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1. Supplementary Experimental Section and Results  

1.1 – Partial Least-Squares Regression Analysis on dmCCS 

Figure S1 shows the results from partial least-squares regression analyses (PLS-RA) 

computed on dmCCS using 2D, 3D and combined feature sets with CCS as the target 
variable. Figures S1A-C show the PLS-RA projections of the dmCCS database computed 

using 2D, 3D, and combined molecular descriptors, respectively. When compared against the 
corresponding PCA projections (Figures 2E-G in the main text), the overall distributions are 

similar. Further, the x-loadings from the PLS-RAs (Figures S1D-E) display nearly identical 
rank-ordering relative to the PC1 feature loadings (Figures 2H-J in the main text). Taken 

together, these results show that a targeted analysis of dmCCS reproduces the same basic 
conclusions as those garnered from PCA for all feature sets tested, which is to be expected 

given the high degree of alignment between CCS and PC1 observed in the PCAs. 

1.2 – Feature Selection for CCS Prediction 

Starting from a complete combined feature set (2D + 3D molecular descriptors, 50 features 
total), a set of tests were per-formed (using only the training set data) to determine the 

minimal feature set necessary to make robust and accurate CCS predictions. First, the 
relative importance of all individual features was determined by three methods: PLS-RA, 

gradient boosting regression (GBR, sklearn.ensemble.GradientBoostingRegressor), and a 
permutation feature importance function built into Scikit-Learn (PER, 
sklearn.inspection.permutation_importance). PLS-RA gives an indication of feature 

importance based on the magnitude of the loadings in the x-dimension (i.e., the 
multidimensional axis that explains the maximal variance in the target variable). GBR is an 

ensemble method in which successive decision tree models are fitted to the residuals of 
previous models, and relative feature importance can be inferred from the frequency with 

which individual features are used for decision tree splits. In the PER method, feature 
importance is related to the decrease in prediction performance when a feature is randomly 

shuffled relative to a baseline (unshuffled) performance. Once feature importance had been 
calculated, sequential feature removal tests were performed using the importance from each 

method. In the feature removal tests, the least important features were successively removed, 
and new predictive models were trained and evaluated on the smaller feature sets. This 
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process was repeated until only a single feature (with the highest importance) remained 
(Figure S2A-C). For each method, a reduced feature set was selected as the set of features 

for which the prediction error (RMSE) increased above 5 Å2 upon their removal. Finally, a 
minimal feature set was selected as those common among 2 sets of features remaining after 

feature removal tests using the PLS-RA, GBR, and PER feature importance (Figure S2D). 

1.3 – Comparison of CCS Prediction Model to Theory-Based Conventional Methods 

Computational modeling to produce 3D structures at a low theory level is the primary 
bottleneck in training and application of ML models for CCS prediction based on 3D 

molecular descriptors. Given that production of such structures is also a bottleneck for some 
of the faster theory-based CCS prediction methods (e.g. projection approximation, PA, and 

exact hard-sphere scattering, EHS),1 we sought to compare the accuracy of CCS values 

predicted using both approaches for compounds in dmCCS. Figure S4A shows measured 
and calculated CCS for compounds from dmCCS, colored according to calculation method. 

The ML values were predicted using the model trained on the MIN feature set described in the 
previous section. Both of the theory-driven methods (PA and EHS) display significant 

systematic errors; however, these systematic errors are likely attributable to the 
parameterization of these methods, which were originally optimized for He as the drift gas. 
When systematic errors were corrected using linear regression, the residuals of the fit for PA 

or EHS-generated values were significantly larger than the ML-predicted values (Figure S4). 
Taken together, it is clear that ML-based CCS prediction produces higher quality CCS values 

with this dataset than comparable theory-based methods, likely attributable to the nuanced 
structural trends that such ML model can capture when provided with appropriate training 

data.   

1.4 – Generation of 2-Dimensional Molecular Descriptors 

Molecular quantum numbers2 (MQNs) were used as 2D molecular descriptors for 
analysis of the drug and metabolite CCS database. MQNs are graph properties of a 2D 

molecular structure (e.g. a SMILES structure), which include counts of atoms, bonds, and 
topological features. MQNs were computed from the neutral SMILES structures for all entries 

in the drug and metabolite CCS database using the RDKit library (https://www.rdkit.org). The 
computed MQNs were added as a separate table to the drug and metabolite CCS database. 



 S4 

1.5 – Generation of 3-Dimensional Molecular Descriptors 

Principal moments of inertia (PMI) and binned radial mass distributions (RMD) were used as 
molecular descriptors for 3D molecular structures. PMI are derived from the 

eigendecomposition of the inertia tensor of a rigid body computed relative to its center of 
mass. Physically, this computation produces a set of orthogonal axes within a body, such that 

the radial distribution of mass about each successive axis is minimized; the magnitude of the 
PMIs reflects the extent of radial mass distribution about their corresponding axes (Figure 

S6B). Given a 3D molecular structure defined by N atoms having masses (m) and positions (x, 
y, z) with center of mass located at the origin, the body frame inertia tensor (I) was computed 

as follows: 

𝐼 = #
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and the off-diagonal elements (Ixy, Iyx, Ixz, Izx, Iyz, Izy) were computed as: 
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An eigendecomposition (as implemented in the SciPy Python library: scipy.linalg.eigh) was 

then performed on the inertia tensor, yielding the principal moments of inertia (PMI1, PMI2, 
PMI3): 

𝐼 = 𝑄Λ𝑄) 
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RMDs reflect the proportions of a structure’s mass that lie within specific distances radially 
from its center of mass. Specifically, RMDs are normalized, mass-weighted histograms of 

atomic distances relative to the center of mass. The histograms were binned at specific 
distance intervals (0-2 Å, 2-4 Å, 4-6 Å, 6-8 Å, and >8 Å) in order to reduce the total number of 
features. The binning intervals were chosen based on the combined distribution of mass-

weighted radial distances from all 3D structures in the drug and metabolite CCS database 
(Figure S6C). The computed 3D molecular descriptors were added as a separate table to the 

drug and metabolite CCS database. 

1.6 – Analysis of Mass and CCS Shifts for Metabolites 

Mass and CCS shifts relative to parent compounds were computed for all metabolites 
in the database. Figure S9A shows the distribution of mass shifts for all metabolites, with 

annotations reflecting the corresponding metabolic modifications. Figures S9B and S9C are 
arrow plots for specific metabolic modifications with increased or decreased mass relative to 

the parent compound, respectively, which demonstrate the absolute and relative m/z and 

CCS shifts for these modifications. For Phase-II metabolites +GSH and +Glc, the effect of 
metabolism on the structure of the parent is mostly consistent across all compounds with a 

large increase in m/z and a corresponding increase in CCS. Dealkylation reactions (-Me, -
2Me/-Et) similarly display consistent decreases in CCS, with the exception of a few -Me 

metabolites. For the oxygenated metabolites (+O, +2O), the structural effect of metabolism is 
more complex with some modifications resulting in an expected increase in CCS while others 

leading to a decrease. The desaturated metabolites (-2H) similarly display somewhat complex 
structural characteristics, leading to increase or decrease in CCS depending on the parent 

compound, although these effects are much smaller in magnitude than most of the other 
metabolic modifications.  
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2. Supplementary Figures and Tables 

2.1 – Figure S1: Partial Least-Squares Regression Analysis on dmCCS 

 
Figure S1. (A) PLS-RA projections of dmCCS database computed using MQNs as molecular descriptors and 

CCS as the target variable, colored by CCS. (B) PLS-RA projections of dmCCS database computed using 

MD3Ds as molecular descriptors and CCS as the target variable, colored by CCS. (C) PLS-RA projections of 

dmCCS database computed using the combination of MQNs and MD3Ds as molecular descriptors and CCS as 

the target variable, colored by CCS. (D) Individual feature loadings for component 1 from PLS-RA computed on 

dmCCS using MQNs as molecular descriptors and CCS as the target variable. (E) Individual feature loadings for 

component 1 from PLS-RA computed on dmCCS using MD3Ds as molecular descriptors and CCS as the target 

variable. (F) Individual feature loadings for component 1 from PLS-RA computed on dmCCS using the 

combination of MQNs and MD3Ds as molecular descriptors and CCS as the target variable. 

Figure S1
A B C

D E F
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MQN MD3D COMB

(A) PLS-RA projections of dmCCS database computed using MQNs as molecular 
descriptors and CCS as the target variable, colored by CCS. (B) PLS-RA projections of 
dmCCS database computed using MD3Ds as molecular descriptors and CCS as the target 
variable, colored by CCS. (C) PLS-RA projections of dmCCS database computed using the 
combination of MQNs and MD3Ds as molecular descriptors and CCS as the target 
variable, colored by CCS. (D) Individual feature loadings for component 1 from PLS-RA 
computed on dmCCS using MQNs as molecular descriptors and CCS as the target 
variable. (E) Individual feature loadings for component 1 from PLS-RA computed on 
dmCCS using MD3Ds as molecular descriptors and CCS as the target variable. (F) 
Individual feature loadings for component 1 from PLS-RA computed on dmCCS using the 
combination of MQNs and MD3Ds as molecular descriptors and CCS as the target 
variable.
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2.2 – Figure S2: Feature Selection Trials 

 
Figure S2. (A-C) Results from feature selection trials. Features were removed in descending order of feature 

importance (from right to left, grey bars), and resulting predictive model performance was recorded (RMSE, 
black line). Blue labels indicate the features that could be removed without model performance increasing RMSE 

more than 5% relative to the baseline (all). (D) Selected features from individual trials, selected as those for which 

removal increased error above 5 Å2. The features selected in at least two of the individual tests were retained as 

the final minimal feature set. 

Figure S2
PLS-RA

GBR

PER

Reduced feature sets for each method — removal 
of any of which increases prediction error (RMSE) 
above 5 Å2

Final reduced feature set selected as the 
common features from at least 2 sets. 

(A-C) Results from feature selection trials. Features were removed in descending order of feature importance 
(from right to left, grey bars), and resulting predictive model performance was recorded (RMSE, black line). 
Blue labels indicate the features that could be removed without model performance increasing RMSE more 
than 5% relative to the baseline (all). (D) Selected features from individual trials, selected as those for which 
removal increased error above 5 Å2. The features selected in at least two of the individual tests were retained 
as the final minimal feature set. 

A

B

C

D
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2.3 – Figure S3: Minimal Feature Set Correlation Matrix 

 
Figure S3. Correlation matrix of minimal feature set from feature selection trials. Red numbers correspond to 

spearman rank test correlation coefficients (coefficients with magnitude > 0.85 are in bold). Asterisks denote a p-

value < 0.01 for the correlation. 
 

 

 
 

 
 

 

Figure S3

Covariation matrix of minimal feature set from feature selection trials. Red numbers correspond to 
spearman rank test correlation coefficients (coefficients with magnitude > 0.85 are in bold). Asterisks 
denote a p-value < 0.01 for the correlation.
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2.4 – Figure S4: Comparison of measured CCS and CCS predicted using PA/EHS methods 

 

 
Figure S4. (A) Comparison of measured CCS and CCS predicted using PA/EHS methods or by a ML model 
trained on the dmCCS database. Dotted lines correspond to linear fits on each set of values. (B) Distributions of 
residuals from each linear fit. 
 

 
 

 
 

Figure 4
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EHS
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(A) Comparison of measured CCS and CCS 
predicted using PA/EHS methods or by a ML 
model trained on the dmCCS database. Dotted 
lines correspond to linear fits on each set of 
values. (B) Distributions of residuals from each 
linear fit.
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2.5 – Figure S5: MetFrag Fragmenter Score Cutoff 

 
Figure S5. (A) Distribution of log-transformed MetFrag fragmenter scores for all parent compounds with true 

annotations ranked in the top 500 from the parent rank test. The dashed line indicates the empirically 

determined cutoff used to filter out metabolite annotations during construction of the dmCCS database. (B) 

Distribution of log-transformed MetFrag fragmenter scores for metabolites in dmCCS prior to filtering. The center 
line is the median, the box edges are the upper/lower quartiles (i.e., Q1 and Q3), the whiskers are 1.5x the 

interquartile range, and the points are outliers beyond the whiskers. 

2.6 – Figure S6: dmCCS Database Architecture and Composition 

 
Figure S6. Overview of the structure of the dmCCS SQLite3 database. Each grey box represents the general 

type of information contained within each table, and pie charts reflect characteristics of these grouped tables. 

Figure S5

(A) Distribution of log-transformed MetFrag 
fragmenter scores for all parent compounds with 
true annotations ranked in the top 500 from the 
parent rank test. The dashed line indicates the 
empirically determined cutoff used to filter out 
metabolite annotations during construction of the 
dmCCS database. (B) Distribution of log-
transformed MetFrag fragmenter scores for 
metabolites in dmCCS prior to filtering.

BA
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The names and data types are shown for each table, with bold datatypes indicating a required column and † 

indicating the primary key of the table. The dashed lines indicate the related columns between each table. 

2.7 – Figure S7: Description of 3D Molecular Descriptors 

 
Figure S7. (A) Distribution of log-transformed mass-weighted RMSD for all pairwise combinations of multiple 3D 

structures for all compounds in the dmCCS database. The dashed line indicates an empirically determined cutoff 

used for determination of whether individual 3D structures are distinct enough to be kept when assembling the 

final database. (B) Demonstration of the physical interpretation of principal axes in a 3D molecular structure. The 

principal axes x, y, and z are defined such that they each minimize the radial distribution of mass about 
successive orthogonal axes. The center image is a representation of the atomic positions from the structure on 

the left, with radii proportional to atomic masses. In this example, when viewed along the first principal axis (x, 

top right), there is very little radial distribution of masses about the central axis. In contrast, when viewed along 
the second principal axis (y, bottom right) the radial distribution of masses is in greater. The PMI are related to 

the magnitude of radial mass distribution about the respective principal axes, where increased radial mass 

distribution results in a higher moment.  (C) Mass-weighted radial atomic distance distribution for all 3D 

structures in the dmCCS database. Dashed lines indicate binning intervals used to compute binned radial mass 
distributions for individual structures as part of the MD3D features. 
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Figure S7

(A) Distribution of log-transformed mass-weighted RMSD for all pairwise combinations of multiple 3D 
structures for all compounds in the dmCCS database. The dashed line indicates an empirically determined 
cutoff used for determination of whether individual 3D structures are distinct enough to be kept when 
assembling the final database. (B) Demonstration of the physical interpretation of principal axes in a 3D 
molecular structure. The principal axes x, y, and z are defined such that they each minimize the radial 
distribution of mass about successive orthogonal axes. The center image is a representation of the atomic 
positions from the structure on the left, with radii proportional to atomic masses. In this example, when 
viewed along the first principal axis (x, top right), there is very little radial distribution of masses about the 
central axis. In contrast, when viewed along the second principal axis (y, bottom right) the radial distribution 
of masses is in greater. The PMI are related to the magnitude of radial mass distribution about the 
respective principal axes, where increased radial mass distribution results in a higher moment.  (C) Mass-
weighted radial atomic distance distribution for all 3D structures in the dmCCS database. Dashed lines 
indicate binning intervals used to compute binned radial mass distributions for individual structures as part 
of the MD3D features.

A B C
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2.8 – Figure S8: AllCCS and CCSbase Predicted CCS for Compounds With Multimodal ATDs 

 
 
Figure S8. (A) Comparison of measured (hatched) and AllCCS predicted (solid) CCS for terfenadine and its +O 
metabolite. (B) Comparison of measured (hatched) and AllCCS predicted (solid) CCS for two protomers of 
cefpodoxime proxetil. (C) Comparison of measured (dashed lines) and AllCCS predicted (solid bars) CCS for the 
positional isomers of quercetin glucuronide. (D) Comparison of measured (hatched) and CCSbase predicted 
(solid) CCS for terfenadine and its +O metabolite. (E) Comparison of measured (hatched) and CCSbase 
predicted (solid) CCS for two protomers of cefpodoxime proxetil. (F) Comparison of measured (dashed lines) and 
CCSbase predicted (solid bars) CCS for the positional isomers of quercetin glucuronide. 
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2.9 – Table S1: Molecular Quantum Numbers (MQNs) 

MQN description MQN description 

c carbon atom count hbdm H-bond donor sites 

f fluorine atom count hdb H-bond donor atoms 

cl chlorine atom count negc negative charges 

br bromine atom count posc positive charges 

i iodine atom count asv acyclic monovalent nodes 

s sulfur atom count adv acyclic divalent nodes 

p phosphorus atom count atv acyclic trivalent nodes 

an acyclic nitrogen atom count aqv acyclic tetravalent nodes 

cn cyclic nitrogen atom count cdv cyclic divalent nodes 

ao acyclic oxygen atom count ctv cyclic trivalent nodes 

co cyclic oxygen atom count cqv cyclic tetravalent nodes 

hac heavy (non-hydrogen) atom count r3 3-membered ring count 

asb acyclic single bonds r4 4-membered ring count 

adb acyclic double bonds r5 5-membered ring count 

atb acyclic triple bonds r6 6-membered ring count 

csb cyclic single bonds r7 7-membered ring count 

cdb cyclic double bonds r8 8-membered ring count 

ctb cyclic triple bonds r9 9-membered ring count 

rbc rotatable bond count rg10 ≥10-membered ring count 

hbam H-bond acceptor sites afrc nodes shared by ≥2 rings 

hba H-bond acceptor atoms bfrc edges shared by ≥2 rings 
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2.10 – Table S2: 3D Molecular Descriptors (MD3D) 

MD3D description 

pmi1 first principal moment of inertia 

pmi2 second principal moment of inertia 

pmi3 third principal moment of inertia 

rmd02 proportion of mass between 0 and 2 Å of center of mass 

rmd24 proportion of mass between 2 and 4 Å of center of mass 

rmd46 proportion of mass between 4 and 6 Å of center of mass 

rmd68 proportion of mass between 6 and 8 Å of center of mass 

rmd8p proportion of mass more than 8 Å from center of mass 
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2.11 – Figure S9: Analysis of Mass and CCS Shifts for Metabolites 

 
Figure S9. (A) Distribution of mass shifts for all metabolites, annotated with metabolic modifications. (B-C) Arrow 
plots showing absolute and relative m/z and CCS shifts for specific metabolic modifications with increased or 
decreased mass relative to the parent compound, respectively.  
 

Figure S

C

(A) Caption

+GSH +Glc +2O +O

-2H -Me -2Me/-Et

B

+O 
(+16)

+2O 
(+32) +Glc -Me 

(+162)

+Glc 
(+176)

+Glc +O 
(+192)

+GSH +O 
(+323)

+GSH 
(+307)

-Me 
(-14)

-2Me/-Et 
(-28)

A



 S16 

2.12 – Figure S10: LC-IM-MS Analysis of Pooled Drug Metabolism Incubations 

 
Figure S10. (A) CCS calibration curve, calibrants: polyalanine and drug mixture. (B, D) Distribution of number of 
peaks per annotated metabolite, with matching based on m/z or m/z + CCS. (C, E) Distribution of number of 
metabolite annotations per peak, with matching based on m/z or m/z + CCS. (F) Summary of annotation results. 
 

Figure S
A

B

E

C

D

(A) Caption

total peaks (+cofactors) 48,924

total peaks (-cofactors)
 37,910

cofactor-dependent peaks 24,358

parent annotations (target list) 47

parent annotated peaks (m/z) 84

parent annotated peaks (m/z + CCS) 50

metabolite annotations (target list) 2,114

metabolite annotated peaks (m/z) 9,949

metabolite annotated peaks (m/z + CCS) 4,815

mean, median annotations per peak (m/z) 5.8, 3.0

mean, median annotations per peak (m/z + CCS) 4.9, 3.0

mean, median peaks per annotation (m/z) 3.2, 1.0

mean, median peaks per annotation (m/z + CCS) 2.4, 1.0

F



 S17 

2.13 – Figure S11: Analysis of Isobaric Metabolites Predicted by BioTransformer 

 
Figure S11. Distribution of isobaric metabolites predicted by BioTransoformer and corresponding dispersion of 

these metabolites in feature space (MQNs), grouped by metabolic modification (light green corresponds to 
metabolites with only one possible positional isomer). Correlation between isobaric metabolite count and 

dispersion in feature space are also presented. Metabolites were predicted for all parent compounds in the CCS 

database, without exclusion of isobaric predicted metabolites.  
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2.14 – Figure S12: Example Arrival Time Distribution and Extracted Ion Chromatogram from 

Automated Workflow 

 
Figure S12. Example arrival time distribution and extracted ion chromatogram from automated data processing 
workflow. 
 

2.15 – Figure S13: Performance of MIN Model on Normal and Reduced Metabolite Data Sets 

 
Figure S13. (Left) Composition of database before and after reducing the included metabolites to those with few 
potential isomers. (Right) Comparison of CCS prediction metrics of MIN model trained using normal and reduced 
metabolite data sets. 
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