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A. Methodology 

A1. Derivation of the instantaneous reproduction number from SIR model 

In this study, the used instantaneous reproduction number, denoted as 𝑅!, was estimated 

by Arroyo-Marioli et al.1. Here we give a brief description of how to derive 𝑅! from the 

SIR model. The basic reproduction number, denoted 𝑅" , is an important 

epidemiological parameter, representing the expected number of infections caused by 

an infected person during the corresponding infectious period when everyone else is 

susceptible2. When 𝑅! < 1, the average number of second-generation infections will be 

less than 1, where the epidemic will gradually vanish. Assuming there are no significant 

natural births and deaths, the standard SIR model without any intervention can be 

described as 

𝑑𝑆 = −𝛽𝐼𝑆	

𝑑𝐼 = 𝛽𝐼𝑆 − 𝛾𝐼	

𝑑𝑅 = 𝛾𝐼	

where 𝛽  is the transmission rate and 𝛾  is the recovery rate. Here, the disease-free 

equilibrium of the above epidemiological model can be used to derive 𝑅" from the 

regeneration matrix. Specifically, assuming 

𝑑𝑥/𝑑𝑡 = 𝑓(𝑥) = 𝑟(𝑥) − ℎ(𝑥)	

where 𝑟(𝑥) is the ratio of new infection, ℎ(𝑥) is the transfer rate that infections moved 

to the recovered population. The regeneration matrix is defined as 

𝐹𝑉#$ = 𝑑𝑟/𝑑𝑥 ∗ (𝑑ℎ/𝑑𝑥)#$	

Now, the basic reproduction number, 𝑅" , is the spectral radius of the regeneration 

matrix, i.e., the eigenvalue with the maximum norm. With respect to the above standard 

SIR model, the regeneration matrix is 
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𝐹𝑉#$=𝑑(𝛽𝐼𝑆)/𝑑𝐼 ∗ (𝑑(𝛾𝐼)/𝑑𝐼)#$ = 𝛽𝑆/𝛾 

and the disease-free equilibrium is (1,0,0). Thus, the basic reproduction number is  

𝑅" = 𝛽/𝛾	

The instantaneous reproduction number, denoted 𝑅!, is defined as 

𝑅! = 𝑅" ∗ (𝑆/𝑆 + 𝐼 + 𝑅) 

which is equal to the average number of individuals infected by a single infection when 

a fraction (𝑆/𝑆 + 𝐼 + 𝑅) of the population is susceptible. Finally, the daily growth rate 

(𝑔!) of the number of infections is 

𝑔! = (𝐼! − 𝐼!#$)/𝐼!#$ = 𝛾(𝑅! − 1)	

The adoption of an SIR model, rather than a SEIR model, in the method of Arroyo-

Marioli et al.1 was based on some considerations below. To use the SEIR model, they 

would have to estimate the number of currently exposed individuals. Doing so would 

triple the number of model parameters, such as average duration of the incubation 

period, relative infectiousness of exposed and infectious individuals. In simulations, 

they found that their estimator derived from the SIR model produces accurate estimates 

even when the true model is SEIR rather than SIR. 

 

A2. Calculation of the instantaneous basic reproduction number 

The basic reproduction number is affected by several factors, including the duration of 

infectivity of infected people, the infectiousness of the microorganism, and the number 

of susceptible people in the population in contact with infected people. Within the same 

local context, because of the variation in infectiousness between different variants of 

SARS-CoV-2, different COVID-19 variants are assumed to have different estimates of 

𝑅". We estimated the instantaneous basic reproduction number, denoted 𝑅",!, for each 

country in order to account for different variants associated with COVID-19 cases over 
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time. We used the weighted average of the basic reproduction number of each SARS-

CoV-2 variant as the instantaneous basic reproduction number, 

𝑅",! =9𝑤&,!𝑅",&

'

&($

	

where 𝑤&,! is the weight of the basic reproduction number of the coronavirus 𝑖, 𝑅",&, at 

day 𝑡, calculated by the proportion of infections caused by that virus. Noting that the 

transmissibility of variants was mainly reported by the expansion of the basic 

reproduction number of SARS-CoV-2 strains before variants of concern (VOCs) 

predominantly transmitted in communities3,4,5. We assumed that the coefficient of 

expansion followed a normal distribution where the parameter of variation was 

determined by the consequent 95% credible interval listed in Supplementary Table 1. 

Additionally, despite the existence of policy fatigue6, population behaviour amid our 

study period might have been altered by long-term NPI implementation compared to 

before the COVID-19. Therefore, we used the highest 𝑅! between 1 August 2020 to 1 

December 2020 before vaccines rolled out, as the prior mean over 𝑅" of SARS-CoV-2 

for each country.  

𝑅"~gamma(𝑚𝑎𝑥)")"#"*#"$+!+)")"#$)#"$𝑅! , 𝑘),  

𝑘~Half	normal(0, 0.5),  

reflecting the potential COVID-19 transmissibility in the WHO European Region 

during the period of NPI relaxation after the first wave (Supplementary Fig. 1).  

Overall, compared with the estimates of 𝑅" of SARS-CoV-2 in the first wave7, 

the transmissibility in the second half of 2020 has been weakened (Supplementary 

Table 2). Despite the reduced adherence to NPIs, the instantaneous basic reproduction 

number of Covid-19, denoted as 𝑅",!, decreased to a median of 1.8 (IQR: 1.7 - 2.3) (Fig. 

2) from an average 𝑅" for the first wave in Western Europe of 2.2 (95% CI: 1.9 - 2.6)8. 
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However, 𝑅",!  increased as new variants emerged over time. We found that 𝑅",! 

increased to 2.1 (IQR: 1.9 - 2.7) when the Alpha variant became the dominant strain of 

COVID-19 in circulation in February 2021, and increased further to 2.6 (IQR: 2.1 - 3.3) 

in June 2021 when the Delta variant became the dominant strain of infection. 

 

 
Supplementary Fig. 1 The prior distribution of the basic reproduction number 
(𝑹𝟎) of SARS-CoV-2 in initial outbreaks in the United Kingdom. 
 
 
 
 
Supplementary Table 1. Transmissibility of SARS-CoV-2 variants. The estimates 
are shown by its medians and IQR. These parameters were used in the calculation of 
synthetic basic reproduction numbers. 

Variants Coefficient of expansion regarding 𝑹𝟎 of 
SARS-CoV-2 (Q1-Q3) Source 

Alpha 1.29 (1.24-1.33) Curran, J., et al.3  
Beta 1.25 (1.20-1.30) CDC4 

Gamma 1.38 (1.29-1.48) 

Campbell, et al.5 Delta 1.97 (1.76-2.17) 
Eta 1.29 (1.23-1.35) 

Kappa 1.48 (1.28-1.69) 
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Supplementary Table 2. The basic reproduction number of SARS-CoV-2 across 
countries.  

Country Highest 
𝑹𝒕* 

First wave 
𝑹𝟎** Country Highest 

𝑹𝒕* 
First wave 
𝑹𝟎** 

Austria 1.6 2.88 Iceland 2.12 - 
Belgium 1.58 2.87 Israel 1.35 3.19 
Bulgaria 1.63 2.66 Italy 1.71 2.77 

Switzerland 2 2.42 Liechtenstein 1.91 - 
Cyprus 1.96 - Lithuania 1.7 2.19 
Czechia 1.64 2.69 Luxembourg 1.76 3.23 

Germany 1.49 2.35 Latvia 1.81 2.26 
Denmark 1.69 1.74 Netherlands 1.66 2.05 

Spain 1.57 3.3 Norway 1.7 2.05 
Estonia 1.89 1.86 Poland 1.73 2.36 
Finland 1.38 2.48 Portugal 1.46 2.5 
France 1.48 2.64 Slovakia 1.57 2.77 
United 

Kingdom 2.05 2.99 Slovenia 1.72 1.78 

Croatia 1.75 2.54 Sweden 1.81 1.82 
Hungary 2.34 2.8 Ukraine 1.24 4.6 
Ireland 1.62 2.09    

*Highest 𝑅!: the highest 𝑅! estimated by Arroyo-Marioli et al.1 between 1 August 2020 
to 1 December 2020.  
**First wave R0: the estimates7 of the basic reproduction number in the first wave of 
COVID-19, the absent country-specific estimates are set as blank. 
 
 
A3. Calculation of the practical vaccination rate 

The reported fully vaccination rates across countries were the proportion of the whole 

population who have received all doses prescribed by the vaccination protocol. While 

the de facto population that is immune is lower than the fully vaccinated population 

since vaccines are not 100% effective to prevent COVID-19 infection among 

individuals. It is an important indicator of the immune population in the estimation of 

the effect of vaccination. For example, assuming that the basic reproduction number of 

Delta is approximately 5, it is estimated that an immune population proportion of 80 

percent is required in order to prevent an increasing spread of COVID-19. Under these 

circumstances, even if 100 percent of national populations are vaccinated, an efficacy 
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of vaccines against the Delta variant is still required being 80% in order to halt 

transmission. As different COVID-19 vaccine products with various efficacy have been 

used across countries, to integrate vaccination data from different vaccines and 

countries for modelling their overall effect, we termed the fraction of the de facto 

population with immunity as a result of vaccination as the practical vaccination rate.  

Here, we evaluated the biweekly practical vaccination rate (𝑉!) according to the 

used vaccine products across the 31 study countries. We estimated the fraction of the 

population protected by the specific vaccine product 𝑖 by multiplying the documented 

efficacy of vaccine product 𝑖  ( 𝑒& ) against SARS-CoV-2 before VOCs became 

predominant, with the proportion of the vaccine product 𝑖 used (𝑝&,!). The fraction of 

the population with immunity attributed to each vaccine product 𝑖 was then evaluated 

by summing this number for all the six vaccines involved in this study. The practical 

vaccination rate was estimated by the reported fully vaccination rate multiplying the 

former sum. That is, 

𝑉! = 𝑓𝑢𝑙𝑙𝑦	𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒!9𝑒& ∗ 𝑝&,!

.

&($

 

The efficacy of six vaccines against SARS-CoV-2 is listed in Supplementary Table 3.  

 

Supplementary Table 3. Efficacy of various vaccines against SARS-CoV-2 in 
clinical trials. The estimates are shown by its medians and IQR. 

Vaccine 
product Efficacy Vaccine 

product Efficacy 

Sinopharm.Beiji
ng9 

78.10 
(IQR: 64.90,86.30) AstraZeneca12 66.70 

(IQR: 57.40,74.00) 

Sputnik.V10 91.60 
(IQR: 85.60,95.20) Moderna13 94.10 

(IQR: 89.30,96.80) 

Pfizer11 95.00 
(IQR: 90.30,97.60) 

Johnson & 
Johnson14 

66.90 
(IQR: 59.10,73.40) 
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A4. Index of openness risk 

In April 2020, the WHO proposed six domains of measures that governments needed 

to deploy to diminish the risks of easing NPIs15. Here we give a summary of the six 

domains and how OxCGRT calculated the index of openness risk at day 𝑡 based on 

them. 

1. COVID-19 transmission is controlled to a level that could be handled by health 

care capacity.  

𝐶𝐶 = ∆𝑐𝑎𝑠𝑒𝑠!/50 

where ∆𝑐𝑎𝑠𝑒𝑠!  is the average new daily cases from the last 7 days. Cases 

controlled is defined as 1 if ∆𝑐𝑎𝑠𝑒𝑠! >= 50. 

2. Sufficient public health workforce and health system capacities are in place.  

𝑇𝑇 = 0.25(1 −
𝐻2
3 ) + 0.25(1 −

𝐻3
2 )

+
0.5 _ln`𝑡𝑒𝑠𝑡𝑠/01230_536a − ln(𝑡𝑒𝑠𝑡𝑠)b

ln`𝑡𝑒𝑠𝑡𝑠/01230_536a − ln`𝑡𝑒𝑠𝑡𝑠/01230_5&7a
 

where H2 is the value of the testing policy indicator (H2) in OxCGRT database, 

H3 is the value of the contract tracing policy indicator (H3) in OxCGRT 

database, ln(𝑡𝑒𝑠𝑡𝑠) is the natural logarithm of the number of tests-per-case 

conducted by the underlying country, and ln(𝑡𝑒𝑠𝑡𝑠/01230_5&7/536) is the natural 

logarithm of the number of tests-per-case conducted by the country that has the 

most/least tests-per-case. 

3. Outbreak risks in high-vulnerability settings are minimised. This category has 

not been considered in the calculation. 

4. Preventive measures are established in workplaces. This category has not been 

considered in the calculation. 
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5. Risk of exporting and importing cases from communities with high risks of 

transmission is managed. 

𝑀 = d

= 1 𝑖𝑓	𝐶8	 = 	0
= 0.5 𝑖𝑓	𝐶8	 = 	1
= 0.25 𝑖𝑓	𝐶8	 = 	2
= 0 𝑖𝑓	𝐶8	 = 	3,4

 

where C8 is the value of the international restrictions policy indicator in the 

OxCGRT database. 

6. Communities are fully engaged.  

𝐶 = 0.5𝐶𝐶 +
(1 − 0.5𝐶𝐶)(𝑚𝑜𝑏 − 20)

100  

where mob is the level of mobility as a percentage of pre-COVID baseline levels 

reported by Apple (average of all three reported mobility types) or Google 

(average of “retail and recreation”, “transit stations”, and “workplaces” mobility 

types). Of note, if the value of public information campaigns (H1) in OxCGRT 

is not equal to 2, the metric is set to 0 as there is no national public information 

campaign. The 𝑚𝑜𝑏 is set as the highest value generated by Apple and Google. 

If neither Apple nor Gooogle mobility data is available, the metric is left blank. 

𝑚𝑜𝑏 is set to 20 if it is less than 20 and set to 120 if it is higher than 120. 

 

OxCGRT collected information relevant to domain 1, 2, 5, and 6, summarised 

in Supplementary Table 4. The risk of openness index can be directly calculated by the 

average of the above four metrics as: 

𝑅𝑜𝑂𝐼973:;9<!=: = 𝑀𝑒𝑎𝑛(𝐶𝐶, 𝑇𝑇,𝑀, 𝐶) 

Instead of adjusting the risk of openness index by the cases controlled by the 

country itself. We used the vaccination rate as a measure of closeness to herd immunity. 

Then, the adjusted risk of openness index can be calculated as: 
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𝑅𝑜𝑂𝐼3:;9<!=: = (1 − 𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛) + 𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∗ 𝑅𝑜𝑂𝐼973:;9<!=:  

Ideally, when everyone has received all doses prescribed by the vaccination 

protocol, the risk of removing public health measures will become 𝑅𝑜𝑂𝐼973:;9<!=: , 

which is a case-evidenced openness risk.  

Supplementary Table 4. Summary of sub-indices used to calculate the index of 
openness risk 

WHO categories Data sources Risk index sub-component 

Transmission 
controlled 

Daily cases and deaths data 
from European Centre for 
Disease Prevention and 
Control16 and John Hopkins 
University CSSE COVID-
19 Data Repository17 

A metric between 0 and 1 
based on new cases confirmed 
each day. This is captured in 
two dimensions: 1. A measure 
to account for a localised 
outbreak. 2. An 'endemic 
factor' that modulates the 
index according to the total 
number of new cases 

Test / trace / isolate 

● OxCGRT: H2 (testing 
policy) 

● OxCGRT: H3 (contact 
tracing policy) 

● Testing data from Our 
World in Data18 

A metric between 0 and 1; half 
based on testing and contact 
tracing policy, and half based 
on the number of tests-per-
case a country has conducted. 
(does not measure isolation) 

High vulnerability 
settings - - 

Preventative 
measures 

established in 
workplaces 

- - 

Manage risk of 
exporting and 

importing cases 

OxCGRT: C8 (international 
travel restrictions) 

A metric between 0 and 1 
based on the stringency of the 
country’s restrictions on 
travel arrivals. (does not 
measure risk of exporting 
cases) 

Communities 
understanding and 
behaviour change 

● OxCGRT: H1 (public 
information campaigns) 

● Travel and mobility data 
from Apple19 and 
Google20. 

● Daily cases and deaths 
(from European CDC via 
Our World in Data) 

A metric between 0 and 1 
based on whether a country 
has a public information 
campaign and the level of 
mobility reduction, weighted 
for current transmission risk. 
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B. Additional results 

B1. Effect of temperature and unknown factors 

 
Supplementary Fig. 2 The effect of air temperature over time. 

 

 

Supplementary Fig. 3 The effect of unknown factors over time. 
 
B2. Country-specific effect NPIs and vaccination over time 

Due to the heterogeneous context across the 31 countries, we estimated the national 

effect of NPIs and vaccination for each of the 31 countries (Supplementary Fig. 4). 

Then, we used a meta-analysis of the data to generate the general effects of NPIs and 

vaccination, respectively, using a bottom-up approach. 
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Supplementary Fig. 4 The effect of NPIs and vaccination for each of 31 study 
countries over time. The effects of NPIs (blue lines), vaccination (red lines) and 
interaction of SI and vaccination (yellow lines) were estimated for each month and 
country. The corresponding stringency index of NPI implementation and the practical 
vaccination rate over time were represented by the height of bars in the background.  
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Supplementary Fig. 4 (Continue). 
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Supplementary Fig. 4 (Continue). 
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Supplementary Fig. 4 (Continue). 
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Instead of fitting separate Bayesian inference models for the study 31 countries, 

we also fit a full Bayesian model with fixed pooling, i.e., we run one inference over the 

whole dataset. The results in Supplementary Fig. 5 showed that the separate models are 

consistent with the full model based on our model assumptions. 

 

 

Supplementary Fig. 5 The effect of NPIs and vaccination for each of 31 study 
countries over time within the pooling model. The effects of NPIs (blue lines), 
vaccination (red lines) and interaction of SI and vaccination (yellow lines) were 
estimated for each month and country. The corresponding stringency index of NPI 
implementation and the practical vaccination rate over time were represented by the 
height of bars in the background.  
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Supplementary Fig. 5 (Continue). 
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Supplementary Fig. 5 (Continue). 

 



19 
 

 

Supplementary Fig. 5 (Continue). 
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Supplementary Fig. 5 (Continue). 

 

B3. Estimates of the coefficients 

To estimate the effect of NPIs and in the presence of vaccination, we built a Bayesian 

model as follow, 

𝑅!> = 𝑅",!> exp	(−𝛼0>𝑁!> − 𝛽0>𝑉!> − 𝜆0>𝑁!>𝑉!> − 𝜑0>𝑇!> − 𝛥0>) = 𝛷!,0>  

where 𝑁!>, 𝑉!>, and 𝑇!> are the stringency index of NPIs, practical vaccination rate, and 

air temperature for country 𝑐 in month 𝑙 at day 𝑡, respectively. In addition to NPIs and 

vaccination, we also modelled their interaction of reducing 𝑅! by directly incorporating 

a product term (𝑁!>𝑉!>) in our model. Moreover, the unobserved confounders of the 

change between 𝑅",!>  and 𝑅!> were represented by the residual 𝛥0>. To estimate the model 

parameters, we used a Bayesian framework to provide the estimates with prior 

knowledge. We assumed that 𝑅!>~gamma`𝛷!,0> , 0.5a. As NPIs and vaccination were 

likely to positively impact the trajectories of COVID-19, i.e., reducing 𝑅",!, we put a 

gamma prior with hyperprior over the coefficients of NPIs, vaccination and their 

interaction term in our model. Specifically, 𝛼0>, 𝛽0> and 𝜆0>, following gamma(𝑢, 1) and 

𝑢~uniform(0,1), varied by country according to their data contexts. Additionally, we 

had a Gaussian prior over the coefficients 𝜑0>~𝑁(0, 𝑘)  and 𝛥0>~𝑁(0, 𝑘) , 
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𝑘~Half	normal	(0, 0.3), as air temperature and the unseen factors were believed can 

either increase or decrease 𝑅!. Supplementary Fig. 6 showed the prior distributions over 

the coefficients of our model. Supplementary Figs. 7 – 11 showed the estimates of 

coefficients in our model over time across 31 countries. 

 

 

 

 

Supplementary Fig. 6 The prior distribution of coefficients over NPIs (a), 
vaccination (b), and their interaction (c), air temperature (d), and unseen factors 
(e). 



22 
 

 
Supplementary Fig. 7 The estimates of coefficients for stringency index across 
countries and months. 
 

 
Supplementary Fig. 8 The estimates of coefficients for practical vaccination rate 
across countries and months. 
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Supplementary Fig. 9 The estimates of coefficients for interaction of NPIs and 
vaccination across countries and months. 
 

 
Supplementary Fig. 10 The estimates of coefficients for air temperature across 
countries and months. 
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Supplementary Fig. 11 The estimates of coefficients for unobserved confounders 
across countries and months. 
 
 
B4. Collinearity 

 

 
Supplementary Fig. 12 The collinearity between the involved variables in this 
study. The correlation coefficients were calculated by two sided Pearson method. 
Noting that the temperature is highly associated with humidity, we only take 
temperature as the control variable to account for the seasonal and calendar effect. 
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B5. Sensitivity analysis 

We changed our settings of model structure and parameters selection in order to assess 

the robustness of our model. Specifically, we designed following scenarios: 

S1. The prior mean over 𝑅" was further set as the estimates of 𝑅" in the first wave; 

S2. The prior mean over 𝑅" was further set as the average of the highest 𝑅" and 

the estimates of 𝑅" in the first wave; 

S3. The prior distribution of 𝑅! was set as normal distribution; 

S4. The prior distribution of 𝑅! was set as Weibull distribution; 

 
Supplementary Fig. 13 Effects of (a) NPIs, (b) vaccination, (c) interaction of NPIs 
and vaccination, (d) air temperature, and (e) unknown factors on reducing 
COVID-19 transmission over time under different model settings. DS is our default 
model setting.  
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Supplementary Fig. 13 (Continue).  
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C. Model validation 

C1. Prior and posterior predictive check 

 
Supplementary Fig. 14 Comparison between our prior and posterior over the 
coefficients in our model for their predictability. Here, we take four countries with 
varied vaccination coverage (France 70%, Israel 66%, Croatia 43% and Bulgaria 21%) 
as examples. We first used our assumed prior to produce estimates of 𝑅! by our model 
for the four countries, and then used the fitted model with posterior to generate another 
set of 𝑅! for comparison. We repeated the above procedure for 10000 times and drawn 
the mean values and 95% confidence interval for demonstration. 
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Supplementary Fig. 15 The prior predictive distribution in France. The time arrow 
line is from right to left and from bottom to top. The first day, 1/8/2020, is shown at the 
bottom right. The observed 𝑅! values are illustrated by dots. 
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Supplementary Fig. 16 The posterior predictive distribution in France. The time 
arrow line is from right to left and from bottom to top. The first day, 1/8/2020, is shown 
at the bottom right. The observed 𝑅! values are illustrated by dots. 
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Supplementary Fig. 17 The prior predictive distribution in Israel. The time arrow 
line is from right to left and from bottom to top. The first day, 1/8/2020, is shown at the 
bottom right. The observed 𝑅! values are illustrated by dots. 
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Supplementary Fig. 18 The posterior predictive distribution in Israel. The time 
arrow line is from right to left and from bottom to top. The first day, 1/8/2020, is shown 
at the bottom right. The observed 𝑅! values are illustrated by dots. 
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Supplementary Fig. 19 The prior predictive distribution in Croatia. The time arrow 
line is from right to left and from bottom to top. The first day, 1/8/2020, is shown at the 
bottom right. The observed 𝑅! values are illustrated by dots. 
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Supplementary Fig. 20 The posterior predictive distribution in Croatia. The time 
arrow line is from right to left and from bottom to top. The first day, 1/8/2020, is shown 
at the bottom right. The observed 𝑅! values are illustrated by dots. 
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Supplementary Fig. 21 The prior predictive distribution in Bulgaria. The time 
arrow line is from right to left and from bottom to top. The first day, 1/8/2020, is shown 
at the bottom right. The observed 𝑅! values are illustrated by dots. 
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Supplementary Fig. 22 The posterior predictive distribution in Bulgaria. The time 
arrow line is from right to left and from bottom to top. The first day, 1/8/2020, is shown 
at the bottom right. The observed 𝑅! values are illustrated by dots. 
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C2. MCMC convergence 

 
Supplementary Fig. 23 The convergence of MCMC in our estimation. (a)R-hat 
statistic taken from a run using the default model with default settings and values for 
all parameters. Values are close to 1, indicating convergence; (b)Relative effective 
sample size taken from a run using the default model with default settings and values 
for all parameters. Value 1 indicates perfect decorrelation between samples. Values 
above (below) 1 indicate that the effective number of samples is higher (lower) than the 
actual number of samples due to negative (positive) correlation, respectively. 
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C3. Meta-analysis 

 
Supplementary Fig. 24 Forest plot comparing effects of NPIs and vaccination 
across 31 countries in October 2021, respectively. (a) Forest plot depicting the meta-
analytical results for NPIs among 31 countries. (b) Forest plot depicting an influence 
analysis for NPIs omitting each country. (c) Forest plot depicting the meta-analytical 
results for vaccination among 31 countries. (d) Forest plot depicting an influence 
analysis for vaccination omitting each country. Noting the high heterogeneity among 
31 countries, a random effects method was used to meta-analyse the data for each 
month. 



38 
 

C4. Leave-one-out cross validation 

Pooling the national results using joint inference for each country 

We used the leave-one-out method to validate our model. In each validation, 30 

countries were used to pool the national results into the general European case. Then, 

the merged estimates were used to estimate the real-time 𝑅! for the one country left. 

The model performance was evaluated by the difference between the predicted 𝑅! and 

the observed values with the root mean square error (RMSE) and R-squared. In general, 

RMSE ranged from 0 to infinite with 0 representing the perfect prediction ability. R-

squared was calculated by  

𝑅) = 𝑆𝑆?=//(𝑆𝑆?=/ + 𝑆𝑆?=<), 

𝑆𝑆?=/ = ∑ (𝑓& − yv))	
& , 

𝑆𝑆?=< = ∑ (𝑦& − 𝑓&))	
& . 

where 𝑓& is the regressed value, and 𝑦& is the observed value. 

We repeated this process 31 times independently for each of the 31 study 

countries (see Supplementary Fig. 25). The median RMSE was 0.26 (IQR: 0.24 – 0.33) 

and R-squared ranged from 0.35 (Poland with vaccination rate 52%) to 0.76 (Ukraine 

with vaccination rate 0.16). Additionally, we also selected four countries with different 

levels of fully vaccination rate to illustrate the generalizability of our model (see 

Supplementary Fig. 26). The performance on explaining the variation of COVID-19 

transmission for each country can be found in Supplementary Table 5.  

Pooling the national data using a full model across countries 

In contrast to pooling the national results by meta-analysis, the alternative approach to 

counter the heterogeneity across countries was to use all the data across countries to fit 

a single model. In comparison to the meta model, we also illustrate the leave-one-out 
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validation results for the four countries in Supplementary Fig. 27. Pooling the national 

results appears to be better explain power of the variation in 𝑅!, where R-squared for 

France, Israel, Croatia, and Bulgaria is 0.51, 0.53, 0.37, and 0.38 for pooling the 

national data using a full model, respectively (Supplementary Fig. 28). Regarding R-

squared, overall, pooling the national results improved 16% explanation power of 

pooling the national data using a full model across all countries. Moreover, by 

comparing Supplementary Fig. 25 and Supplementary Fig. 27, we can find that pooling 

national data too flattened the heterogeneity across countries than pooling the national 

results, leading the predicted 𝑅!  to an average level of all countries but losing the 

characteristics of each specific country. 

 

Supplementary Table 5. R-squared for the leave-one-out cross validation across 
countries. Fully vaccination rate was reported by 25 October 2021. 

Country 𝑹𝟐	 
Fully 

vaccination 
rate (%) 

Country 𝑹𝟐 
Fully 

vaccination 
rate (%) 

Austria 0.57 64 Iceland 0.75 81 
Belgium 0.61 74 Israel 0.62 66 
Bulgaria 0.43 21 Italy 0.61 86 

Switzerland 0.40 63 Liechtenstein 0.55 62 
Cyprus 0.42 47 Lithuania 0.37 60 
Czechia 0.44 57 Luxembourg 0.69 6 

Germany 0.70 67 Latvia 0.40 52 
Denmark 0.46 76 Netherlands 0.46 73 

Spain 0.64 80 Norway 0.46 68 
Estonia 0.49 58 Poland 0.35 52 
Finland 0.64 68 Portugal 0.70 89 
France 0.63 70 Slovakia 0.44 42 
United 

Kingdom 0.58 68 Slovenia 0.49 53 

Croatia 0.44 43 Sweden 0.46 68 
Hungary 0.45 59 Ukraine 0.76 16 
Ireland 0.60 77    
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Supplementary Fig. 25 The results of leave-one-out-validation over 31 study 
countries generated by pooling the national results. The overall r-squared is 0.55. 
 

 
Supplementary Fig. 26 Comparison between the predicted real-time 𝑹𝒕 and the 
empirical real-time 𝑹𝒕  by pooling the national results. The predicted 𝑅!  were 
represented by blue dots (median) and bands (interquartile range), where the empirical 
𝑅! were represented by grey dots. Here, we take four countries with varied vaccination 
coverage (France 70%, Israel 66%, Croatia 43% and Bulgaria 21%) as examples. 
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Supplementary Fig. 27 The results of leave-one-out-validation over 31 study 
countries generated by pooling the national data using a full model. The overall r-
squared is 0.50. 
 

 
Supplementary Fig. 28 Comparison between the predicted real-time 𝑹𝒕 and the 
empirical real-time 𝑹𝒕  by pooling the national data to fit a single model. The 
predicted 𝑅! were represented by blue dots (median) and bands (interquartile range), 
where the empirical 𝑅! were represented by grey dots. Here, we take four countries 
with varied vaccination coverage (France 70%, Israel 66%, Croatia 43% and Bulgaria 
21%) as examples.  
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D. Additional discussions 

D1. Limitations of using reproduction number 

We used the reproduction number to characterise the changes in COVID-19 

transmission dynamics and disentangle the impact of NPIs and vaccination. Here, we 

give an additional discussion on the limitation of using the reproduction number, which 

can be estimated by many different mathematical models. As 𝑅!  can hardly get 

observed directly, it is usually calculated via a mathematical model. However, different 

methods can give a different estimate of 𝑅! , which may limit its accuracy and 

usefulness24. 

Besides, 𝑅" cannot be modified through vaccination or other changes in population 

susceptibility, but it can vary based on several biological, socio-behavioural, and 

environmental factors25. It can also be modified by physical distancing and other public 

policy or social interventions, although some historical definitions exclude any 

deliberate intervention in reducing disease transmission, including non-

pharmacological interventions. And indeed, whether NPIs are included in 𝑅"  often 

depends on the paper, disease, and what if any intervention is being studied. This 

creates some confusion, because 𝑅"  is not a constant, whereas most mathematical 

parameters with "nought" subscripts are constants. In our study, we used the 𝑅"  of 

SARS-CoV-2 estimated by the highest 𝑅! after the large-scale relaxation of NPIs but 

before VOCs became predominant in communities, representing the approximate 

transmissibility without interventions, and 𝑅! was used to represent the transmission 

variation over time, under various settings and the circulation of different SARS-CoV-

2 variants. 
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D2. Using stringency index of NPIs 

Of note, we used the stringency index produced by the OxCGRT26 to represent the 

government COVID-19 response level in terms of ordinal containment, closure policy 

and public information campaigns, which is calculated by the strictness of ‘lockdown 

style’ policies that primarily restrict people’s behaviour including school closures, 

workplace closures, and travel bans. OxCGRT calculated the stringency index as a 

composite measure of nine of the response metrics, including 1) school closures; 2) 

workplace closures; 3) cancellation of public events; 4) restrictions on public gatherings; 

5) closures of public transport; 6) stay-at-home requirements; 7) public information 

campaigns; 8) restrictions on internal movements; and 9) international travel controls. 

OxCGRT collected the nine response metrics using different scores in their database, 

to measure the strength of policies. To calculate the stringency index, the nine metrics 

were first normalised to a value between 0 and 100 by an additional flag variable 

representing whether they are "targeted" to a specific geographical region (flag=0) or 

whether they are a "general" policy that is applied across the whole country/territory 

(flag=1). That is, 

𝐼&,! = 100(𝑚&,! − 0.5(1 − 𝑓&,!))/𝑀& 

where 𝐼&,! was the normalised value of metric 𝑖 at day 𝑡, 𝑚&,! was the score value of 

metric metric 𝑖 at day 𝑡, 𝑓&,! was the flag of metric 𝑖 at day 𝑡, and 𝑀& was the highest 

score defined for the metric 𝑖. Then, the stringency index of a day was defined as the 

average value of the normalised nine metrics at that day in each country. A higher score 

indicates a stricter response (i.e., 100 = strictest response). If policies vary at the 

subnational level, the index is shown as the response level of the strictest sub-region. 

In the model of this study, the stringency index has been normalised by min-max 

normalisation, ranging from 0 to 1. 
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As heterogeneous countries may enact different packages of NPIs and the same 

intervention may also be implemented in different ways across neighbouring 

countries27, it is hard to estimate the standard effect and criteria of NPIs that apply to 

all countries. In contrast, we used the relative common concept of the response level 

against COVID-19 transmission. For the same strength of the response, different 

countries are allowed to deploy NPIs with different combinations. Haug et al.28 

documented that less disruptive and costly NPIs can be as effective as more intrusive, 

drastic ones (for example, a national lockdown) in March–April 2020, thus a suitable 

combination of NPIs is necessary to curb the spread of the virus. In fact, strong 

associations between the OxCGRT’s stringency index and mobility metrics have been 

evidenced26. Even though the effect of individual NPIs cannot be estimated in this way, 

our study still provided insights on the response level that each country should have, to 

control COVID-19 in the vaccination era. 

 

D3. Herd immunity threshold 

The one of most important uses of R0 is to determine what percentage of the population 

should be immunised through vaccination to fully contain a disease, i.e. reducing the 

reproduction number below 1. Generally, the larger the value of R0, the harder it is to 

control the epidemic. For simple models, the proportion of the population that needs to 

be effectively immunised (meaning not susceptible to infection) to prevent sustained 

spread of the disease must be larger than 1-1/R029. Conversely, the proportion of the 

population that remains susceptible to infection in the endemic equilibrium is 1/R0. 

Supplementary Fig. 29 shows the thresholds of herd immunity in terms of SARS-CoV-

2 and its variants. 
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Supplementary Fig. 29 The thresholds of herd immunity in terms of SARS-CoV-
2 and its variants. Of note, the threshold here refers to the fraction of the population 
that should be immune instead of the population that has been vaccinated. 
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