 nm LED iPr)H/\/\COZBn + iPr C0,Bn
Me 2 MeCN, N, 0.1M Me 253 25b
25, 5 equiv. Added in 60 °C. 60 h
5 portions ’

To an oven-dried 1.5 dram vial was added FeCls (25 mol%). A magnetic stir bar was added and the vial was transferred
to a glovebox. Anhydrous acetonitrile (1 mL, 0.10 M) was then added, followed by pinacolone (5 equiv.) and benzyl
acrylate (0.20 equiv.). The vial was sealed and then placed on a stir plate 2-3 inches away from a 390 nm Kessil lamp.
A fan was not used, allowing the temperature to reach 60 °C. Every 12 hours, the vial was transferred into a glovebox
and another portion of benzyl acrylate (0.20 equiv.) was added, for a total of five portions. After 60 hours, the reaction
mixture was concentrated in vacuo and flushed through a silica plug using dichloromethane as the eluent. The solvent
was removed again in vacuo and the reaction yield and ir determined by NMR using 1,3,5-trimethoxybenzene as the
internal standard.
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Additional Products

Substrate Unrearranged
(o] (o]
M
tBu)S( ¢ tBu)S(\/\COZBn
Me Me Me Me
26 26a
lo) o
Me)l\rMe Me)KK\/\cozEt
Me Me
27 27a

Rearranged

O Me Me
tBu CO,Bn
26b

Me CO,Et

27b

Conditions A
rt, 0.33 M

69%, 1:7

54%, 11:1

Conditions B
60 °C,0.1 M

60%, 1:20

44%, 1.3:1
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Starting Material Preparation

4-(tert-butyl)phenyl acetate

Prepared in accordance to reported methods.**

ACzo

/O/OH 3 drops conc. H,SO, /©/0Ac
-_——
tBu neat tBu

To a mixture of 4-tertbutylphenol (3.00 g, 20 mmol) and acetic anhydride (1.89 mL, 20 mmol) was added three drops
of concentrated H,SO4 at room temperature. The reaction mixture was stirred for 30 min and poured into water (10
mL), then extracted with ethyl acetate (3 x 20 mL), dried with MgSO. and concentrated under reduced pressure to
yield the product as a pale yellow oil (3.71g, 96% yield). The NMR spectrum of the product was in agreement with
literature precedent.'?3

IH NMR (500 MHz, CDCl3) & 7.41 — 7.35 (m, 2H), 7.03 — 6.98 (m, 2H), 2.29 (s, 3H), 1.32 (s, 9H).
13C NMR (126 MHz, CDCls) 5 169.84, 148.74, 148.45, 126.45, 120.98, 34.60, 31.54, 21.29.

2,2,5,5-tetramethylcyclopentanone

Prepared in accordance to reported methods.**
0] Mel (8 equiv.) lo}
KOH (20 equiv.) Me Me
_— Me%@Me
DMSO, 50 °C

In a round-bottomed flask equipped with a reflux condenser, dimethyl sulfoxide (20 mL) was heated to 50 °C.
Cyclopentanone (0.846 g, 10 mmol), methyl iodide (5.0 mL, 80 mmol) and potassium hydroxide (11.2 g, 200 mmol)
were then added and the resultant mixture stirred for 1 h. The mixture was extracted with pentane (3x10mL). The
combined organic phases were washed with deionized water (3x10 mL), dried with MgSO, and concentrated under
reduced pressure. The resultant crude product was then passed through a short plug of silica (5% ethyl acetate/hexanes)

to obtain the product as a colorless oil (726 mg, 52% yield). The NMR spectrum of the product was in agreement with
literature precedent.®

IH NMR (500 MHz, CDCls) 8 1.76 (s, 3H), 1.04 (s, 12H).
13C NMR (126 MHz, CDCl3) § 227.22, 45.44, 35.01, 25.06.
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3-methyl-3-phenylbutan-2-one

Prepared in accordance to reported methods.*516

MelLi
Me Me IEtZO Me Me
OH 30°Ctort Me
—
(o) then aq HCI (o)

To a stirring solution of 2-phenylisobutyric acid (1.23 g, 7.5 mmol) in diethyl ether (50 mL, 0.15M) at =30 °C was
added a solution of methyllithium (1.6 M in diethyl ether, 14.0 mL, 3.0 equiv.) dropwise. The resulting solution was
allowed to warm to room temperature and kept stirring for 1.5 h. The reaction was then cooled to 0 °C and poured
into iced hydrogen chloride solution, extracted with hexanes (3x20 mL). The organic phase was combined, dried with
MgSQs, concentrated under reduced pressure and purified with column chromatography on silica gel (5% ethyl
acetate/hexanes) to afford the product as a colorless oil (702 mg, 58% yield). The NMR spectrum of the product was
in agreement with literature precedent.’

IH NMR (500 MHz, CDCl3) § 7.39 — 7.31 (m, 2H), 7.26 (m, 3H), 1.92 (s, 3H), 1.48 (s, 6H).
13C NMR (126 MHz, CDCls) § 211.31, 144.22, 128.89, 126.99, 126.07, 52.61, 25.66, 25.26.

2-tert-butylbenzothiazole

MelLi
Me Me Et,0 Me Me
OH -30°C tort Me
_——
(o) then aq HCI (o}

Pivaloyl chloride (1.20 g) was added at room temperature to a stirred solution of 2-aminobenzenethiol (1.25 g, 10
mmol) in THF (10 mL) and stirred at room temperature for 2 h when TLC monitoring revealed complete consumption
of 2-aminobenzenethiol. Then 5 equivalents H,SO4 (980 mg) were added and the reaction was allowed to stir at room
temperature for 1 h until complete consumption of the intermediate amide was noted by TLC. The reaction mixture
was diluted with water and then brought to pH 10 by the slow addition of 1M NaOH. The solution was extracted with
ethyl acetate (3 x 20 mL), washed with brine, dried over Na;SQO,, and concentrated under reduced pressure to a yellow
oil. This oil was further purified via silica gel flash column chromatography (20% ethyl acetate/hexanes) to furnish a
colorless oil (1.03 g, 54% yield). The NMR spectrum of the product was in agreement with literature precedent.®

IH NMR (500 MHz, CDCls) & 8.00 (d, J = 8.2 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.44 (t, J = 7.7 Hz, 1H), 7.33 (t, J =
7.6 Hz, 2H), 1.53 (s, 9H).
13C NMR (126 MHz, CDCl3) 6 182.03, 153.42, 135.14, 125.90, 124.68, 122.83, 121.62.
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Standard Reaction Conditions

1 FeCl; (25 mol%)  © OMe Me
Me)J\ﬁWIe + 2N )S(\/\ + )W\
Me =~ Z COBn 395, LEDs Me " COBn e CO,Bn

Me e Me
1, 5 equiv. 2 Mftcg“é;“z 3a 3b

A) To an oven-dried 1.5 dram vial was added FeCls (25 mol%). Any solid reactants were also added at this stage. A
magnetic stir bar was added and the vial was transferred to a glovebox. Anhydrous acetonitrile (1 mL, 0.30 M) was
then added, followed by the C-H substrate (5 equiv., 1.5 mmol) and the electron-deficient alkene (1 equiv., 0.3 mmol).
The vial was sealed and then placed on a stir plate 2-3 inches away from a 390 nm Kessil lamp. Ambient temperature
(28 °C) was maintained with the use of a fan above the set-up. After 36 hours, the reaction mixture was concentrated
in vacuo and purified using silica gel flash column chromatography, using ethyl acetate/hexanes as the eluent.

B) Identical to standard reaction conditions A, but using 3 mL of anhydrous acetonitrile instead (0.10 M) and without
a fan (allowing the reaction to reach a temperature of 60 °C due to the heat dissipated by the LED lamps).

C) [For acyl chlorides] Identical to standard reaction conditions A, but upon completion of the reaction, K3sPO4 (1
equiv.) and ethanol (1 mL) were added. The solution was then stirred overnight to ensure complete solvolysis, then
concentrated in vacuo and purified via silica gel flash column chromatography.
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Characterization of Products

Nucleophile Scope

ir = the ratio of unrearranged to rearranged product.

3a/3b

Conditions A: Yield = 59%, ir = 1:1.4
Conditions B: Yield = 64%, ir = 1:10
From pinacolone

3a Benzyl 5,5-dimethyl-6-oxoheptanoate (unrearranged product) — minor
(o)

Me)Wcozsn

Me Me

'H NMR (400 MHz, CDCls) Characteristic peaks: § 2.09 (s, 3H, CH3zCO-), 1.10 (s, 6H, dimethyl).
13C NMR (126 MHz, CDCls) 6 213.77, 176.45, 60.33, 47.66, 39.98, 37.35, 28.85, 25.08, 24.39, 24.31, 17.29, 14.37.

Using Conditions B: We were able to separate 40.1 mg of product from mixed fractions containing both isomers as
well as 10.4 mg containing only the rearranged product.

ir for the mixed fractions determined by comparing the integral of the peaks at 2.12 ppm (s, 3H, CH3CO-) and 0.99
ppm (s, 6H, dimethyl) to those of the characteristic peaks. ir =1:7.4

Taking into account the 10.4 mg of rearranged product isolated separately gives an overall ir = 1:10.

3b Benzyl 4,4-dimethyl-6-oxoheptanoate (rearranged product) — major
O Me Me

Me)WCOZBn

Colorless oil. Rf = 0.40 (5:1 hexanes : ethyl acetate).

'H NMR (400 MHz, CDCl3) & 7.41 — 7.29 (m, 5H), 5.11 (s, 2H), 2.40 — 2.26 (m, 4H), 2.12 (s, 3H), 1.77 — 1.63 (m,
2H), 0.99 (s, 6H).

13C NMR (126 MHz, CDCls) & 208.37, 173.77, 135.97, 128.59, 128.30, 128.26, 66.32, 53.55, 36.69, 33.08, 32.52,
29.62, 26.80.

IR, film (cm™): 2956, 1732, 1715, 1497, 1454, 1361, 1298, 1211, 971, 747, 698.
LRMS m/z (EIl): calculated for C16H2203 [M*] 262.16, found 262.1.

4a/db

Conditions A: Yield = 54%, ir =11:1

Conditions B: Yield = 45%, ir = 1.6:1 (NMR yield)
From 3-methyl-2-butanone and benzyl acrylate

4a Benzyl 5-methyl-6-oxoheptanoate (unrearranged product) — major
(o)

Me)]\(\/\cozsn

Me
Yellow oil. Rs = 0.45 (5:1 hexanes : ethyl acetate).
IH NMR (500 MHz, CDCl3) & 7.39 — 7.31 (m, 5H), 5.11 (s, 2H), 2.49 (h, J = 6.8 Hz, 1H), 2.36 (td, J = 7.1, 1.2 Hz,
2H), 2.11 (s, 3H), 1.76 — 1.53 (m, 3H), 1.42 — 1.30 (m, 1H), 1.08 (d, J = 7.0 Hz, 3H).
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13C NMR (126 MHz, CDCls) § 212.21, 173.18, 136.12, 128.66, 128.33, 66.29, 46.95, 34.25, 32.13, 28.07, 22.67,
16.27.

IR, film (cm™): 2935, 1732, 1709, 1497, 1455, 1355, 1212, 1151, 1111, 747, 697.
LRMS m/z (EI): calculated for C15sH2003 [M*] 248.14, found 248.1.

4b Benzyl 4-methyl-6-oxoheptanoate (rearranged product) — minor
(0] Me

Me/u\)\/\COZBn

'H NMR (500 MHz, CDCls) Characteristic peaks: § 0.90 (d, 3H, MeC(O)-CH,-CHMe-).

ir determined by comparing the integral of the peak at 1.08 ppm (MeC(O)-CHMe-CH>-) to the characteristic peak
at 0.90 ppm.

5a/5b

Conditions C: Yield = 30%, ir =4:1

(Identical to Conditions A, but with additional workup in alkaline ethanol after completion)
From pivaloyl chloride

5a Diethyl 2,2-dimethylhexanedioate (unrearranged product) — major
o

EtOJWCOZEt

Me Me
Colorless oil. R = 0.50 (5:1 hexanes : ethyl acetate).
'H NMR (500 MHz, CDCl3) § 4.12 (d, J = 7.1, 4H), 2.27 (m, 2H), 1.61 — 1.48 (m, 4H), 1.25 (t, J = 7.1, 6H), 1.17
(s, 6H).
13C NMR (126 MHz, CDCls) 5 177.87, 173.55, 60.45, 60.39, 42.17, 40.08, 34.78, 27.12, 25.19, 20.65, 14.38, 14.36.
IR, film (cm™): 2977, 1729, 1472, 1370, 1248, 1175, 1030.
HRMS m/z (ASAP): calculated for C12H2,04 [M+H]* 231.1596, found 231.1588.

5b Diethyl 2,2-dimethylhexanedioate (rearranged product) — minor
O Me Me

EtOJW\COZEt

H NMR (500 MHz, CDCls) Characteristic peaks 2.33 —2.29 (m, 2H), 2.18 (s, 2H, EtO,C-CH2-Me;-), 1.73 — 1.64
(m, 2H), 1.01 (s, 6H, EtO,C-CH>-Mes-).

ir determined by comparing the integral of the peak at 1.17 ppm (s, 6H, EtO,C-CMe2-) to the characteristic peak at
1.01 ppm.

6a/6b

Conditions A: Yield = 42%, ir = 16:1

Conditions B: Yield = 25%, ir =2.4:1 (NMR yield)
From tert-butylbenzene

6a Ethyl 5-methyl-5-phenylhexanoate (unrearranged product) — major

CO,Et
Me Me

Yellow oil. Rf = 0.3 (9:1 hexanes : ethyl acetate).
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H NMR (500 MHz, CDCl3) & 7.36 — 7.28 (m, 4H), 7.20 — 7.15 (m, 1H), 4.10 (g, J = 7.1 Hz, 2H), 2.20 (t, J = 7.4
Hz, 2H), 1.75 - 1.55 (m, 2H), 1.44 — 1.36 (m, 2H), 1.32 (s, 6H), 1.23 (t, J = 7.1 Hz, 3H).

13C NMR (126 MHz, CDCls) § 173.65, 149.10, 128.10, 125.78, 125.50, 60.17, 43.94, 37.61, 34.82, 28.88, 20.41,
14.26.

IR, film (cm™): 2962, 1732, 1496, 1446, 1369, 1263, 1184, 1159, 1029, 932, 859, 764, 699, 566, 547

LRMS m/z (El): calculated for C1sH2202 [M*] 234.16, found 234.1.

6b Ethyl 4,4-dimethyl-5-phenylpentanoate (rearranged product) — minor

CO,Et

'H NMR (500 MHz, CDCl3) 2.52 (s, 2H), 2.38 — 2.31 (m, 2H), 0.87 (s, 6H).
ir determined by comparing the integral of the peak at 1.32 ppm (s, 6H, Ar-CMe2-CH>-) to the characteristic peak at
0.87 ppm (s, 6H, Ar-CH,-CMez-).

7al7b

Conditions A: Yield = 28%, ir =1:13

Conditions B: Yield = 58%, ir =<1:20 (NMR yield)
From 4’-tert-butylacetophenone

7a Ethyl 5-(4-acetylphenyl)-5-methylhexanoate (unrearranged product) — minor
Ac

CO,Et
Me Me

'H NMR (400 MHz, CDCls) Characteristic peaks & 2.19 (t, J = 7.4 Hz, 2H, -CH2-CO.Et), 1.33 (s, 6H, Ar-CMez-)
ir determined by comparing the integrals of the peak at 0.85 ppm (s, 6H, Ar-CH2-CMez-) to the characteristic peak
at 1.33 ppm.

7b Ethyl 5-(4-acetylphenyl)-4,4-dimethylpentanoate (rearranged product) — major

Ac
CO,Et

Yellow oil. Rf = 0.3 (9:1 hexanes : ethyl acetate).

'H NMR (500 MHz, CDCls) § 7.88 — 7.82 (m, 2H), 7.23 — 7.17 (m, 2H), 4.11 (q, J = 7.1 Hz, 2H), 2.56 (overlapping
singlets, 5H, CH3C(O) + benzylic CH2), 2.35 — 2.28 (m, 2H), 1.62 — 1.55 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 0.85 (s,
6H).

13C NMR (126 MHz, CDCls) 5 197.96, 174.14, 144.76, 135.24, 130.81, 127.96, 60.45, 48.32, 36.81, 34.19, 29.80,
26.63, 26.38, 14.31.

IR, film (cm™): 2961, 1730, 1681, 1506, 1414, 1358, 1266, 1182, 1125, 1021, 956, 826, 780, 689, 601, 585
LRMS m/z (El): calculated for C17H2403 [M*] 276.17, found 276.1.

8a/8b

Conditions A: Yield = 30%, ir = 1:8
Conditions B: Yield = 54%, ir =<1:20
From 4-tert-butylbenzonitrile

8a Ethyl 5-(4-cyanophenyl)-5-methylhexanoate (unrearranged product) — minor
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NC

CO,Et
Me Me

'H NMR (400 MHz, CDCls) Characteristic peaks & 2.20 (t, J = 7.3 Hz, 2H, -CH>-CO,Et), 1.31 (s, 6H, Ar-CMe>-)
ir determined by comparing the integrals of the peak at 0.86 ppm (s, 6H, Ar-CH»-CMez-) to the characteristic peak
at 1.31 ppm.

8b Ethyl 5-(4-cyanophenyl)-4,4-dimethylpentanoate (rearranged product) — major

NC
CO,Et

Yellow oil. Rf = 0.2 (9:1 hexanes : ethyl acetate).

IH NMR (400 MHz, CDCls) § 7.59 — 7.51 (m, 2H), 7.25 — 7.18 (m, 2H), 4.12 (g, J = 7.1 Hz, 2H), 2.56 (s, 2H), 2.36
—2.27 (M, 2H), 1.62 — 1.53 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 0.85 (s, 6H).

13C NMR (101 MHz, CDCls) 8 173.97, 144.62, 131.65, 131.32, 119.10, 110.11, 60.50, 48.50, 36.78, 34.25, 29.75,
26.30, 14.30.

IR, film (cm™): 2961, 2871, 2227, 1729, 1607, 1505, 1469, 1416, 1370, 1297, 1263, 1177, 1127, 1024, 853, 826,
781, 566, 533

LRMS m/z (EIl): calculated for C16H21NO, [M*] 259.16, found 259.1.

9a/9b

Conditions A: Yield = 46%, ir =>20:1
Conditions B: Yield = 35%, ir =1:1
From 4-(tert-butyl)phenyl acetate

9a Ethyl 5-(4-acetoxyphenyl)-5-methylhexanoate (unrearranged product) — major
AcO

CO,Et
Me Me
Yellow oil. Rf = 0.3 (9:1 hexanes : ethyl acetate).

IH NMR (400 MHz, CDCls) § 7.35 — 7.28 (m, 2H), 7.04 — 6.90 (m, 2H), 4.09 (q, J = 7.1 Hz, 2H), 2.29 (s, 3H), 2.20
(t, J = 7.3 Hz, 2H), 1.66 — 1.55 (m, 2H), 1.41 (m, 2H), 1.30 (s, 6H), 1.23 (t, J = 7.1 Hz, 3H).

13C NMR (101 MHz, CDCls) 8 173.71, 169.72, 148.55, 146.78, 126.93, 121.04, 60.32, 44.06, 37.55, 34.89, 29.04,
21.30, 20.47, 14.37.

IR, film (cm™): 2961, 1761, 1731, 1605, 1506, 1467, 1368, 1299, 1193, 1168, 1099, 1016, 911, 847, 662, 594, 564
LRMS m/z (El): calculated for C17H2404 [M*] 292.17, found 292.1.

9b Ethyl 5-(4-acetoxyphenyl)-4,4-dimethylpentanoate (rearranged product) — minor

AcO
CO,Et

!H NMR (400 MHz, CDCl3) 8 7.15 - 7.08 (m, 2H), 6.99 — 6.96 (m, 2H), 4.13 (g, J = 7.1 Hz, 2H), 2.50 (s, 2H), 2.37
—2.30 (m, 2H), 1.61 — 1.55 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H), 0.86 (s, 6H).

ir determined by comparing the integral of the peak at 1.30 ppm (s, 6H, Ar-CMe2-CH>-) to the characteristic peak at
0.86 ppm (s, 6H, Ar-CH,-CMez-).
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13C NMR (101 MHz, CDCls) § 174.36, 169.75, 149.10, 136.46, 131.53, 120.88, 60.47, 47.77, 36.78, 34.00, 29.90,
26.33, 21.30, 14.36.
LRMS m/z (El): calculated for C17H2404 [M*] 292.17, found 292.1.

[Peaks assigned from the 1:1 mixture with the unrearranged product]

10b

Conditions A: Yield = 8%, ir = <1:20
Conditions B: Yield = 19%, ir =<1:20
From 3-methyl-3-phenylbutan-2-one

10b Ethyl 4-methyl-6-o0x0-4-phenylheptanoate (rearranged product) — exclusive
O Me Ph

Me)WCOZEt

Pale yellow oil. Rf = 0.3 (5:1 hexanes : ethyl acetate).

'H NMR (500 MHz, CDCls) § 7.36 — 7.29 (m, 4H), 7.20 (m, 1H), 4.05 (qd, J = 7.1, 2.1 Hz, 2H), 2.92 (d, J = 14.5
Hz, 1H), 2.61 (d, J = 14.5 Hz, 1H), 2.25 — 2.10 (m, 2H), 2.03 — 1.87 (m, 2H), 1.79 (s, 3H, CHsC(O)-, confirmed by
HMBC), 1.45 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H).

13C NMR (126 MHz, CDCl3) 6 207.65, 173.77, 145.24, 128.64, 126.45, 126.19, 60.49, 56.24, 40.14, 37.72, 32.09,
29.59, 23.33, 14.29.

IR, film (cm™): 2978, 1731, 1446, 1376, 1299, 1180, 1031, 765, 702, 547
LRMS m/z (El): calculated for C15sH20, [M*] 262.16, found 262.1.

11b

Conditions A: Yield = 37%, ir =<1:20
Conditions B: Yield = 41%, ir =<1:20
From 2,2,5,5-tetramethylcyclopentanone

11b Benzyl 3-(1,4,4-trimethyl-3-oxocyclohexyl)propanoate (rearranged product) — exclusive product

(o)
Me
Me

CO,Bn
Me
Colorless oil. Rf = 0.35 (9:1 hexanes : ethyl acetate).

IH NMR (500 MHz, CDCl3) & 7.40 — 7.29 (m, 5H), 5.11 (s, 2H), 2.38 — 2.27 (m, 3H), 2.11 (dd, J = 13.8, 1.7 Hz,
1H), 1.72 — 1.61 (m, 5H), 1.54 — 1.46 (m, 1H), 1.10 (s, 3H), 1.08 (s, 3H), 0.87 (s, 3H).

13C NMR (126 MHz, CDCls) 8 215.63, 173.62, 135.97, 128.70, 128.43, 128.41, 66.51, 49.66, 44.33, 38.80, 36.67,
36.42, 32.46, 29.05, 25.28, 25.17, 24.36.

IR, film (cm™): 2960, 2929, 2867, 1733, 1703, 1497, 1455, 1422, 1384, 1365, 1303, 1214, 1161, 1079, 1028, 967,
910, 747, 698, 507

LRMS m/z (El): calculated for C19H2603 [M*] 302.19, found 302.2.
11c Benzyl 3-(2,2,4,4-tetramethyl-3-oxocyclopentyl)propanoate — side product (alkylation at methylene positions)

Conditions A: Yield = 15%
Conditions B: Yield = 20%
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Me Me
Me Me

COan
Colorless oil. Rf = 0.4 (9:1 hexanes : ethyl acetate).

IH NMR (500 MHz, CDCls) & 7.40 — 7.29 (m, 5H), 5.14 (d, J = 1.7 Hz, 2H), 2.48 (ddd, J = 15.2, 9.2, 5.8 Hz, 1H),
2.39 (ddd, J = 15.8, 8.9, 6.9 Hz, 1H), 1.87 (dd, J = 12.5, 6.1 Hz, 1H), 1.79 (dddd, J = 12.2, 10.2, 6.1, 4.1 Hz, 1H),
1.54 (dddd, J = 13.3, 10.2, 8.9, 5.8 Hz, 1H), 1.42 — 1.31 (m, 1H), 1.09 (s, 3H), 1.04 (s, 3H), 0.95 (s, 3H), 0.82 (s,
3H).

13C NMR (126 MHz, CDCls) 8 226.94, 173.42, 136.05, 128.71, 128.49, 128.45, 66.44, 48.46, 44.88, 43.25, 41.26,
32.80, 25.85, 25.35, 25.06, 23.99, 18.79.

IR, film (cm™): 2961, 2868, 1733, 1497, 1457, 1362, 1215, 1166, 1133, 1063, 1028, 903, 750, 698, 580, 487
LRMS m/z (El): calculated for C19H2603 [M*] 302.19, found 302.2.

12a/12b

Modified Conditions A: Yield = 20%, ir =1.4:1

Modified Conditions B: Yield = 44%, ir =1:1.6

(5 equiv. of CFsCOOH was used as an additive under both conditions. 50 mol% of FeCls was used.)
From 2,6-di-tert-butyl-4-methylpyridine

12a Ethyl 5-(6-(tert-butyl)-4-methylpyridin-2-yl)-5-methylhexanoate (unrearranged product)
Me

X

P

tBu N CO,Et
Me Me

Colorless oil. R = 0.6 (9:1 hexanes : ethyl acetate)
'H NMR (500 MHz, CDCls) § 6.89 (s, 1H), 6.85 (s, 1H), 4.08 (q, J = 7.1 Hz, 2H), 2.30 (s, 3H), 2.18 (t, J = 7.6 Hz,
2H), 1.77 — 1.69 (m, 2H), 1.44 — 1.37 (m, 2H), 1.32 (s, 9H), 1.31 (s, 6H), 1.22 (t, J = 7.1 Hz, 3H).
13C NMR (126 MHz, CDCls) § 174.06, 167.60, 166.08, 146.57, 117.29, 116.34, 60.20, 42.78, 40.42, 37.51, 35.23,
30.26, 28.03, 21.63, 20.72, 14.37.
IR, film (cm™): 2958, 1736, 1600, 1567, 1265, 1185, 853

LRMS m/z (EI): calculated for C19H31NO, [M*] 305.24, found 305.1

12b Ethyl 5-(6-(tert-butyl)-4-methylpyridin-2-yl)-4,4-dimethylpentanoate (rearranged product)
Me

|\MeMe

Z
tBu” N CO,Et

Colorless oil. Rf = 0.5 (9:1 hexanes : ethyl acetate).

H NMR (500 MHz, CDCl3) 8 6.93 (s, 1H), 6.68 (s, 1H), 4.11 (g, J = 7.1 Hz, 2H), 2.59 (s, 2H), 2.55 — 2.45 (m, 2H),
2.28 (s, 3H), 1.63 — 1.47 (m, 3H), 1.31 (s, 9H), 1.25 (t, J = 7.1 Hz, 3H), 0.92 (s, 6H).

13C NMR (126 MHz, CDCls) 5 174.79, 168.18, 158.07, 146.26, 122.49, 116.97, 60.25, 49.13, 37.26, 36.22, 34.19,
30.27,30.03, 27.61, 21.33, 14.39.

IR, film (cm™): 2955, 2868, 1735, 1602, 1566, 1253, 1185, 855

LRMS m/z (El): calculated for C19H31NO, [M*] 305.24, found 305.1
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13b

Modified Conditions A: Yield = Trace

Modified Conditions B: Yield = 34%, ir =<1:20

(5 equiv. of CFsCOOH was used as an additive under both conditions)
From 2-tert-butylbenzothiazole

13b Ethyl 5-(benzo[d]thiazol-2-yl)-4,4-dimethylpentanoate (rearranged product) — exclusive product

L

s CO,Et

Colorless oil. Rf = 0.4 (5:1 hexanes : ethyl acetate).

'H NMR (400 MHz, CDCl3) § 7.99 (ddd, J = 8.2, 1.2, 0.6 Hz, 1H), 7.84 (ddd, J = 7.9, 1.3, 0.7 Hz, 1H), 7.45 (ddd, J
= 8.3,7.2,1.3 Hz, 1H), 7.36 (ddd, J = 7.9, 7.2, 1.2 Hz, 1H), 4.13 (q, J = 7.2 Hz, 2H), 3.02 (s, 2H), 2.52 — 2.22 (m,
2H), 1.97 — 1.69 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H), 1.07 (s, 6H).

13C NMR (101 MHz, CDCl3) & 173.93, 168.12, 153.30, 135.48, 125.85, 124.75, 122.73, 121.29, 60.41, 45.91,
36.77, 34.27, 29.70, 26.79, 14.23.

IR, film (cm™): 2959, 1733, 1512, 1436, 1242, 1169, 760

LRMS m/z (EIl): calculated for C16H21NO,S [M*] 291.13, found 291.1
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Acceptor Scope

ir = the ratio of unrearranged to rearranged product.

14a/14b

Conditions A: Yield = 38%, ir =1:1

Conditions B: Yield = 57%, ir = 1:8 (NMR yield)
From maleic anhydride

14a 3-(2,2-dimethyl-3-oxobutyl)dihydrofuran-2,5-dione (unrearranged product) — minor
0

Me (0]
Me Me fo]
(0]
IH NMR (500 MHz, CDCls) & 3.15 — 3.05 (m, 1H), 3.05 — 2.94 (m, 1H), 2.70 (dd, J = 18.3, 7.0 Hz, 1H), 2.30 (dd, J
=14.4, 3.7 Hz, 1H), 2.15 (s, 3H), 1.82 (dd, J = 14.4, 8.9 Hz, 1H), 1.23 (s, 3H), 1.21 (s, 3H).
13C NMR (126 MHz, CDCl3) 6 212.85, 174.26, 169.78, 47.27, 40.54, 38.19, 36.31, 25.40, 25.22, 24.71.
LRMS m/z (El): calculated for C10H1404 [M*] 198.09, found 198.1.

14b 3-(2-methyl-4-oxopentan-2-yl)dihydrofuran-2,5-dione (rearranged product) — major
O Me Me

Me o

(0]
o)

Colorless oil. R = 0.30 (4:1 hexanes : ethyl acetate, 1% acetic acid).

'H NMR (500 MHz, CDCl3)) 1H NMR § 3.88 (dd, J = 10.2, 6.5 Hz, 1H), 3.11 — 2.87 (m, 2H), 2.78 (dd, J = 18.9,
6.7 Hz, 1H), 2.45 (d, J = 17.9 Hz, 1H), 2.15 (s, 3H), 1.11 (s, 3H), 1.04 (s, 3H).

13C NMR (126 MHz, CDCls) § 207.92, 172.53, 170.10, 51.49, 46.73, 34.84, 31.76, 31.06, 25.50, 24.24.

IR, film (cm™): 2967, 1859, 1775, 1707, 1471, 1413, 1366, 1294, 1219, 1159, 1074, 1054, 915, 722.

LRMS m/z (El): calculated for C10H1404 [M*] 198.09, found 198.1.

15a/15b

Conditions A: Yield = 86%, ir =1:1.2
Conditions B: Yield = 51%, ir = 1:8 (NMR yield)
From N-methylmaleimide

15a 3-(2,2-dimethyl-3-oxobutyl)-1-methylpyrrolidine-2,5-dione (unrearranged product)
o

Me (0]

Me Me N

0" Me

Colorless oil. Rf = 0.3 (1:1 hexanes : ethyl acetate).
H NMR (500 MHz, CDClg)) 6 2.95 (s, 3H), 2.84 (dd, J = 18.2, 8.9 Hz, 1H), 2.65 (tdd, J = 9.1, 5.2, 3.5 Hz, 1H),
2.42 —2.28 (m, 2H), 2.18 (s, 3H), 1.62 (dd, J = 14.3, 9.7 Hz, 1H), 1.19 (overlapping singlets, J = 4.3Hz, 6H).
13C NMR (126 MHz, CDCls) § 213.02, 180.07, 176.43, 47.44, 41.30, 37.32, 36.75, 25.43, 25.11, 25.07, 24.79.
IR, film (cm™): 2969, 1775, 1690, 1435, 1383, 1358, 1280, 1124, 877.
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LRMS m/z (El): calculated for C11H17NO3 [M*] 211.11, found 211.1.

15b 1-methyl-3-(2-methyl-4-oxopentan-2-yl)pyrrolidine-2,5-dione (rearranged product)
O Me Me

Me (0]
N

0" Me
Colorless oil. Rf = 0.35 (1:1 hexanes : ethyl acetate).
'H NMR (500 MHz, CDCl3) 6 3.43 (dd, J = 9.3, 5.0 Hz, 1H), 3.04 (d, J = 17.5 Hz, 1H), 2.93 (s, 3H), 2.70 (dd, J =
18.5, 9.3 Hz, 1H), 2.54 — 2.40 (m, 2H), 2.15 (s, 3H), 1.08 (s, 3H), 0.93 (s, 3H).
13C NMR (126 MHz, CDCl3) 6 208.20, 179.02, 176.63, 52.05, 45.79, 34.85, 31.89, 31.23, 25.63, 24.68, 23.82.
IR, film (cm™): 2961, 1770, 1688, 1434, 1382, 1366, 1280, 1157, 1122, 952, 697.
LRMS m/z (El): calculated for C1;Hi7NO3 [M*] 211.11, found 211.1.

The two isomers could be isolated separately. ir for Conditions A was determined from the isolated yields of the two
products.

For Conditions B, ir was determined by comparing the combined integrals of the methyl peaks at 1.19 (overlapping
singlets, 6H) to that of the methyl peaks at 1.08 (s, 3H) and 0.93 (s, 3H).

Ratio found = 1:7.7
NMR yield = 6%:45% (combined = 51%) using 1,3,5-trimethoxybenzene as internal standard.

16a/16b

Conditions A: Yield = 54%, ir = 1:1.4
Conditions B: Yield = 66%, ir = 1:10
From acrylonitrile

16a 5,5-dimethyl-6-oxoheptanenitrile (unrearranged product) — minor
(o]

Me)l>(\/\CN

Me Me
'!H NMR Characteristic peaks: 1.13 (s, 6H, -CMe>-)

ir was determined by the relative integral of the characteristic peak at 1.13 ppm against the integral of the peak at
1.01 ppm (s, 6H).

16b 4,4-dimethyl-6-oxoheptanenitrile (rearranged product) — major
O Me Me

Colorless oil. Rf = 0.40 (3:1 hexanes : ethyl acetate).

IH NMR (400 MHz, CDCls) & 2.34 (s, 2H), 2.28 (m, 2H), 2.11 (s, 3H), 1.78 (m, 2H), 1.01 (s, 6H).

13C NMR (101 MHz, CDCls) 6 207.74, 120.29, 77.47, 77.15, 76.83, 52.86, 36.59, 33.18, 32.35, 26.90, 12.53.
IR, film (cm™): 2961, 2875, 2246, 1705, 1472, 1424, 1363, 1214, 1158, 1133, 975, 922, 756, 605, 536.

LRMS m/z (El): calculated for CoH1sNO [M*] 153.12, found 153.1.

17a/17b
Conditions A: Yield = 35%, ir =1.2:1
Conditions B: Yield = 47%, ir = 1:9
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From ethyl methacrylate

17a Ethyl 2,5,5-trimethyl-6-oxoheptanoate (unrearranged product) — minor

(o) Me
MeJWcozEt
Me Me

'H NMR (500 MHz, CDCl3) Characteristic peaks: & 1.08 (overlapping singlets, J = 5.3 Hz, 6H, MeC(0)-CMe:-
CH>-)
13C NMR (126 MHz, CDCls)  213.77, 176.45, 60.33, 47.66, 39.98, 37.35, 28.85, 25.08, 24.39, 24.31, 17.29, 14.37.

ir was determined by the relative integral of the characteristic peak at 1.08 ppm against the peak at 0.95 ppm
(MeC(O)-CH,-CMey-).

17b Ethyl 2,4,4-trimethyl-6-oxoheptanoate (rearranged product) — major
O Me Me Me

Me CO,Et

Colorless oil. Rf = 0.45 (5:1 hexanes : ethyl acetate).

H NMR (500 MHz, CDCls) § 4.09 (q, J = 7.1, 2H), 2.45 (dqd, J = 9.8, 7.0, 2.8 Hz, 1H), 2.37 — 2.26 (m, 2H), 2.09
(s, 3H), 1.92 (dd, J = 14.2, 9.4 Hz, 1H), 1.35 (dd, J = 14.2, 2.8 Hz, 1H), 1.23 (t, J = 7.2 Hz, 3H), 1.13(d, J= 7.0
Hz, 3H), 0.95 (overlapping singlets, J = 2.5 Hz, 6H).

13C NMR (126 MHz, CDCls) 5 208.56, 177.74, 60.39, 53.92, 45.88, 36.04, 33.83, 32.56, 27.31, 27.08, 20.43, 14.23.
IR, film (cm™): 2972, 1729, 1705, 1463, 1363, 1249, 1155, 1096, 1054, 1025.

LRMS m/z (El): calculated for C1,H203 [M*] 214.16, found 214.2.

18a/18b

Conditions A: Yield = 25%, ir =1:1
Conditions B: Yield = 41%, ir = 1:7
From phenyl vinyl sulfone

18a 3,3-dimethyl-6-(phenylsulfonyl)hexan-2-one (unrearranged product) — minor
(0]

Me)l>(\/\sozph

Me Me
'!H NMR Characteristic peaks: 2.08 (s, 3H, -COMe), 1.09 (s, 6H, -CMez-)

ir was determined by the relative integral of the characteristic peak at 1.09 ppm against the integral of the peak at
0.95 ppm (s, 6H).

18b 4,4-dimethyl-6-(phenylsulfonyl)hexan-2-one (rearranged product) — major
O Me, Me

Me)WSOZPh

Yellow oil. Rf = 0.50 (1:1 hexanes : ethyl acetate).

H NMR (400 MHz, CDCls) 6 7.94 — 7.84 (m, 2H), 7.70 — 7.61 (m, 1H), 7.62 — 7.48 (m, 2H), 3.19 — 2.98 (m, 2H),
2.27 (s, 2H), 2.07 (s, 3H), 1.79 — 1.69 (m, 2H), 0.95 (s, 6H).

13C NMR (101 MHz, CDCls) 5 207.66, 139.13, 133.82, 129.40, 128.16, 53.21, 52.50, 33.94, 32.94, 32.45, 26.98.
IR, film (cm™): 2959, 2874, 1709, 1473, 1447, 1408, 1363, 1218, 1145, 1087, 1025, 999, 745, 690, 587, 562, 538.

LRMS m/z (El): calculated for C14H2003S [M*] 268.11, found 268.1.
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19a/19b

Conditions A: Yield = 46%, ir = 1:1.7
Conditions B: Yield = 61%, ir = 1:10
From N-phenylacrylamide

19a 5,5-dimethyl-6-0xo-N-phenylheptanamide (unrearranged product) — minor
(o)

NHPh
Me

Me Me 0
'H NMR Characteristic peaks: 2.12 (s, 3H, -COMe), 1.57 (m, 4H, -CH2CH2CH,CONHPh), 1.12 (s, 6H, -CMe>-)

ir was determined by the relative integral of the characteristic peak at 1.12 ppm against the integral of the peak at
1.00 ppm.

19b 4,4-dimethyl-6-oxo0-N-phenylheptanamide (rearranged product) — major

O Me Me

NHPh
Me

(o]
Yellow oil. Rf = 0.30 (1:1 hexanes : ethyl acetate).

'H NMR (400 MHz, CDCls) & 7.95 (broad s, 1H), 7.54 (m, 2H), 7.35 — 7.19 (m, 2H, overlaps with CHCI; peak),
7.06 (t, J=7.4 Hz, 1H), 2.43 — 2.24 (m, 4H), 2.14 (s, 3H), 1.84 — 1.65 (m, 2H), 1.00 (s, 6H).

13C NMR (101 MHz, CDCls) 6 209.68, 172.02, 138.36, 128.98, 124.08, 119.86, 53.07, 37.32, 33.66, 33.23, 32.91,
27.48.

IR, film (cm™): 3306 (broad), 3137, 3061, 2959, 1697, 1662, 1600, 1542, 1499, 1442, 1362, 1313, 1251, 1156, 966,
903, 756, 694, 549, 508.

LRMS m/z (EIl): calculated for C1sH21NO, [M*] 247.16, found 247.1.

20a/20b

Conditions A: Yield = 43%, ir =1:3

Conditions B: Yield = 62%, ir =1:15

1 equiv. of trifluoroacetic acid was used as an additive under both conditions, but the procedure was otherwise
identical.

From acrylic acid

20a 5,5-dimethyl-6-oxoheptanoic acid (unrearranged product) — minor
(o)

Me)WCOOH

Me Me
'H NMR Characteristic peaks: 2.08 (s, 3H, -COMe), 1.11 (s, 6H, -CMez-)

ir was determined by the relative integral of the characteristic peak at 1.11 ppm against the integral of the peak at
0.99 ppm.

20b 4,4-dimethyl-6-oxoheptanoic acid (rearranged product) — major
O Me Me

Me)WCOOH

Colorless oil. Rf = 0.40 (4:1 hexanes : ethyl acetate, 1% acetic acid).
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IH NMR (500 MHz, CDCl3) & 10.18 (s, 1H), 2.37 — 2.24 (m, 2H), 2.12 (s, 3H), 1.77 — 1.59 (m, 2H), 0.99 (s, 6H).
13C NMR (126 MHz, CDCl3) § 208.75, 180.25, 53.58, 36.42, 33.14, 32.57, 29.49, 26.90.
IR, film (cm-%): 3500-2500 (broad), 2959, 2875, 1702, 1471, 1415, 1363, 1300, 1214, 1158, 1046, 926, 608, 532.

LRMS m/z (El): calculated for CoH1603 [M*] 172.11, found 172.1.

21a/21b

Conditions A: Yield = 63%, ir =1:2.3
Conditions B: Yield = 73%, ir =1:14
From fumaronitrile

21a 2-(2,2-dimethyl-3-oxobutyl)succinonitrile (unrearranged product) — minor
(0]

Me CN
Me Me CN
!H NMR Characteristic peaks: § 2.91 (dtd, J = 8.1, 6.3, 5.0 Hz, 1H, methine CH), 1.32 (s, 3H), 1.23 (s, 3H)
(MeC(0O)-CMe2-CH»-)
13C NMR (126 MHz, CDCls) § 212.47, 119.84, 115.77, 47.35, 40.38, 25.76, 25.18, 24.80, 23.91, 22.65.

Rwm was determined by the relative integral of the characteristic peak at 1.32 ppm (s, 3H) against half the integral of
the peak at 1.14 ppm (overlapping singlets, 6H, MeC(O)-CHz-CMe2-).

21b 2-(2-methyl-4-oxopentan-2-yl)succinonitrile (rearranged product) — major
O Me Me

MeWCN

CN
Colorless oil. Rf = 0.40 (3:1 hexanes : ethyl acetate).

'H NMR (500 MHz, CDCl3) & 3.68 (dd, J = 8.7, 5.9 Hz, 1H), 2.71 — 2.57 (m, 3H), 2.49 (d, J = 18.0 Hz, 1H), 2.14
(s, 3H), 1.14 (overlapping singlets, J = 7.2 Hz, 6H)

13C NMR (126 MHz, CDCls) § 207.01, 118.32, 116.63, 51.29, 36.67, 35.46, 31.70, 25.18, 24.09, 16.69.

IR, film (cm™): 2971, 2243, 1708, 1470, 1421, 1364, 1181, 1157, 1055, 1033, 1005, 626, 554.

LRMS m/z (El): calculated for C10H14N.O [M*] 178.11, found 178.1.

22a/22b

Conditions A: Yield = 32%, ir = 1:5

Conditions B: Yield = 50%, ir =1:18. Ratio of 22b:22¢c = 6:1
From dimethyl fumarate

Conditions A: Yield = 32%, ir =1:15
Conditions B: Yield = 50%, ir < 1:20. Ratio of 22b:22¢c =5:1
From dimethyl maleate

22a Dimethyl 2-(2,2-dimethyl-3-oxobutyl)succinate (unrearranged product) — minor
(o]

Me CO,Me
Me Me co,Me

'H NMR Characteristic peaks: 3.65 (s, 3H, -CO2Me), 3.63 (s, 3H, -CO2Me), 1.18 (s, 3H, -CMe»-), 1.12 (s, 3H, -
CMez-)
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ir was determined by the relative integral of the characteristic peak at 1.18 ppm and 1.12 ppm against the integral of
the peaks at 1.10 ppm and 1.02 ppm.

22b Dimethyl 2-(2-methyl-4-oxopentan-2-yl)succinate (rearranged product) — major
O Me Me

Me CO,Me
CO,Me
Yellow oil. Rf = 0.25 (1:1 hexanes : ethyl acetate).

IH NMR (500 MHz, CDCl3) & 3.68 (s, 3H), 3.64 (s, 3H), 3.04 (dd, J = 12.0, 3.2 Hz, 1H), 2.76 (dd, J = 16.7, 12.0
Hz, 1H), 2.54 (d, J = 16.6 Hz, 1H), 2.46 (dd, J = 16.7, 3.2 Hz, 1H), 2.32 (d, J = 16.5 Hz, 1H), 2.11 (s, 3H), 1.10 (s,
3H), 1.02 (s, 3H).

13C NMR (126 MHz, CDCls) § 207.37, 174.44, 172.86, 52.08, 51.95, 51.64, 49.14, 35.10, 32.27, 32.14, 25.59,
25.18.

IR, film (cm): 2955, 1728, 1436, 1364, 1261, 1191, 1159, 1092, 999, 925, 887, 845, 736, 667, 609, 500.

LRMS m/z (EIl): calculated for C12H200s5 [M*] 244.13, found 244.1.

22c¢ Dimethyl-3-hydroxy-3,5,5-trimethylcyclopentane-1,2-dicarboxylate (rearranged and cyclized product)
Me Me
Me OH

MeO,C  CO,Me

'H NMR (500 MHz, CDCIs) Characteristic peaks: § 3.68 (s, 3H), 3.66 (s, 3H), 3.22 (d, J = 12.2 Hz, 1H), 3.15 (d, J
=12.2 Hz, 1H), 1.85 (d, J = 14.0 Hz, 1H), 1.69 (d, J = 14.0 Hz, 1H), 1.41 (s, 3H), 1.27 (s, 3H), 0.87 (s, 3H).

The ratio of acyclic:cyclic product was determined by the relative integral of the characteristic peaks at 1.41 ppm
and 1.27 ppm against the integral of the peaks at 1.10 ppm and 1.02 ppm.

24a/24b

Conditions A: Yield = 57%, ir =1:8.6
Conditions B: Yield = 70%, ir =<1:20
From benzylidenemalononitrile

24a 2-hydroxy-2,3,3-trimethyl-5-phenylcyclopentane-1,1-dicarbonitrile (unrearranged product) — minor

Me Me
Me
OH
CN
Ph CN

'H NMR Characteristic peaks: § 2.55 (broad s, 1H, -C(OH)Me-) 1.62 (s, 3H, -C(OH)Me-), 1.35 (s, 3H, -CMe»-),
1.18 (s, 3H, -CMe2-)

ir was determined by the relative integral of the characteristic peak at 1.35 ppm against the integral of the peak at
1.06 ppm (s, 3H).

24b 2-hydroxy-2,4,4-trimethyl-5-phenylcyclopentane-1,1-dicarbonitrile (rearranged product) — major
Me Me
Me "mOH

CN
Ph CN

White solid. Rs = 0.40 (3:1 hexanes : ethyl acetate).
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IH NMR (500 MHz, CDCls) 3 7.63 — 7.54 (m, 2H), 7.46 — 7.35 (m, 3H), 3.90 (s, 1H), 2.73 (broad d, J = 2.0 Hz,
1H), 2.21 — 2.08 (m, 2H), 1.74 (s, 3H), 1.21 (s, 3H), 1.06 (s, 3H).

13C NMR (126 MHz, CDCls) § 133.28, 130.00, 128.74, 128.63, 115.82, 114.30, 83.69, 61.15, 52.57, 52.06, 40.88,
31.64, 27.87, 24.39.

IR, film (cm™): 3482 (broad), 2968, 2932, 2252, 1498, 1453, 1389, 1367, 1220, 1194, 1172, 1121, 1070, 1052, 951,
935, 853, 732, 700, 528.

LRMS m/z (EI): calculated for C16H1sN20 [M*] 254.14, found 254.1.

The relative stereochemistry of 24b was assigned by X-ray crystallography. Please refer to the cif file for further
information.
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Additional Products

25a/25b

Conditions A: Yield = 60%, ir =3:1
Conditions B: Yield = 56%, ir =1:3
From 2,4-dimethyl-3-pentanone

25a Benzyl 5,7-dimethyl-6-oxooctanoate (unrearranged product) — major
(o)

iPr)WCOZBn

Me
Yield = 65%, yellow oil. Rt = 0.40 (5:1 hexanes : ethyl acetate).

IH NMR (400 MHz, CDCl3) & 7.41 — 7.24 (m, 5H), 5.11 (s, 2H), 2.69 (m, 2H), 2.45 — 2.22 (m, 2H), 1.74 — 1.46 (m,
3H), 1.38 — 1.18 (m, 1H), 1.15 — 0.97 (m, 9H).

13C NMR (126 MHz, CDCls) § 217.90, 173.15, 136.08, 128.57, 128.23, 66.19, 44.11, 39.62, 34.28, 32.39, 22.86,
18.34, 16.81.

IR, film (cm™): 2966, 2933, 2873, 1734, 1708, 1497, 1456, 1381, 1242, 1212, 1159, 1027, 1001, 738, 697.
LRMS m/z (El): calculated for C17H2403 [M*] 276.17, found 276.2.

25b Benzyl 4,7-dimethyl-6-oxooctanoate (rearranged product)
O Me

iPr)j\/K/\COz)Bn

'H NMR (400 MHz, CDCls) Characteristic peaks: & 2.54 (sept, J = 6.9 Hz, 1H, (CH3):CHC(O)-CH,-CHMe-), 2.05
(tdt, J =8.0, 6.9, 5.6 Hz, 1H, Me,CHC(0O)-CH,-CHMe-), 0.89 (d, J = 6.7 Hz, 3H, Me,CHC(O)-CH,-CHMe-).

ir determined by comparing the integral of the peak at 2.69 ppm (overlapping sept., 2H, Me;CHC(O)-CHMe-CH-).
to the sum of the characteristic peaks at 2.54 ppm (sept.,) and 2.05 ppm (m,).

26a/26b

Conditions A: Yield = 69%, ir = 1.7
Conditions B: Yield = 60%, ir = 1:20
From di-tert-butyl ketone

26a Benzyl 5,5,7,7-tetramethyl-6-oxooctanoate (unrearranged product) — minor
(o)

tBu)WCOZBn

Me Me

'H NMR (400 MHz, CDCls) Characteristic peaks & 1.23 (s, 6H, MesCC(O)-CMe>-), 1.21 (s, 9H, MesCC(O)-
CMEz-)

ir determined by comparing the integrals of the peak at 0.99 ppm (s, 6H, MesCC(O)-CH2-CMe2-) and 1.10 ppm (s,
9H, Me3CC(0O)-CH,-CMe;-) to the characteristic peaks at 1.23 ppm and 1.21 ppm respectively.

LRMS m/z (El): calculated for C19H2s03 [M*] 304.20, found 304.2.

26b Benzyl 4,4,7,7-tetramethyl-6-oxooctanoate (rearranged product) — major
O Me Me

tBu)Wcoan
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Yellow oil. Rf = 0.3 (9:1 hexanes : ethyl acetate).

'H NMR (400 MHz, CDCls) & 7.40 — 7.24 (m, 5H), 5.10 (s, 2H), 2.37 (s, 2H), 2.34 — 2.28 (m, 2H), 1.81 — 1.73 (m,
2H), 1.10 (s, 9H), 0.99 (s, 6H).

13C NMR (101 MHz, CDCls) 6 214.94, 173.95, 136.17, 128.64, 128.33, 128.27, 66.31, 45.90, 44.86, 36.71, 32.78,
29.83, 26.94, 26.47.

IR, film (cm™): 2957, 1734, 1705, 1456, 1385, 1365, 1297, 1153, 1067, 1004, 975, 915, 844, 746, 697, 579, 501
LRMS m/z (EI): calculated for C19H2503 [M*] 304.20, found 304.2.

27al27b

Conditions A: Yield = 54%, ir =11:1

Conditions B: Yield = 44%, ir = 1.3:1 (NMR yield)
From 3-methyl-2-butanone and ethyl acrylate

27a Ethyl 5-methyl-6-oxoheptanoate (unrearranged product) — major
(o)

Me)WCOZEt

Me
Colorless oil. Rf = 0.40 (5:1 hexanes : ethyl acetate).
IH NMR (500 MHz, CDCl3) & 4.10 (q, J = 7.1 Hz, 2H), 2.50 (h, J = 6.9 Hz, 1H), 2.28 (td, J = 7.3, 2.0 Hz, 2H),
2.12 (s, 3H), 1.72 — 1.47 (m, 3H), 1.41 — 1.31 (m, 1H), 1.23 (t, J = 7.1 Hz, 3H), 1.08 (d, J = 7.0 Hz, 3H).
13C NMR (126 MHz, CDCl3) 6 212.41, 173.43, 60.40, 46.99, 34.29, 32.17, 28.14, 22.68, 16.30, 14.34.
IR, film (cm™): 2972, 2939, 1731, 1711, 1459, 1370, 1246, 1178, 1156, 1097, 1031.
LRMS m/z (EI): calculated for CLOH1803; [M*] 186.13, found 186.2.

27b Ethyl 4-methyl-6-oxoheptanoate (rearranged product) — minor
O Me

Me CO,Et

'H NMR (500 MHz, CDCls) Characteristic peaks: & 2.11 (s, 3H, MeC(QO)-CH,-CHMe-) 0.89 (d, 3H, MeC(O)-CH,-
CHMe-).

ir determined by comparing the integral of the peak at 1.08 ppm (MeC(O)-CHMe-CH,-) to the characteristic peak at
0.89 ppm.
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