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Fig. S1. Biliary tuft cells express tuft cell- and tissue-specific gene signature and are not
dependent on type 2 cytokines. A) Gating scheme for analysis of tuft cells. The same gating
was used for total GB/EHBD digests and epithelial prep. B) Whole-mount confocal imaging of
DCLK1-stained GB/bile duct. C) Thick section imaging of gallbladder and liver for collagen 1
and DCLK1. D) Tuft (IL-25+) and non-tuft (IL-25-) epithelial cells were sorted from duodenum
or GB of Flare25 mice and analyzed by RNAsequencing. Heatmap shows expression and
hierarchical clustering of top 1000 gene by variance from biliary tuft (GB_tuft), biliary non-tuft
(GB_non tuft), small intestinal tuft (SI_tuft), and small intestinal non-tuft (SI_non tuft) cells, as
defined by FDR > 0.05 in any pair-wise comparison. E) Gene ontology biological processes
enrichment for genes upregulated in biliary tuft cells compared to small intestinal tuft cell and
non-tuft biliary epithelium. F) Identification of ILC2s from Arginase-1 (Yarg)/IL-5 (Red5)
reporter mice. G) Representative flow plot. Anesthetized mice were injected retro-orbitally with
anti-CD45 antibody 3 minutes before euthanasia. CD45+ cells in total GB/EHBD digests were
stained with an alternate fluorophore; circulating cells were identified by the presence of the V.
injected fluorophore. H) Representative plots. Analysis of ILC2s from total GB/EHBD digests in
Ragl+/+ and Ragl-/- Yarg/Red5 reporter mice. Previously gated on live singlets, FSC-A x SSC-

A, CD45+lineage-Thy1+. I) Thick-section imaging of GB/liver from Red5;R26A114RFP mice



stained for EpCam (green), DCLK1 (magenta), and DAPI (gray). ILC2s detected by native

fluorescence. ILC2s and DCLK 1+ cells shown as surfaces in low magnification image.
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Fig. S2. Biliary tuft cells exhibit developmental regulation. A) Targeting strategy for IL-25
driven CreERT2/tdTomato expression. B) Number of epithelial cells from per total GB/EHBD
digests isolated from wildtype mice of the indicated ages, as quantified by flow cytometry. C)
Schematic showing intercross of 25/C"® mouse with 25FRT2ERT2.R26YFPYFP moyse to generate

25Cre/ERT2,. R26YFP/* fate mapping mouse in which active IL-25 is reported by tdTomato from the

25ERT2 gllele while YFP is expressed in any current or former IL-25+ cell downstream of 25¢™
activity. D) Representative flow plots showing tuft cell gating and tamoxifen inducible YFP
labelling in 25FRTZERT2,. RO GYFPYFP adult or neonatal (p10-p12) mice injected twice with
tamoxifen and analyzed by flow cytometry on epithelial prep one day after the last injection (24

hr). E) Flow cytometry quantification of YFP+ tuft cells among small intestinal or biliary

epithelial cells from mice treated as in (C).
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Fig. S3. Biliary tuft cell abundance is modulated by bile acids. A) Terminal ileum and liver
from mice fed control (AIN93G, ctrl) or 2% cholestyramine diet for two weeks were analyzed by
qPCR for expression of Figf15 (SI) and Cyp7al (liver) relative to the housekeeping gene, Rpsi7.
Five mice per condition. B) 25¢<ERT2:R26YFP/* mice fed control diet (chow) or 2%
cholestyramine diet for two weeks were analyzed by flow cytometry for presence of fate-mapped
(YFP+) cells that no longer expressed IL-25 (RFP). Representative flow plots from epithelial
prep previously gated on live singlets, EpCam+CD45- cells. C). Concentration of tauro-cholic
acid (TCA) was analyzed by GC-MS from gallbladder of mice fed control diet (ctrl) or 0.5%
cholic acid (CA). D) Tuft cell frequency among proximal small intestinal epithelial cells was
quantified by flow cytometry in mice fed 0.5% CA for indicated periods. E) Concentration of
tauro-deoxycholic acid (TDCA) was analyzed by GC-MS from gallbladder of mice fed control
diet (ctrl) or 0.5% cholic acid (CA). F) Schematic of bile acid synthesis in hepatocytes. G) qPCR
for Cyp8b1 gene expression in liver from Cyp8b1+/+, Cypb8b1+/- and Cypb8b1-/- mice. H) The
frequency of DCLK1+ tuft cells was examined by flow cytometry on GB/EHBD of Cyp27al+/+
and Cyp27al-/- mice. I) Relative survival of Pou2f3-/- and littermate control mice following
BDL surgery: 18/22 Pou2f3-/-, 23/24 control mice. J) Weight of Pou2f3-/- and littermate mice
seven days after BDL, or last live weight, relative to starting body weight. K) Total serum
bilirubin of Pou2f3-/- and littermate mice seven days after BDL. L) Liver hydroxyproline from
Pou2f3-/- and littermate mice seven days after BDL. M) Relative expression of Collal from
liver as assessed by qPCR relative to sham operated controls. N) Total EpCam+ cell count per
GB/EHBD digest from Pou2f3-/- and littermate mice analyzed by flow cytometry seven days
after BDL. O) Relative expression of Epcam from liver as assessed by qPCR relative to sham

operated controls. P) Representative thick section liver imaging of Flare25 Pou2f3-/- and control



littermate mice seven days after BDL or sham surgery stained for EpCam (green) and anti-RFP
(red). No RFP+ cells were observed. P value calculated by one way ANOVA in F,G,J, *p<.05,

Ap< 01, #*%p<. 001, **5% p<.0001.
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Fig. S4. Pou2f3-/- mice have increased biliary neutrophil infiltration under homeostatic
conditions. A) Spleen and small intestinal lamina propria (SI) were analyzed for presence of

neutrophils in Pou2f3-/- and littermate controls by flow cytometry. Representative plots,



previously gated on live singlets, CD45+EpCam-, CD11b+Thy1-. B) Frequency of eosinophils
(CD11b+Siglec F+) and neutrophils (CD11b+ Ly6G+CD64-) among CD45+ cells in peripheral
blood from Pou2f3-/- and littermate controls was quantified by flow cytometry. C-E)
25¢¢t:R26'PTR or 257%;R26/PTR [ittermate mice received two retroorbital injections of diptheria
toxin and frequency of tuft cells (D) and neutrophils (C,E) in total GB/EHBD digests were
determined by flow cytometry. B) Adult mice were injected at 8 weeks of age and chased 1-6
months. Data pooled from four experiments. Non-normalized flow data from Fig. 4G. D,E) Mice
were injected at weaning and analyzed 4-6 weeks later, data pooled from two experiments. D)
One failed injection (25°°*;R26'°™R mouse) was removed from further analysis. E) Non-
normalized flow data from Fig. 41. F,G) Frequency of neutrophils in total GB/EHBD digests
from Cyp27al-/- (F) or Fxr-/- (G) relative to littermate controls was determined by flow
cytometry. H) Tuft cell frequency in WT mice fed 0.5% CA for 21 days was determined by flow
cytometry on total GB/EHBD digests. I) Pou2f3-/- and littermate controls were fed 0.5% CA diet
for 21 days. Total CD45+ cells and frequency of neutrophils in total GB/EHBD digests were
determined by flow cytometry. Statistical significance determined by unpaired student’s T-test

B,C,E-I). *p<.05, **p<.01, ****p<.0001. All data shown with +/- SEM.
p p p
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Fig. S5. Total biliary scRNA-seq reveals activated state of biliary neutrophils in the absence
of tuft cells. A) Live cells were sorted from total GB/EHBD digests from Pou2f3-/- and
littermate controls. Input to 10X analysis was analyzed by flow cytometry for relative frequency
of CD45+ cells, epithelial cells (EpCam+) and stromal cells (EpCam-CD45-). B) Featureplots

showing cell type-defining gene expression. C) After subclustering CD45+ cells, relative cluster

10



membership was determined per genotype, normalized to the total number of CD45+ cells
sequenced per sample. D) Gene ontology biological processes enrichment analysis on genes
upregulated in neutrophils from Pou2f3-/- mice compared to controls. E) Featureplots showing
expression of Ffar2 and Siglecf on subclustered neutrophils, split by samples. F) Representative
flow plot. Total GB/EHBD digests from littermate Pou2f3-/- and control mice were analyzed by
flow cytometry for expression of Siglec F on neutrophils. Previously gated on: live cells,
singlets, FSC-A x SSC-A, EpCam-CD45+, Thyl- CD11b+, CD64-Ly6G+). G) UMAP of
subclustered epithelial cells, split by sample. H) UMAP of subclustered tuft cells (control sample
only). I) Featureplots indicated high expression of tuft cell marker genes, Avil and Trpm35,
among all tuft cell clusters. J) Top 10 most differentially expressed genes defining tuft cell
subclusters. K) Gene ontology biological processes enrichment analysis on genes upregulated in
tuft cells from cluster 2/3 compared to tuft cells in clusters 0/1. L). Top 20 most differentially
expressed genes among cluster 2 “inflammatory” epithelial cells from Pou2f3-/- or control

sample.
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Fig. S6. The microbiome induces biliary neutrophil influx. A) Gene ontology biological
processes enrichment analysis on genes upregulated in cluster 2 “inflammatory” epithelial cells

from Pou2f3-/- mice compared to controls, from single cell sequencing analysis. B) Total
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GB/EHBD from UCSF-raised WT mice (n=10) and Jax mice (9) was analyzed by qPCR for the
indicated target genes relative to the housekeeping gene Rps17. Jax RQ normalized to average of
WT mice. Statistical significance determined by unpaired student’s T-test; *p<.05, **p<.01.
C,D) Flare25 mice were analyzed at 2 wks of age and 5 wks of age for tuft cell frequency (C)
and CD45+ cell count (D) by flow cytometry on total GB/EHBD digests. Mice were taken from
three litters, with littermates analyzed across the two time-points. E,F) Jax mice received fecal or
small intestinal contents from UCSF donor mice by oral gavage and were analyzed 6 wks later
by flow cytometry on total GB/EHBDs for tuft cells (E) or ILC2s (F) as identified by
intracellular staining. G) Innate lymphocytes from non-littermate WT and Pou2f3-/- were
examined by flow cytometry on total GB/EHBDs for presence of RORyT by intracellular
staining. H) Rag2-/- or Rag2/I12rg-/- mice from Taconic were cohoused with UCSF donor mice
for 6 wks. ILC2s were quantified by flow cytometry on total GB/EHBDs subjected to

intracellular staining. All data shown with +/- SEM.
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