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4Université de Lyon, Université Claude Bernard Lyon 1, 69001 Lyon, France
5Laboratoire de Physique des 2 Infinis Irène Joliot Curie (UMR 9012), CNRS/IN2P3, 15 Rue Georges Clemenceau,
91400 Orsay, France
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ABSTRACT

Never before such a vast amount of data, including genome sequencing, has been collected for any viral pandemic than for the
current case of COVID-19. This offers the possibility to trace the virus evolution and to assess the role mutations play in its
spread within the population, in real time. To this end, we focused on the Spike protein for its central role in mediating viral
outbreak and replication in host cells. Employing the Levenshtein distance on the Spike protein sequences, we designed a
machine learning algorithm yielding a temporal clustering of the available dataset. From this, we were able to identify and
define emerging persistent variants that are in agreement with known evidences. Our novel algorithm allowed us to define
persistent variants as chains that remain stable over time and to highlight emerging variants of epidemiological interest as
branching events that occur over time. Hence, we determined the relationship and temporal connection between variants of
interest and the ensuing passage to dominance of the current variants of concern. Remarkably, the analysis and the relevant
tools introduced in our work serve as an early warning for the emergence of new persistent variants once the associated cluster
reaches 1% of the time-binned sequence data. We validated our approach and its effectiveness on the onset of the Alpha
variant of concern. We further predict that the recently identified lineage AY.4.2 (‘Delta plus’) is causing a new emerging variant.
Comparing our findings with the epidemiological data we demonstrated that each new wave is dominated by a new emerging
variant, thus confirming the hypothesis of the existence of a strong correlation between the birth of variants and the pandemic
multi-wave temporal pattern. The above allows us to introduce the epidemiology of variants that we described via the Mutation
epidemiological Renormalisation Group (MeRG) framework.
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S1 Theoretical modelling of variant diffusion (MeRG)
The current paper deals with the time evolution and spread of different variants of SARS-CoV-2 in a given population. A
theoretical study of the underlying processes within the framework of the epidemic Renormalisation Group (eRG) approach1

has recently been presented in a companion paper2. In this section, we briefly review the relevant formalism.
The eRG approach is inspired by the running of fundamental couplings as a function of the energy scale in particle physics.

Originally proposed1 as an effective description of epidemic diffusion processes organised around time-scale invariances, it has
been extended to account for geographic mobility across different countries3, the multi-wave structure of the SARS-CoV-2
pandemic4 as well as the impact of the US vaccination campaign5. The predictive power of this approach has been demonstrated
by accurately describing the impact of non-pharmaceutical interventions4, 6 and predicting the starting date of the second wave
in the fall of 2020 in Europe7. An interpretation of the eRG approach as a time-dependent SIR model has also been discussed8,
while the relation to other epidemiological approaches has been discussed at great depth in this review9.

In the companion paper2, the eRG framework has been further extended to describe the time evolution of two different
variants of a disease. An epidemic coupling strength αi(Ic,i) is introduced for each variant (here i = 1, . . . ,n labels the n different
variants). The latter is a function of the cumulative number of individuals Ic,i that have been infected by this ith variant. The
time evolution of the different variants is then described by a set of β -functions

−βi(Ic,i) =
dαi

dt
, ∀i = 1, . . . ,n , (E1)

which constitute the core of the Mutation eRG (MeRG) approach. Inspired by the numerical study of a compartmental model
and empirically validated by comparing with data from California, the United Kingdom and South Africa, the β -functions were
written in the form of gradient equations2

−βi(Ic,i) = ∇i Φ(Ic, j) , with
∇i =

∂

∂ Ic,i

Φ(Ic, j) = ∑
n
k=1 I2

c,k
γk
2

(
1− 2 Ic,k

3Ak

)
.

(E2)

Here, γk is a measure for the infection rate and Ak is the asymptotic number of individuals infected by variant k. Solutions
of the β -functions (E2) give cumulative numbers of infected individuals as functions of time for each variant that follow a
logistics function

Ic,i(t) =
Ai

1+ e−γi(t−κi)
, (E3)

where κi is a parameter that governs the time of appearance of the variant. For given i, the function βi in (E2) has two zeroes,
namely Ic,i = 0 and Ic,i = Ai, corresponding to the complete absence of the variant i or the eradication of the latter, in the sense
that there are no more infectious individuals left carrying it. The complete set of β -functions (β1, . . . ,βn) has 2n fixed points
and the epidemic is described by the flow equations connecting (some of) them.

S2 Machine Learning algorithm
We employ a machine learning algorithm based on the Levenshtein distance between spike protein sequences. The procedure
can be grossly divided into three steps, which we describe in detail in the next three sub-sections S2.1–S2.3. All the python
codes are provided (see link in the main publication), with reference to the main libraries provided in this material. While in
this work we mainly focus on England, due to the larger dataset, and other nations of Great Britain, the ML codes can be run on
any dataset, for different countries or regions of the world.

The spike protein sequencing data for the UK nations were collected from the GISAID repository10, 11. For each nation we
analyse the data via a simple Machine Learning (ML) algorithm based on the Levenshtein measure (LM)12, 13, which quantifies
the difference between two strings of characters. This ML approach has been long used in biology, with appropriate refinements
and optimisations14, while more recently deep learning approaches15–17 are becoming more effective.

S2.1 Extraction and pruning of the raw data
The raw data are downloaded from the GISAID open-source repository (registration required) in the form of “fasta” files, which
contain information on samples from COVID-19 infected cases. The files contain the full genome, including the spike protein
sequences, but also the date when the sample was taken, the laboratory where it was analysed and the geographic information
about the country or region of origin of the sample. This additional information allows to separate datasets based on a specific
geographical origin, and sample them in time.
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In this work, we focus only on the spike protein sequences. The data contains sequences with un-identified amino-acids
(labelled with an X) and sequences with missing pieces (thus, with unusual lengths). The spike protein of the early SARS-CoV-2
sequences have 1271 amino-acids. Hence, to remove data with missing pieces, we only keep sequences with at least 1250
amino-acids. Furthermore, we dismiss all sequences containing at least one X in the sequence. This pruning allows us to work
only on a high purity dataset. The number of sequences before and after the pruning for England, Wales and Scotland are listed
in Table T1. After the pruning, a significant number of sequences are in the dataset, many of which contain the same sequences
for the spike protein. To accelerate the next step in the analysis, it is convenient to remove repetitions and thus only work on a
dataset containing only different sequences (see right column in Table T1). In particular, this is necessary when we do a global
analysis of the whole dataset, while the time-sampling automatically reduces the number of sequences in the dataset.

Raw sequences After pruning Different sequences (after pruning)
England 646.697 461.122 13.887
Wales 44.944 26.440 1.315
Scotland 64.409 47.137 1.936

Table T1. Number of sequences in the datasets for England, Wales and Scotland before and after the pruning and selection.

The extraction and pruning of the data is done by the python program extraction_country.py, where the name of
the country or region needs to be specified in the first lines of the program. The output is as follows:

• The list of the strictly different sequences as a text file country_seq_ass.txt.

• A csv table country.csv were lines correspond to selected sequences. The first column contains the date, the second
the corresponding sequence in reference to the text file already saved and finally a column labelling the VoC or VoI the
sequence belongs to, according to GISAID.

• A list of the different labs contributing to the sequencing.

Note, in passing, that the pruning could be by-passed by modifying the distance calculation in such a way that the presence
of incomplete sequences is properly taken into account. This would require a more complex and optimised procedure. For our
purposes, we wanted to remain as unbiased as possible, thus we opted for the pruning and decided to work with a dataset of the
highest purity.

S2.2 Computation of the distance matrix
The output of the previous step is a list of strictly different spike protein sequences, with a record of their multiplicity in the
dataset under study. At this stage, we need to compute the Levenshtein distances between them. This computation yields a
symmetric matrix with zeros on the diagonal, such that only a triangular matrix needs to be computed on the data.

To efficiently compute the Levenshtein distances, we use the library polyleven. For this purpose, we created the python code
Launch_distance.py, where a specific country or region has to be specified at the beginning of the file. The program calls
distance.sh and distance.py, thus the process is multicore and very fast. The various lines of the upper triangular
matrix are saved in the subfolder create as separate binary files. Launching now concatenation.py will load them all
and save a single file containing the complete distance matrix, while the temporary files are deleted.

Note that to speed up the computation of the distances, we only considered strictly different spike protein sequences. This
avoids repeated computations. Yet, the construction of the proximity tree, which will be the task of the next step, may depend on
the multiplicity of each sequence in the starting dataset, as we will see. Hence, the program concatenation.py outputs two
different distance matrices: country.binwhere only strictly different sequences are included, and country_complete.bin
where the multiplicity of the sequences are taken into account by copying multiple times the corresponding lines in the table.
Thus, the latter contains a much bigger distance matrix than the former.

S2.3 The proximity tree
To create the proximity tree, various libraries are at our disposal. We chose to adopt the hierarchical clustering algorithm from
the scipy library as it is easy to work with and adaptable. The only needed input is the distance matrix. For the algorithm,
each initial sequence, i.e. a line or column of the distance matrix, is a leaf. The library then groups the leaves into branches
based on the Levenshtein distance between them, as specified in the input file. To calculate the effective distance between
branches, various methods are available, and they need to be selected. We anticipate that some methods are not sensitive to the
multiplicity the identical leaves (which have distance zero among them), while others are.
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extraction_country.py
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Flow diagram of the clustering alorithm

proximity 
tree

Figure F1. Flow diagram of the clustering algorithm, indicating the concatenation of python programs (in blue) and
intermediate output/input files (in yellow). The string “country” needs to be replaced by the name of the country under study,
for instance “England”.

Figure F2. Dendrogram three for the England dataset, for month 9 (September 2020), built using the Ward’s method. On the
y-axis we show the effective distance between two clusters at the point when they merge. The branches in colour represent
more than 1% of the total number of sequences for a cut at Ward distance 100.

The algorithm constructs the proximity tree starting from the leaves: hence, for a sample with n leaves (i.e. a n×n distance
matrix as input), the code considers an initial state with n branches containing a single leaf each. Hence, the steps consist in
regrouping 2 branches together forming a new branch. Naturally, there can be at most n−1 of those steps. At any step, the two
branches that are chosen to be regrouped (let us call them A and B) are the ones that have the smallest distance between them.
Such distance dis(A,B) is computed in terms of the Levenshtein distance d(x,y) between leaves on the two branches (x and
y being a leaf from A and B respectively). Here is where different methods to compute the branch distance dis(A,B) can be
employed. The most common choices are:
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• Single Linkage Clustering, where

dis(A,B) = minx∈A , y∈B d(x,y) . (E4)

This method is insensitive to the multiplicity of identical leaves, thus one can use the file country.bin as input.

• Complete Linkage Clustering, where

dis(A,B) = maxx∈A , y∈B d(x,y) . (E5)

As before, this is independent on the leaf multiplicity.

• Unweighted Average Linkage Clustering, where

dis(A,B) =
1
|A||B| ∑

x∈A , y∈B
d(x,y) , (E6)

where |X | is the number of leaves in the branch X . This method is sensitive to the multiplicity of identical leaves, thus is
requires country_complete.bin as input.

• Ward’s Method, an agglomerative clustering method based on the measure of the average squared distance of points
in the cluster to its centre of gravity, or centroid. Hence, the effective distance between two branches is defined by the
increase in the above measure in the merged cluster with respect to the two separate ones. In practice:

dis(A,B) =
|A||B|
|A|+ |B|

[
∑

x∈A , y∈B

d(x,y)2

|A||B|
− ∑

x,x′∈A

d(x,x′)2

2|A|2
− ∑

y,y′∈B

d(y,y′)2

2|B|2

]
. (E7)

This method is sensitive to the multiplicity of identical leaves, thus it requires country_complete.bin as input.
Note that we also used this method on the distance matrix country.bin to speed up the computation.

At each step, the algorithm joins branches together, until all leaves are grouped together. This approach can be schematically
represented by a dendrogram tree, as shown in Fig. F2. This step is executed by the program linkage.py. In order to define
clusters and variants, we need to define a threshold in the effective distance, which will therefore be equivalent to a horizontal
cut of the tree branches. In practice, all clusters whose effective distance is larger than the threshold are used to define the
variants. The value of the threshold needs to be determined each time, as it crucially depends on the measure that is employed,
and on the samples. Once the threshold is fixed, the clusters and their time evolution can be obtained. This is done by the
executable called time.py.

S2.4 Application to the England data set
As a first step, we apply the ML algorithm to all sequences in the England dataset, updated to June 2021. The clustering is done
on the data that contains only different sequences for the spike proteins to reduce the number of data points, as contained in the
file england.bin. After defining the clustering, the number of total sequences in each cluster is counted and each sequence
time-tagged, in order to obtain the frequency for the occurrence of each cluster as a function of time. The results are shown in
Fig. F3 for two choices of the cut in the Ward distance: rW = 50 in the left plots and rW = 100 in the right plots. We consider
as relevant clusters only the ones that contain at least 1% of the sequences within the full dataset. We show two choices of rW
within the defined working region to illustrate how lowering or increasing the threshold leads to splitting or merging clusters.
We identify, therefore, 5 clusters for the lower cut (v0, v1a, v1b, v2, v3), and 4 for the upper cut (v0, v1, v2, v3). Increasing the
cut allows to merge the clusters v1a and v1b into v1. We also checked that by increasing the rW cut, it is v0 and v1 (rW = 100)
that merge into a single cluster, while v3 remains separated. This analysis can give a rough idea of the closeness of different
clusters via the merging/splitting due to the change in the clustering threshold. A more detailed analysis of the phylogeny of the
variants, and their connection, is presented in the main text via a time-ordered clustering, as described in detail in the next
section.

In the middle and bottom plots of Fig. F3 we report our estimate of the number of daily new infections in each clustered
variant, computed by multiplying the measured frequency in the sequencing dataset with the reported number of new infections,
and the frequency of appearance of each cluster in the analysed dataset. These results can be compared to the ones in Fig.2
of the main publication, even though the method to obtain them is different, as well as the values of the thresholds used to
define the clusters. This comparison validates the solidity of the time-ordered analysis showed in this article. The results also
corroborate the idea that each wave can be associated with a different dominant cluster (as defined at rW = 100): v0 for the first
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Figure F3. Machine Learning results. For England, the top panel shows the time-distribution of the sequences used in this
analysis. Below, we present the results of the clustering for two choices of cut: at a Ward distance rW = 50 (left) and rW = 100
(right). The middle plots show an estimate of the daily number of new infections per cluster, compared to the ones attributed to
the Alpha VoC in the GISAID dataset dotted and solid lines, respectively. In the bottom plots, we show the evolution of the
percentage of sequences in each cluster.

wave occurring in March-May 2020; v1 for the second wave in October-November 2020; v2 (the Alpha VoC) for the third wave
in December-February 2021; and v3 for the last wave starting in May-June 2021.

Before further analysing the data, we validated our method by comparing the variant definition, associated to the clusters
in our analysis, to more standard methods used in computational biology. For this purpose, we have chosen the clade
classification19, as defined by the Nextstrain initiative18 and embedded in the data from the GISAID repository. The Nextstrain
clade definitions are informed by the statistical distribution of genome distances in phylogenetic clusters20, followed by the
merging of smaller lineages into major clades. The latter is based on shared marker variants. The main difference compared to
our analysis is that the comparison is based on the whole genome sequence, while we only analyse spike proteins. Note that the
marker variants used in the lineage merging contain specific information on proteins, including the spike. It has been noted that
this way of defining clades provides similar results to the Pango lineage classification21, and other variations. For the UK, we
show in Fig. F4 the frequency and number of infections assigned to each clade, where we note that GRY corresponds broadly
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Figure F4. Nextstrain clades. Representation of the “clades” as defined by the Nextstrain initiative18, where we only label
the most frequent ones, G, GR, GV and GRY. In the two panels we show the estimate of the number of infected by each clade
(left) and the percentage in the sequencing data (right) for the UK. We indicate the names of only the major clades. Note that
GRY coincides with the Alpha VoC, while the Delta VoC is behind the late dominance of the clade G.

to the Alpha VoC (or variant v2 in our results). These plots confirm that each wave is dominated by a single group of mutations.
By comparing the frequencies, we also observe that our variant v1 matches the clade GV, while v0 groups all the other ones
that mainly occurred during the first wave. We also note that our method allows to clearly identify the Delta VoC (v3), while
in the Nextstrain clades it is associated with the clade G. This validation demonstrates that the clustering based on the spike
protein sequences alone is able to identify relevant variants for the SARS-CoV-2.

S3 Time-binning and linkage analysis
Data from the GISAID repository has been binned on a monthly basis for the England, Wales and Scotland datasets, as shown
in Table T2. Despite the rather large number of monthly recorded data, we found sequences with high replica rate, thus the
percentage of different sequences over the whole dataset is also reported. For each month the same hierarchical clustering
algorithm described above based on the Levenshtein measure (LM) has been applied. Here the two main parameters to take in
account are the clustering cutoff that mainly acts on the size of the clusters and the threshold on the minimum amount of data
that is needed to define a cluster. Detailed studies have been made to find the right trade off between the number of clusters and
the coverage of the dataset.

We define the cutoff based on the Ward distance, rW , as defined in the previous section. The coverage threshold is defined
in terms of a minimum percentage of the whole sequence dataset (per month) that is covered by each branch above the cutoff.
Only branches above the threshold are retained to define clusters. For each given cutoff value rW , the coverage of the dataset
decreases while the threshold value increases. Hence, increasing the coverage would require pushing the threshold towards
smaller values. However, the threshold choice must take into account the large increase in the number of (small) clusters. Quite
independently of the month, the number of clusters is almost stable for any coverage threshold in the [10−2,10−1] range, while
for smaller values it shows a linear increase. Thus we choose to set the threshold value to 10−2 (1%) to maximise the mean
coverage of the dataset (mean coverage > 90%). Moreover it has been found that the mean coverage is almost stable for any
cutoff in the range rW ∈ [50,200] while the number of defined clusters decreases with the cutoff value, as shown in Fig. F5.
Thus the default working point has been set to a cutoff value of rW = 100 and a coverage threshold of 1%.

S3.1 Time-series sequences
To define and follow the time evolution of a given candidate variant, we build time-series of clusters starting from month 1
using the following algorithm:

• For each cluster in month i we selected the most frequent sequence and we tried to find a cluster with the same sequence
in month i+1 (strong link). We iterate to build a path until the procedure fails or the last month is reached.

• If the strong link association fails but we still have clusters in consecutive months that are free from strong links, we
connected them provided that the distance is less than a given threshold. If two clusters converge to the same node we
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Month England Scotland Wales
1 2 (100%) 0 0
2 64 (9%) 0 1 (100%)
3 3944 (5%) 1109 (5%) 965 (5%)
4 7335 (6%) 1923 (6%) 2178 (5%)
5 2204 (10%) 306 (12%) 866 (7%)
6 5079 (6%) 58 (24%) 425 (7%)
7 2026 (9%) 67 (9%) 102 (11%)
8 4429 (8%) 937 (8%) 210 (15%)
9 9499 (6%) 1592 (6%) 1275 (6%)
10 19634 (6%) 1740 (8%) 2732 (5%)
11 23431 (7%) 602 (11%) 2497 (6%)
12 25339 (6%) 1161 (9%) 3989 (6%)
13 46685 (5%) 2196 (8%) 3508 (6%)
14 39326 (5%) 4600 (6%) 2769 (7%)
15 49545 (4%) 9655 (3%) 1958 (7%)
16 24057 (5%) 4800 (5%) 689 (12%)
17 24335 (4%) 6263 (3%) 301 (10%)
18 30981 (4%) 3638 (5%) 98 (12%)
19 58600 (4%) 4968 (9%) 1580 (12%)
20 86520 (5%) 1522 (15%) 297 (25%)

Table T2. Number of GISAID recorded sequences from January 2020 (Month 1) to August 2021 (Month 20).

keep the nearest one (weak link).

The threshold used to define weak links has been optimised looking at the distribution of the distances between clusters
connected with strong links, as shown in Fig. F6. To preserve the topology based on the LM, we chose the soft link threshold as
the maximum distance found for a strong link.

We define a chain as a list of consecutive clusters connected by strong or weak links as best candidate to study the
evolutionary paths of a candidate variant. For each well defined chain we also assign a branching link taking the first cluster
of the chain and associating it with the cluster in the previous month that is the closest in terms of the Ward distance. In the
following we assign as chain identification number the one of the first cluster in the chain.

S3.2 Results for the nations of Great Britain: England, Scotland and Wales
Chains of clusters for England have been presented in the main manuscript, at the top of Fig.2. We also repeated the same
analysis for Scotland and Wales datasets, even though the statistics is more limited. Using the same working point, with cutoff
rW = 100 and threshold of 1%, comparable with the right column of Fig.2, we obtain the results shown in Fig. F7. For both
nations, we can only define three persisting chains: The chains 1–15 (Scotland) and 1–19 (Wales) can be associated to the
original variant of the virus (blue solid lines); the chains 11–21 (Scotland) and 13–24 (Wales) contain as dominant Spike variant
the one with the characteristics of the Alpha VoC, B.1.1.7 (yellow solid lines); the chains 18–23 (Scotland) and 22-25 (Wales)
share the dominant Spike variant of the Delta VoC, B.1.617 with the additional, mutation T95I (solid green lines). These results
validate the ability of our ML algorithm to identify emerging variants.

S3.3 Virus diversification along the chains for England
A comparison of the evolutionary path of the England chains suggests a competitive mechanism between variants. To further
investigate this, we studied the stability of the chains via the distance between consecutive clusters, as shown in Fig. F8. For
longer chains, like v0 (original variant) and v2 (Alpha VoC), we clearly see that the distance increases towards the end of the
chain itself. Furthermore, v2 enjoys smaller distances along the chain, thus showing increased stability.

For completeness, we also provide some detailed information about the chains, also listing the frequencies of the dominant
and sub-dominant Spike variants in all the chains for England, as shown in Table T4.
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Figure F5. Dataset coverage (left) and number of clusters (right) as a function of the Ward cutoff rW .

Figure F6. Strong link (left) and weak link (right) distances.

S4 Early warning for Delta and Delta plus variants

S4.1 Early warning performance on the Delta VoC
We checked the early warning performance on the onset of the Delta VoC in the UK, and compared it to the results obtained
for the Alpha (as detailed in the main text). As the sequencing rates at the Delta onset are comparable to those of the Alpha,
the comparison can be done directly using the same weekly time binning. We first checked that the same parameters of the
clustering algorithm lead to similar results. In fact, values of the cutoff rW = 100 lead to a unique identification of the Delta
chain, as shown in the left plots of Fig. F9.

We also compared the evolution of the two VoCs after the week of first detection, as show in the right plot in Fig. F9. The
Delta VoC clearly spreads much faster than the Alpha one. We then tested the early warning algorithm with a C.I. of 0.5, thus
allowing for a 50% probability of mis-identification of the correct emerging variant. We see that for the Alpha, the stated C.I. is
obtained when the VoC percentage in the time-bin is 1%, while for the Delta a higher percentage of 3% is required. For both
VoCs, the early warning algorithm gives a positive warning at comparable times after the first detection of the new variant in the
sequencing data.

S4.2 Early warning for the AY.4.2 (‘Delta plus’) driven variant
We performed a preliminary weekly-binned analysis for the most recent data (July to September, 2021) to highlight the
emergence of a new variant. In particular, we aim at uncover if the branching observed in Fig.2 of the main text in July/August
can trigger an early warning issue. The data is summarised in Table T3, where we highlight the sequences belonging to the
Pango lineage AY.4.2, which is the dominant Spike variant in cluster 43 of Fig.2. In this preliminary study, we applied the ML
algorithm with the working point rW = 100 and threshold of 1%, before the optimisation for the weekly analysis.

The resulting chains are shown in Fig. F10, where the cluster 20 and the chain 25–28–30 have the AY.4.2 as dominant
Spike variant. The lack of a cluster in week 36 may be due to the lower statistics, and it can be filled via the optimisation of the
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Figure F7. Monthly chains as candidate emerging variants for the Scotland dataset (left) and the Wales one (right). Strong
links (black line) and weak link (red line) are shown within each chain. In the bottom plots we show the percentage of each
chain per month.

working point. These preliminary results clearly show that a new persisting chain is emerging, starting from week 35 (23rd of
August, 2021). Note that our identification predates the establishment of the lineage itself, which was done at the beginning of
September 2021.

S5 3D spike protein analysis

3D structures of the closed Spike conformation of SARS-CoV222 (PDB 6ZGI) were analysed using the UCSF ChimeraX
software, developed by the Resource for Biocomputing, Visualisation, and Informatics at the University of California, San
Francisco, with support from National Institutes of Health R01-GM129325 and the Office of Cyber Infrastructure and
Computational Biology, National Institute of Allergy and Infectious Diseases23.

S6 Heatmap of spike protein variability
For each time-ordered chain, it was possible to investigate the local path of mutations along time. As the number of sequences
in each cluster varies a lot, depending on the month they refer to due to variability in the data collection, we need to find a way
to properly normalise the counting of mutations at each position. To do this we applied the following procedure: We first define
a vector counter (dimension = 1273, the number of the sites in the spike protein) and initialised it to 0. Our goal is to increase
this counter in the sites in which a mutation occur. To do so, we apply the following algorithm:

1. For each cluster, we select the sequences repeated more than 1% of the total elements in the cluster.

2. For each sequence in the cluster i, we determine the sequence in cluster i−1 of the chain that is at the minimal Levenshtein
distance. This procedure defines a pair of sequences, Seq1 in cluster i and Seq2 in cluster i−1.
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v0 v1a v1b

v2 v3a v3b

Figure F8. Ward distance between consecutive clusters for the England chains (rW = 100): v0 (original strain, upper left), v1a
(upper middle), v1b (upper right), v2 (Alpha VoC, lower left), v3a (Delta VoC, lower middle) and v3b (Delta VoC, lower right)

3. We compare the two sequences and, if we find a mismatch of amino acid in the same position, we increment the counter
in that position taking into account the number of sequence Seq1.

4. This procedure is repeated for all the sequences selected in cluster i

5. At the end, once all sequences in cluster i are exhausted, we divide the counter by the number of all elements present in
the cluster.

For the first cluster in each chain, we used as reference the dominant sequence (variant) in the the paren cluster, as defined
by the branching links. For v0, we used as reference the sequence from Wuhan to compute the mismatch for the cluster 1.
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Week (2021) Tot. sequences AY.4.2 sequences percentage
26 10942 28 0.25%
27 11133 78 0.7%
28 10202 121 1.2%
29 16120 221 1.4%
30 17234 248 1.4%
31 19654 309 1.6%
32 16665 380 2.3%
33 19886 547 2.75%
34 20051 683 3.4%
35 20262 772 3.8%
36 13503 591 4.4%
37 18009 1045 5.8%
38 15609 1074 6.9%
39 9327 757 8.2%

Table T3. Number of GISAID recorded sequences from week 26 (20th of June, 2021) to week 39 (19th of September, 2021)
indicating the number of sequences and percentage of the Pango lineage AY.4.2.

26 27 28 29 30 31 32 33 34 35 36 37 38 3925

Dominant Spike variant: 
AY.4.2 lineage

rW = 100 , th. 1%

Figure F10. Results of the clustering algorithm for the weekly data, highlighting the emergence of a new persisting chain (red
arrow) dominated by the AY.4.2 lineage. The working point is rW = 100 and threshold of 1%.
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Month Cluster sequences no variants Spike variant percentage
Mar 2020 1 3571 3 (60%, 37%, 2.7%)
Apr 2020 2 6218 4 (84%, 13%, 1.8%, 1.2%)
May 2020 3 1744 6 (89.5%, 3.3%, 2.5%, 2.2%, 1.3%, 1.3%)
Jun 2020 4 3833 5 (89%, 6.1%, 1.9%, 1.7%, 1.5%)
Jul 2020 5 1504 8 (83%, 5.8%, 3.4%, 1.9%, 1.7%, 1.6%, 1.5%, 1.3%)
Aug 2020 6 3288 14 (56.5%, 11%, 5.0%, 4.1%, 3.5%, 3.4%, 3.0%, 2.7%, 2.3%, 2.3%,

1.9%, 1.9%, 1.3%, 1.3%)
Sept 2020 7 4795 12 (69%, 7.4%, 3.6%, 3.3%, 2.8%, 2.5%, 2.4%, 2.3%, 1.9%, 1.9%,

1.6%, 1.3%)
8 3012 10 (42%, 33.6%, 5.6%, 4.9%, 3.7%, 3.2%, 1.9%, 1.9%, 1.7%, 1.5%)

Oct 2020 9 5410 9 (67%, 8.7%, 6.7%, 4.8%, 2.9%, 2.7%, 2.5%, 1.9%, 1.5%)
10 4517 6 (89.5%, 3.6%, 2.1%, 2.0%, 1.4%, 1.3%)
11 5223 8 (75%, 10.5%, 3.0%, 2.8%, 2.6%, 2.4%, 1.9%, 1.7%)
12 389 4 (60.7%, 16.5%, 16%, 6.7%)

Nov 2020 13 6703 6 (86.4%, 4.7%, 3.9%, 2.0%, 1/6%, 1.3%)
14 1762 5 (93$, 3.0%, 1.4%, 1.2%, 1.2%)
15 5080 6 (74.7%, 12%, 4.2%, 4.2%, 2.5%, 2.4%)
16 3699 8 (70.5%, 11%, 6.2%, 3.1%, 3.0%, 2.7%, 2.0%, 1.5%)
17 953 10 (48.4%, 13.4%, 12.7%, 10%, 5.8%, 3.5%, 1.9%, 1.8%, 1.5%, 1.2%)
18 260 8 (68%, 12.7%, 6.5%, 4.2%, 2.7%, 2.7%, 1.9%, 1.2%)

Dec 2020 19 3951 5 (89%, 3.7%, 3.0%, 2.6%, 1.9%)
20 12153 2 (98.6%, 1.4%)
21 2996 9 (63.8%, 9.5%, 6.4%, 5.4%, 5.0%, 3.4%, 2.7%, 1.9%, 1.8%)
22 1204 11 (60%, 10.8%, 9.5%, 3.9%, 2.9%, 2.3%, 2/3%, 2.1%, 2.1%, 2.1%, 2.0)

Jan 2021 23 33238 3 (95.2%, 3.3%, 1.5%)
24 3287 7 (64%, 22.3%, 5.4%, 2.8%, 2.2%, 1.9%, 1.6%)
25 464 17 (33.8%, 8.4%, 7.3%, 6.7%, 6.3%, 5.8%, 4.5%, 4.1%, 4.1%, 3.2%,

2.6%, 2.6%, 2.4%, 2.4%, 1.9%, 1.9%, 1.9%)
Feb 2021 26 29677 5 (92.7%, 2.4%, 1.9%, 1.6%, 1.5%)

27 548 9 (51.6%, 17%, 10.4%, 8.4%, 3.6%, 3.3%, 2.0%, 1.8%, 1.8%)
Mar 2021 28 36439 5 (91.2%, 2.7%, 2.4%, 2.1%, 1.5)

29 358 16 (25.7%, 15.4%, 10.6%, 6.1%, 5.6%, 5.3%, 5.0%, 5.0%, 4.5%, 3.4%,
2.5%, 2.5%, 2.2%, 2.2%, 2.0%, 2.0%)

Apr 2021 30 16020 4 (93.4%, 2.9%, 1.9%, 1.7%)
31 819 12 (34.9%, 21.2%, 17.8%, 8.5%, 5.0%, 3.5%, 2.1%, 1.7%, 1.3%, 1.3%,

1.2%, 1.2%)
May 2021 32 7317 5 (90.5%, 3.0%, 3.0%, 1.9%, 1.6%)

33 8673 2 (92.4%, 7.6%)
34 3972 3 (62%, 35.4%, 2.6%)

Jun 2021 35 18918 2 (98.8%, 1.2%)
36 5690 2 (63.2%, 36.8%)
37 1367 5 (93.3%, 2.0%, 1.8%, 1.5%, 1.4)

Jul 2021 38 35501 2 (98.4%, 1.4%)
39 7627 7 (88.2%, 3.1%, 2.2%, 2.2%, 1.5%, 1.5%, 1.4)
40 2078 4 (68.3%, 29%, 1.3%, 1.3%)

Aug 2021 41 70724 2 (67.8%, 1.2%)
42 13548 5 (66.2%, 5.0%, 3.6%, 1.7%, 1.3%)
43 2248 5 (78.9%, 6.5%, 1.8%, 1.2%, 1.1%)

Table T4. Dominant and subdominant Spike proteins in the England clusters from March 2020 to August 2021.
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