Supporting Information

Searching for Sustainable Refrigerants by Bridging Molecular Modeling with Machine Learning

Ismail I.I. Alkhatib^{a,b}, Carlos G. Albà^c, Ahmad S. Darwish^b, Fèlix Llovell^c, Lourdes F. Vega^{a,b*}

^a Research and Innovation Center on CO₂ and Hydrogen (RICH), Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.

^bChemical Engineering Department, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.

^c Department of Chemical Engineering, ETSEQ, Universitat Rovira i Virgili (URV), Av. Països Catalans 26, 43007, Tarragona, Spain.

* Corresponding authors e-mail addresses: lourdes.vega@ku.ac.ae

 Table S1. Input dataset for ANN with molar mass and COSMO-RS molecular refrigerants included in this work.

Compound	Mw (g.mol ⁻¹)	S_2	S_3	S_4	S_5	S_6
R41	34.03	0.0000	0.0118	0.0205	0.0053	0.0158
R32	52.02	0.0000	0.0208	0.0061	0.0246	0.0064
R23	70.01	0.0070	0.0062	0.0065	0.0536	0.0000
R161	48.06	0.0000	0.0079	0.0336	0.0112	0.0169
R152a	66.05	0.0000	0.0210	0.0186	0.0219	0.0107
R134a	102.03	0.0022	0.0146	0.0108	0.0599	0.0023
R125	120.02	0.0082	0.0046	0.0155	0.0695	0.0000
R245fa	134.05	0.0039	0.0170	0.0137	0.0741	0.0015
R236fa	152.04	0.0082	0.0074	0.0165	0.0879	0.0000
R227ea	170.03	0.0080	0.0029	0.0254	0.0792	0.0000
R1123	82.02	0.0018	0.0065	0.0233	0.0496	0.0002
R1243zf	96.05	0.0001	0.0186	0.0178	0.0627	0.0000
R1234yf	114.04	0.0003	0.0124	0.0268	0.0636	0.0000
R1234ze(E)	114.04	0.0038	0.0103	0.0216	0.0684	0.0000
R1225ye(Z)	132.03	0.0040	0.0055	0.0290	0.0705	0.0000
R1336mzz(Z)	164.06	0.0062	0.0067	0.0324	0.0860	0.0000
R1233zd(E)	130.49	0.0038	0.0087	0.0296	0.0725	0.0000
R1224yd(Z)	149.49	0.0035	0.0046	0.0375	0.0725	0.0000
R116	138.01	0.0005	0.0117	0.0210	0.0093	0.0000

Class	Compound	т	σ [Å]	ε/k _B [K]	μ·10 ⁻³⁰ [C·m]§	xp	Ref.
Alkane	Ethane	1.392	3.756	202.5	-	-	1
	R41	1.371	3.400	180.3	6.17427	0.50	2
	R32	1.376	3.506	164.5	6.59790	0.75	2
	R23	1.397	3.610	147.9	5.50047	0.90	2
	R161	1.577	3.693	232.3	6.47014	0.33	2
3 rd gen.	R152a	1.662	3.754	202.3	7.54522	0.50	2
HFCs	R134a	1.813	3.770	169.5	6.86475	0.70	3
	R125	1.887	3.790	165.1	5.21360	0.90	2
	R245fa	2.479	3.675	197.1	5.16690	0.80	2
	R236fa	2.056	4.012	172.4	6.61124	0.90	2
	R227ea	2.131	4.033	190.7	4.85669	1.00	2
	R1123	1.527	3.760	175.3	5.73730	0.80	2
	R1243zf	1.904	3.880	170.0	8.16890	0.50	2
4 th gen.	R1234yf	1.740	4.082	191.6	6.70790	0.70	3
HFOs	R1234ze(E)	2.044	3.821	204.0	4.80330	0.75	2
	R1225ye(Z)	2.077	3.845	172.4	6.03750	0.80	2
	R1336mzz(Z)	1.806	4.430	195.6	10.6406	0.60	2
4 th gen.	R1233zd(E)	2.331	3.819	232.6	3.81190	0.80	2
HCFOs	R1224yd(Z)	2.278	3.899	202.4	5.63720	0.85	2

Table S2. Polar soft-SAFT molecular parameters for refrigerants included in this work.

[§]Experimental dipole moment^{4–9}

Table S3. Output dataset for ANN with polar soft-SAFT molecular parameters for refrigerants included in this work.

Compound	μ·10 ⁻³⁰ [C·m]§	x _p	т	тσ ³ [Å ³]	те/k _в [K]
R41	6.174	0.500	1.371	53.886	247.191
R32	6.598	0.750	1.376	59.300	226.352
R23	5.500	0.900	1.397	65.723	206.616
R161	6.470	0.330	1.577	79.427	366.337
R152a	7.545	0.500	1.662	87.925	336.223
R134a	6.865	0.700	1.813	97.145	307.304
R125	5.214	0.900	1.887	102.728	311.544
R245fa	5.167	0.800	2.479	123.041	488.611
R236fa	6.611	0.900	2.056	132.772	354.454
R227ea	4.857	1.000	2.131	139.787	406.382
R1123	5.737	0.800	1.527	81.171	267.683
R1243zf	8.169	0.500	1.904	111.215	323.680
R1234yf	6.708	0.700	1.740	118.350	333.384
R1234ze(E)	4.803	0.750	2.044	114.028	416.976
R1225ye(Z)	6.038	0.800	2.077	118.066	358.075
R1336mzz(Z)	10.641	0.600	1.806	157.011	353.254
R1233zd(E)	3.812	0.800	2.331	129.835	542.191
R1224yd(Z)	5.637	0.850	2.278	135.025	461.067

			Neuron bias					
		Mw	S_2	S_3	S_4	S_5	S_6	(b _{ij})
	μ_1	0.0199	759.393	-221.629	-53.3194	-28.989	-55.8245	-0.945
r (μ_2	0.0599	273.925	29.648	31.886	44.855	-1.577	-10.543
ayı	μ3	-0.00879	219.773	-202.017	-46.3872	19.301	-10.375	0.764
n la	μ_4	0.0668	-691.009	-127.769	103.573	3.469	-59.979	-5.633
lde	μ_5	0.000495	127.437	-3.887	-45.675	-30.769	337.681	1.913
hia	μ_6	0.00394	800.905	-15.216	93.798	57.655	-72.769	-8.912
18	μ_7	-0.0315	521.543	330.952	22.345	1.337	146.780	-3.278
in	μ_8	0.0449	-207.964	-48.581	80.760	2.153	-99.433	-2.484
Su	μg	0.0220	538.290	-139.335	-95.831	-40.209	-4.413	-0.301
iro	x_{p1}	0.0437	59.978	-134.377	-172.845	3.124	49.577	-0.0166
Veu	x_{p2}	-0.0382	119.168	88.579	139.689	41.318	7.879	-1.839
ĸ	x_{p3}	-0.0139	-388.942	91.501	-16.887	-26.252	33.729	2.668

 Table S4. ANN weights and bias for the links between neurons in the input layer, and neurons in the 1st hidden layer.

Table S5. ANN weights and bias for the links between neurons in the 1^{st} hidden layer, and neurons in the 2^{nd} hidden layer.

		Neurons in 2 nd hidden layer (k)					
		H_1	H_2	H_3	H_4		
ë	μ_1	-0.0196	0.0292	0.0132	-0.0759		
r ()	μ_2	-0.0186	-0.0014	-0.0313	0.0094		
ihe	μ_3	0.0869	0.0084	-0.0862	0.0653		
n la	μ_4	-0.0445	0.0294	-0.0162	-0.0631		
qe	μ_5	0.0471	-0.0016	0.0625	-0.0085		
hid	μ_6	-0.0603	-0.0115	0.0047	-0.0019		
l st	μ_7	-0.0109	-0.0379	0.0722	0.0284		
'n	μ_8	-0.1219	-0.0184	-0.0273	-0.0020		
I SL	μ_9	-0.0359	-0.0017	0.0258	-0.0207		
roi	x_{p1}	0.0020	0.0144	-0.0121	-0.0206		
leu	x_{p2}	-0.0001	0.0076	-0.0503	-0.1121		
~	x_{p3}	0.0300	0.0151	0.0457	-0.0402		
Neuron bias (b _{ik})		0.0973	-0.0019	0.0408	0.0209		

Table S6. ANN weights and bias for the links between neurons in the output layer, and neurons in the 1st or 2nd hidden layers.

		Neurons in output layer (0)						
		$\mu \cdot 10^{-30}$	x _p	т	$m\sigma^3$	me/k _B		
r (j)	μ_1	11.898	-	-	-	-		
	μ_2	-0.114	-	-	-	-		
aye	μ_3	-8.478	-	-	-	-		
n li	μ_4	-1.612	-	-	-	-		
lde	μ_5	-1.039	-	-	-	-		
hia	μ_6	-3.692	-	-	-	-		
1st	μ_7	-0.111	-	-	-	-		
in	μ_8	1.618	-	-	-	-		
su	μ_9	4.457	-	-	-	-		
iro.	x_{p1}	-	-0.524	-	-	-		
Veu	x_{p2}	-	-0.804	-	-	-		
N	x_{p3}	-	-0.482	-	-	-		
Neurons	H_1	-	-	-100.481	1358.022	-42068.548		
in 2 nd hidden layer (k)	H_1	-	-	411.074	-8831.445	178751.003		
	H_1	-	-	119.880	-2067.174	51621.750		
	H_1	-	-	226.605	-4999.385	96884.334		
Neuron bias (b _{io})		2.699	0.889	2.073	102.779	430.899		

References

- Pàmies, J. C.; Vega, L. F. Vapor–Liquid Equilibria and Critical Behavior of Heavy *n* -Alkanes Using Transferable Parameters from the Soft-SAFT Equation of State. *Ind. Eng. Chem. Res.* 2001, 40 (11), 2532–2543. https://doi.org/10.1021/ie000944x.
- (2) Albà, C. G.; Alkhatib, I. I. I.; Llovell, F.; Vega, L. F. Assessment of Low Global Warming Potential Refrigerants for Drop-In Replacement by Connecting Their Molecular Features to Their Performance. ACS Sustain. Chem. Eng. 2021, 9 (50), 17034–17048. https://doi.org/10.1021/acssuschemeng.1c05985.
- (3) Albà, C. G.; Llovell, F.; Vega, L. F. Searching for Suitable Lubricants for Low Global Warming Potential Refrigerant R513A Using Molecular-Based Models: Solubility and Performance in Refrigeration Cycles. *Int. J. Refrig.* 2021, *128*, 252–263. https://doi.org/10.1016/j.ijrefrig.2021.04.010.
- (4) Lemmon, E. W.; Huber, M. L.; McLinden, M. O. *NIST Reference Fluid Thermodynamic and Transport Properties REFPROP, Version 9.0, National Institute of Standards and Technology, Gaithersburg, MD*; 2013.
- (5) Di Nicola, G.; Coccia, G.; Pierantozzi, M.; Tomassetti, S. Equations for the Surface Tension of Low GWP Halogenated Alkene Refrigerants and Their Blends. *Int. J. Refrig.* 2018, 86, 410–421. https://doi.org/10.1016/j.ijrefrig.2017.11.023.
- (6) Fouad, W. A.; Vega, L. F. Next Generation of Low Global Warming Potential Refrigerants: Thermodynamic Properties Molecular Modeling. *AIChE J.* 2018, 64 (1), 250–262. https://doi.org/10.1002/aic.15859.
- (7) Raabe, G. Molecular Simulation Studies on the Vapor–Liquid Equilibria of the Cis and Trans -HCFO-1233zd and the Cis - and Trans -HFO-1336mzz. J. Chem. Eng. Data 2015, 60 (8), 2412– 2419. https://doi.org/10.1021/acs.jced.5b00286.
- (8) Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4 (1), 17. https://doi.org/10.1186/1758-2946-4-17.
- (9) Raabe, G. Molecular Simulation Studies on Refrigerants Past Present Future. *Fluid Phase Equilib.* **2019**, *485*, 190–198. https://doi.org/10.1016/j.fluid.2018.12.022.