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1 Theory of free electron radiation in crystals

In this section, we present the theory for light emission from a uniformly distributed electron

beam incident upon a crystalline structure. As these derivations are obtained ab initio from

Maxwell’s equations, our results are valid within the realm of classical relativistic electro-

dynamics, as long as electron recoil and quantization of electron momenta (as a result of

traveling in the periodic potential of the crystalline lattice) is insignificant, which is true in

our regime of interest. The single-electron treatment is based on the scattering theory of

Baryshevsky et al. [1], but with the generalization of the formulas to include relativistic

electrons. Furthermore, we take into account all the (hkl) planes which make considerable

contributions to the intensity of photons emitted with frequency ω at a direction n̂. The

radiation spectrum per electron is then obtained by averaging over the radiation spectra of

uniformly distributed electrons spanning the crystal surface, where we increase the number

of impinging electrons until the convergence is achieved. Although we focus on electrons in

our theory, our results are valid for any charged particle when the corresponding values for

charge and rest mass are used.
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1.1 Statistically averaged photon emission spectrum

In this subsection, we show the average radiation intensity emitted by an electron passing

through a crystalline material. Using the Pointing vector, in the far-field regime, the radia-

tion intensity is given by[2]

d2N

dωdΩ
=

4πcε0
~ω
R2|E(r, ω)|2, (S1)

where N is the number of emitted photons, ω is the angular frequency of the emitted photon,

Ω is the solid angle, c is the speed of light in free space, ε0 is the vacuum permittivity, ~

is the reduced Planck’s constant, R is the distance between the charge and the observation

point, r refers to the position vector in space, E(r, ω) is the radiation electric field. We ob-

tain E(r, ω) by solving the wave equation (derived from the Maxwell’s equations in matter

(non-magnetic linear media))[2]

∇×∇×E(r, ω)− ω2µ0D(r, ω) = iωµ0J(r, ω), (S2)

where µ0 is the vacuum permeability, which is considered to be the permeability of the non-

magnetic material, D(r, ω) = ε(r, ω)E(r, ω) is the local electric displacement, ε(r, ω) being

the permittivity of the material, J(r, ω) = 1
2π

∫
dt qv(t) δ(r − s(t)) exp(iωt) is the free cur-

rent density, where v(t) and s(t) are the velocity and position of the moving charge q. The

non-homogeneous differential equation (S2) is solved using the Green’s function method [3].

The component of the emitted radiation field is then given as

Ei(r, ω) = iωµ0

∫ ∞
−∞

d3r′
∑
j

Gij(r, r
′, ω)Jj(r

′, ω), (S3)

where the indices i,j = x, y, z, the position of the current source is denoted r′. In the limit

r >> r′, the element of the Green’s tensor is given as [1]
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Gij(r, r
′, ω) ≈ 1

4π

exp(ikr)

r

∑
s=1,2

êsi(k)E∗ksj(r
′, ω), (S4)

where k = ω/c, êsi is the ith component of the polarisation vector, s is the index of polar-

isation and E∗ksj(r
′, ω) refers to the complex conjugate of the jth component of the crystal

eigenmode Eks, where k denotes wave vector. The crystal eigenmodes satisfy the homoge-

neous differential equation (the free current density in equation (S2) is set to 0)

∇×∇×Eks(r, ω)− ω2µ0 ε(r, ω)Eks(r, ω) = 0, (S5)

where the permittivity ε(r, ω) can be expanded as ε(r, ω) = ε0 + ε′(r, ω), where ε′(r, ω) =

ε0χ(r, ω). Here, χ(r, ω) =
∑

g 6=0 χg exp(ig · r) is the electric susceptibility [4] of the crystal,

χg is the Fourier component of electronic susceptibility and g is the reciprocal lattice vector.

For X-ray photons, the vacuum permittivity ε0 >> ε′(r, ω) because χg is very small (∼ 10−3)

as seen in Fig. S1. The electric field eigenmodes is expanded in a perturbative manner as

Eks(r, ω) = E0(r, ω) + E′(r, ω), (S6)

where E0(r, ω) is the unperturbed field and E′(r, ω) is the small perturbation. In the limit,

where ε0 >> ε′(r, ω) and |E0(r, ω)| >> |E′(r, ω)|, the expression for the electric field eigen-

modes in a crystalline material is given as [5]

Eks(r, ω) = exp(ik · r)ês +
∑
g 6=0

Egse
i(k+g)·r, (S7)

Egs = −χg

[
kg(g · ês)− ω2

c2
ês
]

(kg
2 − ω2

c2
)

, kg = k + g, (S8)
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χg = − 1

4πε0

4πe2

meω2

S(g)

V
exp[−W (g)], (S9)

where ês is the polarization vector, me is the mass of an electron, S(g) =
∑

i Fi(g) exp(ig ·Ri)

is the structure factor, where the form factor and the coordinate of the ith atom in the unit

cell are denoted Fi(g) and Ri respectively, e is the charge of an electron, V is the volume of

the unit cell and the term exp[−W (g)] is the Debye-Waller factor[6]. This factor accounts

for the effect of thermal vibrations in the crystal, whose value is approximately equal to 1 in

our regime of study.

By substituting equation (S3) in equation (S1), we obtain the radiation intensity per

electron. Then, the average radiation intensity per electron is obtained by averaging over the

radiation intensity of uniformly distributed electrons impinging at different locations on the

crystal surface, given as equation (1) of the main text.

|𝜒
𝒈
|

Photon energy [eV]

Figure S1: Photon energy dependence of χg for various van der Waals materials
(calculated from equation S9) [4]. In this plot, g is the reciprocal lattice vector corresponding
to (002) planes. The lattice constant c for WS2, WSe2, MoS2 and MoSe2 are taken as 12.27Å,
12.98Å, 12.29Å and 12.89Å, respectively.
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1.2 Dynamics of an electron in crystalline materials

In this subsection, we derive the trajectory and velocity of an electron passing through a

crystalline material. The Newton-Lorentz equation of motion governs the motion of charged

particles in the Coulomb field of periodically arranged atoms in a crystal, which is given as

dp

dt
= qE (S10)

in the absence of magnetic fields, where p = γmv is the relativistic momentum, γ is the

Lorentz factor, m is the mass, v is the velocity, q is the charge (an electron for our case),

E = −∇U(r) is the electric field experienced by the charge in the crystal. U(r) is the po-

tential due to the electron density and the atomic nucleus in the crystal lattice, given as[7]

U(r) =
1

2V

∑
g 6=0

Ug exp(ig · r) + c.c., (S11)

Ug =
e

ε0

∑
i

exp(ig ·Ri)
Zi − Fi(g)

g2
exp[−W (g)], (S12)

where Zi is the ith atom’s nuclear charge, and c.c. denotes complex conjugate. We simplify

equation (S10) to obtain the equation of motion for the x, y, z components as

dvx
dt
≈ q

γm
Ex,

dvy
dt
≈ q

γm
Ey,

dvz
dt
≈ q

γ3m
Ez,

(S13)

where we have assumed that a) the transverse velocity modulations of the electron are neg-

ligible such that x ≈ x0, y ≈ y0 and γ ≈ 1/
√

1− (vz/c)2, b) the longitudinal velocity

modulations are negligible such that z ≈ z0 + v0t, v0 being the initial velocity of the electron
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which we consider to be along the z direction without loss of generality. Here, x, y and z

refers to the position of the electron in Cartesian coordinates at time t, and the subscript

“0” in these variables denotes its values at initial time.

The trajectory of the electron inside the crystal is given as

r = r0 + v0t ẑ + δr, (S14)

where r0 = x0x̂ + y0ŷ + z0ẑ is the initial position of the electron, and δr is the fluctuation

in the electron’s position. In the limit δr << v0t, which is true in our regime of interest, we

analytically evaluated equation (S13) to obtain the electron’s velocity components as

vx ≈
∑
g 6=0

gx
γ
ζg

(
ei(g·v0ẑ)tei(g·r0) + c.c.

2

)
, (S15)

vy ≈
∑
g 6=0

gy
γ
ζg

(
ei(g·v0ẑ)tei(g·r0) + c.c.

2

)
, (S16)

vz ≈
∑
g 6=0

gz
γ3
ζg

(
ei(g·v0ẑ)tei(g·r0) + c.c.

2

)
+ v0, (S17)

where ζg = −qUg

(g·v0)mV
and gi is the ith component of g. Then we obtain the fluctuations in

position as

δx ≈
∑
g 6=0

gx
γ

ζg
(g · v0ẑ)

(
−iei(g·v0ẑ)tei(g·r0) + c.c.

2

)
, (S18)

δy ≈
∑
g 6=0

gy
γ

ζg
(g · v0ẑ)

(
−iei(g·v0ẑ)tei(g·r0) + c.c.

2

)
, (S19)

δz ≈
∑
g 6=0

gz
γ3

ζg
(g · v0ẑ)

(
−iei(g·v0ẑ)tei(g·r0) + c.c.

2

)
. (S20)
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These fluctuations results in photon emission via coherent bremsstrahlung (CB).

1.3 Free-electron radiation in crystalline materials

In this subsection, we present analytical expressions for the radiation produced from two com-

bined mechanisms, parametric X-ray radiation (PXR) and coherent bremsstrahlung (CB),

from the results obtained in the previous subsections. It is to be noted that we have gen-

eralised the conventional electrodynamics theory, as given by Baryshevsky et al. [1], to

consider electrons passing through the crystal with relativistic speeds, but in the limit where

electron recoil and quantization of electron momenta is insignificant. Also, while evaluating

the number of photons emitted with frequency ω along a given direction n̂, our simulation

takes into account all the lattice planes which satisfy the conditions to generate a photon

along that direction. We achieve this by summing over the PCB amplitudes Ags(ω, n̂) gen-

erated at frequency ω, due to multiple g. The number of g considered is increased until the

net PCB amplitude converges, starting from the g that is closest to satisfying the equation

k2g − ω2/c2 = 0. We assume that the radiation from different electrons is uncorrelated with

each other. Therefore, the PCB radiation intensity is linearly proportional to the electron

beam current. In the limit δr << v0t, we simplify equation (1) of the main text as

〈
d2N

dωdΩ

〉
≈ 1

Ne

αω

4π2c2

Ne∑
i=1

∣∣∣∣∑
g 6=0

(
Ags(ω, n̂)

)
i

∣∣∣∣2, (S21)

where

Ags(ω, n̂) = APXR + ACB, (S22)

APXR = (v0ẑ ·Egs)Q, (S23)

ACB =

(
ζg
γ

1

2
[{g; es}+ Λ]

)
Q+

(
ζg
γ

1

2
[{g; es} − Λ]

)
Q′ (S24)
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Q =
1

2P
(sin(2PtL)) + i(cos(2PtL)− 1)), P =

ω − v0ẑ · (k + g)

2
, (S25)

Q′ =
1

2P ′
(sin(2P ′tL)) + i(cos(2P ′tL)− 1)), P ′ = ω − v0ẑ · (k − g)

2
. (S26)

Here the notation {a; b} denotes

{a; b} = axbx + ayby +
azbz
γ2

, (S27)

and Λ denotes

Λ = {k; g}(v0ẑ · es)
(g · v0ẑ)

. (S28)

In the above expressions, Ne is the number of incident electrons, α is the fine-structure con-

stant, tL = L/v0 is the interaction time of the electron with the crystal, where L is the

interaction length. In equation (S22) the total PCB amplitude Ags(ω, n̂) is written as sum of

PXR amplitude (APXR) and the CB amplitude (ACB). The PCB radiation intensity (equation

(S21)) peaks when P → 0 and P ′ → 0, resulting in |Q|2 → t2L and |Q′|2 → t2L, which indicates

that the peak has L2 dependence. In our study the PCB radiation peak is dominated by

PXR. The photon energy at the peak radiation intensity (when P → 0) is obtained as

E = ~c
β0ẑ · (Ûg0)

1− β0 cos θobs
, (S29)

where ~ is the reduced Planck’s constant, β0 = v0/c, ẑ · (Ûg0) = (− sinφtil cos θtil) g0x +

(sinφtil sin θtil) g0y + (cos θtil) g0z, where Û is the unitary matrix and g0 is the reciprocal

lattice vector in the unrotated frame. We define θobs as the angle between the electron beam

and the observation direction, φtil as the rotation angle of the crystal with respect to the

z-axis, θtil as the angle between the incident electron (along the z-direction) and the [001]
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zone axis.

1.4 Bandwidth of PCB peak

In this subsection, we determine the effective bandwidth of the radiation peaks measured in

our experiments. The radiation spectrum is determined by the function |Q|2 =
∣∣ sin(PL/v0)

P

∣∣2.
To obtain |Q| we consider the g corresponding to the lattice plane whose contribution to the

photon emission is dominant, since, the contributions from the other planes do not affect the

bandwidth significantly. The spectral width between the zeros of the central peak is denoted

∆ω, whose relative width is obtained as

∆E

E
=

~∆ω

~ω
= 4π

v0
Lω

, (S30)

where ∆E represents the corresponding energy width. The relative full width at half maxi-

mum (FWHM) corresponding to equation (S30) is estimated as

∆EFWHM

E
=

~∆ωFWHM

~ω
≈ 5.6

v0
Lω

, (S31)

which is obtained by fitting the peaks by a Gaussian function. Equation (S31) is consistent

with the expression derived in previous works [7, 8]. However, the measured PCB peak is

broadened due to the observation angular spread ∆θobs and the beam divergence ∆θe. We

then obtain the bandwidth as

∆Eθ ≈

√(
∂E

∂θobs
∆θobs

)2

+

(
∂E

∂θtil
∆θe

)2

. (S32)

Using equation (S29), we obtain

∂E

∂θtil
=

~cβ0ẑ ·
(
∂Ûg0/∂θtil

)
1− β0 cos θobs

, (S33)
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∂E

∂θobs
= −E β0 sin θobs

1− β0 cos θobs
, (S34)

where ẑ ·
(
∂Ûg0/∂θtil

)
= (sinφtil sin θtil) g0x + (sinφtil cos θtil) g0y − (sin θtil) g0z. Taking the

EDS detector’s energy resolution R into consideration, we obtain the total bandwidth of the

measured peaks as

∆Etot,ns ≈
[(

5.6
~v0
L

)2

+

(
~cβ0ẑ ·

(
∂Ûg0/∂θtil

)
1− β0 cos θobs

∆θe

)2

+R2+

E2

(
β0 sin θobs

1− β0 cos θobs
∆θobs

)2 ]1/2
.

(S35)

In our experiments, the shadowing effect affects the measured bandwidth considerably via

modifying the θobs and ∆θobs (In equation (S35), the subscript “ns” on the left-hand-side

stands for “no shadowing”, reminding us that it has not taking shadowing effect into account).

We modify equation (S35) to take shadowing effect into account in Section 3.

2 Tuning photon energy via vdW structure tilt for rel-

ativistic electrons

In this section, we show the advantage of tunability via vdW structure tilt over tunability via

electron energy. As can be seen from Fig. S2a, for relativistic electrons, the photon energy

tuning range is enhanced by more than 1000 % at high observation angles (> 80◦) and it

becomes challenging to tune the photon energy by varying electron energy at observation

angles beyond 20◦. This can also be seen from Figs. S2b,c where the photon energy (in eV)

contour lines practically run parallel to the electron energy axis. Therefore, in this regime,

the feasible way to tune the photon energy in real-time is by varying the vdW structure

tilt angle θtil, as indicated by the red arrows in Figs. S2b,c (which also corresponds to the

vertical red lines in Figs. S2d,e respectively) at fixed electron kinetic energy 6 MeV. For
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Figure S2: Enhanced tunability from relativistic electrons for various observation
angles in WS2. a The entire shaded region between the two dashed lines corresponds
to the accessible photon energy range when vdW structure tilt and electron energy are
simultaneously varied, whereas the darker pink shaded portion corresponds to that when
only the electron energy is varied. The blue curve represents the percentage enhancement in
the photon energy range in the former scheme. b,c Brightness (equation (S21)) as a function
of electron energy for θtil from 0◦ to 80◦ at different θobs, where [b.u.] (“brightness units”)
stands for [photons s−1 mrad2 mm2 per 0.1% BW]. The photon energy of X-rays (in eV) is
indicated by the black contour lines (equation (S29)). d,e Accessible photon energy range by
tuning along the arrows in colormaps (b,c) respectively. Our enhanced tunability especially
favors emission at detector angles beyond 20◦ and in the soft X-ray range. In this figure,
φtil = 0◦ and L = 100 nm.

θobs = 60◦ (Figs. S2b,d), the accessible photon energy range by varying only electron energy

is 440 eV (dashed black line in Fig. S2d). In contrast, the photon energy range is enhanced
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by 654 % to 3319 eV, by varying θtil (red line in Fig. S2d). For θobs = 114◦ (Figs. S2c,e), the

accessible photon energy range by varying only the electron energy is 60 eV (dashed black

line in Fig. S2e). In contrast, the accessible photon energy range is enhanced by 1873 % to

1184 eV by varying θtil alone (red line in Fig. S2e).

3 Impact of the shadowing effect in X-ray measure-

ments

The observation angle θobs of the EDS on the JEOL 2010HR TEM is normally 112.5◦. The

effective observation angle θ′obs is in fact larger by a few degrees due to the shadowing effect,

which arises from partial blockage by the sample holder of the emitted X-rays [9]. The shad-

owing effect is more significant for a small vdW structure tilt angle θtil shown in Figs. S3a,b.

On the other hand, the shadowing effect depends on the relative position between the elec-

tron incident point and the TEM sample holder edge, shown in Figs. S3a,c,d. By taking

shadowing effect into consideration, the effective observation angle is

θ′obs = θobs − η cos(3θtil), (S36)

where η describes the relative position between incident point and the sample holder edge.

Equation (S36) is only valid for θtil from 0◦ to 30◦ (our experimental range on the JEOL

2010 HR TEM). For Fig. 1b of the main text, η = 3 provides a good agreement between

theoretical predictions and experimental results. The corresponding θ′obs is given in Table. S1.

The third, fourth and fifth columns of the table display respectively the measured PCB peak

position after calibration (Ec) and theoretical predictions without (E1) and with (E2) the

shadowing effect. Comparing Ec and E1, we see that the shadowing effect is more significant

for a smaller θtil, as expected from the visualization in Fig. S3. For example, E1−Ec is 24 eV
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and 7 eV for θtil = 0◦ and 25◦, respectively. After taking the shadowing effect into account,

the theoretical predictions (E2) agree with the experiment results. E1 and E2 are calculated

using equation (S29) with the observation angle given by θobs and θ′obs, respectively.

TEM grid

The edge of
TEM sample
holder

a c

b d

!!"#

Δ!′!"#

!′!"#

!$%&

Figure S3: Shadowing effect arising from partial blockage of the emitted X-rays by
the TEM sample holder. The amount of tilt in the TEM sample holder, and the position
of the incident electron beam, affect the effective observation angle and observation angular
spread. The effective experimental observation angle and observation angular spread are θ′obs
and ∆θ′obs respectively. a The shadowing effect results in a larger effective observation angle
and a smaller effective observation angular spread. b Since the edges of the sample holder are
responsible for the shadowing, tilting the sample towards the detector naturally reduces the
shadowing effect. The shadowing effect is enhanced when the electron beam is positioned too
close to the sample holder edge nearest the detector (c); and diminished when the electron
beam is positioned farther from the edge (d).

As shown in Fig. S3, the shadowing effect affects not only the observation angle but also

the observation angular spread ∆θobs. For the JEOL 2010HR TEM, ∆θobs is approximately

12◦ without considering the shadowing effect. The influence of the shadowing effect on the

observation angular spread is estimated as

∆θ′obs = ∆θobs − 0.8× (θ′obs − θobs). (S37)
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Table S1: Shadowing effect on the output X-rays, where η = 2 for Fig. 2c (main text) and
η = 3 for the rest of figures. All figures in the table refer to the main text figures.
Fig No. Ek [keV] θtil[

◦] Ec [eV] E1 [eV] E2 [eV] ∆Ec [eV] ∆E1 [eV] ∆E2 [eV] θ′obs[
◦]

1b 200 0 1025 ± 2 1049 1022 128± 7 148 125 115.5
1b 200 10 1016± 2 1033 1010 134± 7 146 127 115.1
1b 200 15 995± 2 1013 994 134± 7 145 128 114.6
1b 200 20 972± 1 985 973 133± 6 143 131 114.0
1b 200 25 943± 2 950 944 141± 8 140 133 113.3
1c 160 0 975± 2 992 979 119± 6 139 130 114.0
1c 140 0 943± 2 956 945 124± 6 134 126 114.0
1c 120 0 906± 2 915 904 133± 8 129 122 114.0
1d 120 30 796± 1 792 792 112± 7 122 122 112.5
2a 120 0 942± 1 968 946 127± 4 132 116 115.5
2a 120 10 942± 1 953 934 124± 4 131 117 115.1
2a 120 20 896± 2 909 899 124± 6 128 120 114.0
2a 120 30 836± 2 838 838 133± 5 124 124 112.5
2b 200 0 1070± 2 1109 1081 143± 5 153 127 115.5
2b 200 10 1066± 1 1093 1068 145± 4 151 129 115.1
2b 200 20 1023± 1 1042 1029 141± 3 147 135 114.0
2b 200 30 956± 1 961 961 142± 3 141 141 112.5
2c 120 0 906± 1 921 907 127± 7 129 120 114.5
2c 120 10 893± 1 907 885 122± 5 128 120 114.2
2c 120 20 859± 2 866 859 126± 9 126 122 113.5
2c 120 25 821± 2 835 831 133± 6 124 122 113.0
2d 200 0 1019± 4 1056 1029 117± 14 148 128 115.5
2d 200 10 1016± 2 1040 1017 124± 7 147 129 115.1
2d 200 20 989± 2 992 979 134± 8 143 133 114.0
2d 200 30 908± 2 914 914 140± 7 137 137 112.5
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Using equations (S36) and (S37) in place of the observation angle and angular range respec-

tively in equation (S35), we obtain the full width at half maximum (FWHM) of the measured

PCB peaks as equation (3) of the main text.

The measured full width at half maximum (∆Ec) and the theoretical predictions without

(∆E1 ) and with (∆E2 ) the shadowing effect are also given in Table S1. A good agreement

between ∆Ec and ∆E2 is observed. Figures 2e,f in the main text are measured by the JEM-

ARM300F TEM. The bandwidth of the PCB peaks is approximately equal to the energy

resolution of the EDS ,i.e., 75 eV. Under our experimental conditions, the shadowing effect is

negligible for θtil > 10◦. Therefore, the experimental and theoretical PCB peaks (Fig. 2e,f of

main text) are in good agreement even without taking the shadowing effect into consideration.

4 Energy dispersive X-ray Spectroscopy (EDS) detec-

tor calibration

To accurately determine the measured X-ray photon energies, it is necessary to calibrate the

energy dispersive X-ray spectroscope (EDS) detector. A well-calibrated EDS detector can

determine the photon energy of an X-ray peak within ±2.5 eV of its actual value [10]. To

calibrate the EDS detector in our JEOL 2010HR TEM in the low energy region, the Kα peaks

of C, O, and Si are measured, as shown in the third column of Table S2. Before calibration,

the measured value Em deviates from the actual value Ei (fifth column) [11] by about 10 eV.

The calibration is done using a linear function

Ec = 0.9888Em + 19.5408E0, (S38)

where E0 = 1 eV. The calibrated value of Ec (fourth column) well matches the actual value
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Table S2: EDS detector calibration of the JEOL 2010 HR TEM in the low energy region.
Kα Specimen Em [eV] Ec [eV] Ei [eV][11] Ec − Ei [eV] ∆Em [eV]
C Graphite 259.2 275.8 277.0 -1.2 90
O WO3 512.5 524.9 526.3 -1.4 94
Si Si 1739.6 1739.9 1739.7 0.2 100

Table S3: EDS detector calibration of the JEM-ARM300F TEM in the low energy region.
Kα Specimen Em [eV] Ec [eV] Ei [eV][11] Ec − Ei [eV] ∆Em [eV]
C Graphite 259.7 278.5 277.0 1.5 54
N BN 372.9 390.8 392.4 -1.6 63
Al Al 1477.4 1486.8 1486.7 0.1 76

within an error of 1.5 eV (second-last column). The corresponding full width at half maxi-

mum (FWHM) of the measured peak (∆Em) is given in the last column, and can be regarded

as the energy resolution R of the EDS detector. By interpolating the data, we determine

that R ≈ 97 eV in our photon energy range of interest [800 eV, 1400 eV]. Similarly, the EDS

detector on the JEM-ARM300F TEM is calibrated by a linear function

Ec = 0.9924Em + 20.7432E0. (S39)

The calibrated values (fourth column) match the actual values within an error of 2 eV,

as shown in Table S3. By interpolating the data, we determine that R ≈ 75 eV for this

instrument in our X-ray photon energy range of interest.
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