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Supplementary Figure 1. Effect of self-rectifying characteristic in a memristor cross-bar 
array. (a) Schematic of a memristor cross-bar array without self-rectifying characteristic. The 
large leakage current is formed through numerous undesired current paths, called sneak paths. 
The sneak path interrupts the write/erase operation of memristor by interfering neighbor cells, 
and also interrupts read operation by making unselected cells to be read. (b) Schematic of 
memristor cross-bar array when memristors in a cross-bar array have the self-rectifying 
characteristic. The undesired current paths are blocked, thus the sneak path issues are resolved. 
(c) The diode-like characteristic of a memristor is effective because the sneak path must pass 
the reversely biased cell. (d) The pulsed response of the gradual TiOx memristor in a 20×20 
cross-bar array when is read by Vread (+1.5 V) and negative Vread (-1.5 V), respectively. The 
dramatic conductance change from consecutive 100 SET pulses and following dynamic self-
decaying is clearly shown when the memristor is read by positive read bias. However, an 
extremely small current is sensed when the negative read voltage is used, which means that the 
leakage path cannot be formed in the gradual TiOx memristor cross-bar array. 
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Supplementary Figure 2. Forming-free property of the device. (a) The first I-V curve of 
the gradual TiOx memristor. (b) The second I-V curve of the device. The device did not show 
the necessity of the forming process, but the first I-V curve has little difference compared to 
the second curve. The shape of the first I-V curve in (a) only appears in the first voltage sweep, 
and only the shape of the second I-V curve appears after the first sweep. 
 
 

 
Supplementary Figure 3. A scanning electron microscope (SEM) image (a) and an optical 
microscope image (b) of the fabricated cross-bar array. The size of a single cell in the array 
is 5×5 μm2. The column lines are bottom electrodes (Ti) and the row lines are top electrodes 
(Pt). Scale bar in the SEM image: 500 μm 
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Supplementary Figure 4. Superior analog conductance change of gradual TiOx 
memristor along with 16 SET pulses. The pulsed responses of every device in a 20×20 
gradual TiOx memristor cross-bar array are measured by using 16 SET pulses (4.5 V, 100 µs) 
and following self-decaying. The read pulse amplitude is 2 V and the width is 100 µs. Through 
the whole SET pulses, each memristor shows identical analog conductance change, which 
shows the superior uniformity of the gradual TiOx memristor cross-bar array. The average 
on/off ratio is 22. 
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Supplementary Figure 5. Consecutive 125 I-V curves of the Pt/sputtered TiO2/Ti device. 
Instead of the anodized TiOx layer, RF-sputtered TiOx layer by sputtering a TiO2 target at room 
temperature is utilized as insulating material to study the effect of the anodizing process. The 
thickness of sputtered TiOx layer and anodized layer are both about 30 nm. Unlike the anodized 
device, the sputtered device shows unstable resistive switching with high leakage current and 
large variation. The leakage current increases in the sputtered device and the self-rectifying 
property deteriorates. In addition to the leakage, the large variation and the poor uniformity are 
induced from the evenly distributed oxygen in the sputtered TiOx. It is hard to modulate the 
effective insulator thickness, because more oxygen should be moved to reduce the effective 
insulator in sputtered TiOx case. Therefore, the sputtered device shows a small on/off ratio at 
the first cycle. After applying 125 voltage sweeps, the sputtered device shows a high on/off 
ratio similar to the anodized device. The consecutive voltage stimulus might change the oxygen 
distribution, which has a high oxygen concentration at the top electrode side and a low oxygen 
concentration at the bottom electrode side, similar to the anodized device. 
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Supplementary Figure 6. Effect of RESET pulses in the self-decaying stage. A gradual 
TiOx memristor is tested with 200 SET pulses (4 V, 20 µs) and is read by read pulse (1.5 V, 
300 µs) as shown in the blue side of the figure. The RESET voltage is applied to show the 
effect of RESET bias when the device’s conductance is decayed, as shown in the red side of 
the figure. The RESET pulse accelerates the decaying speed, and the larger RESET bias makes 
the decaying even faster than the small RESET bias. The RESET bias can be utilized in the 
neuro-memristive computing system where the memristors must be quickly initialized to 
process the next data.  
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Supplementary Figure 7. The response of devices with different device sizes and set pulse 
widths. Four devices having different sizes from 5×5 μm2 to 50×50 μm2 are measured by the 
read pulses (1.8 V, 400 μs) during the consecutive 100 set pulses (4 V) and following decaying. 
The pulse widths are varied from 10~30 μs and the corresponding pulse intervals are 90~70 μs. 
The responses from each device are identical except the current scaling effect due to device 
size difference. 

 
Supplementary Figure 8. TEM image of the gradual TiOx memristor. (a) The cross-section 
TEM image of the gradual TiOx memristor. The gradual TiOx layer is sandwiched between the 
BE and TE. The difference in the gradual TiOx layer between the TE side and BE side is easily 
observed. (b) The clearer image for gradual TiOx layer. 



8 

 

 
Supplementary Figure 9. The results of the X-ray diffraction analysis (XRD) for the 
anodized TiOx layer. The X-ray is illuminated on the surface of the layer; thus, the information 
about the surface structure is revealed. The results show that the anodized TiOx has a fully 
amorphous structure near the surface region, by showing that no pick related to the crystal TiO2 
(e.g. rutile or anatase) is observed in the measured data. 
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Supplementary Figure 10. Responses of the artificial neuron with several cycles of 
pulses. The artificial neuron is tested with an aggressive pulse train, where a single pulse 
train consists of 4 sub-pulse train, and a sub-pulse train has 20 pulses (4 V, 100 μs, and 50 μs 
interval). For one cycle, four sub-pulse trains are applied to the neuron with a 1 ms interval. 
The artificial neuron receives 50 cycles of the pulse train, which means that the neuron 
receives 4,000 pulses. During the test, the responses of the artificial neuron are not changed. 
The interval between each cycle is one-second, and the neuron goes back to the original state 
(memristor is fully reset) during the interval. 
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Supplementary Figure 11. The effect of the presynaptic spike amplitude to the artificial 
neuron response. The responses of the artificial neuron with different presynaptic spike 
amplitudes (2.5, 3.5, 4, and 4.5 V) are measured. When the spike amplitude is low (2.5 V), the 
artificial neuron does not fire, because the charges integrated in the capacitor are not enough 
to make high voltage that can turn the memristor on. However, when the spike amplitude is 
larger than 3.5 V, the neuron fires after integrating one or two presynaptic spikes. This result 
shows the artificial neuron can be modulated by the spike amplitude. The 400 μs spike width 
with 100 μs interval is used for all cases. 
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Supplementary Figure 12. The effects of the pulse (spike) width to the operation of the 
artificial neuron. The presynaptic spike width and interval are decreased in the same ratio, 
from 400 μs to 20 μs for spike width and from 100 μs to 5 μs for spike interval. From the 
results, it is demonstrated that the neuron operates with short pulses as short as 40 μs. During 
the test, the ratio between spike width and spike interval keeps constant. 
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Supplementary Figure 13. Modulation of the threshold characteristic of the artificial 
neuron by changing the capacitance. Artificial neurons with various capacitance (5, 10, 20 
nF) are developed to test the threshold modulation of the neuron. When the capacitance is 
small, the capacitor’s potential, which is an analogy to the membrane potential of the 
biological neuron, is easily elevated up to the threshold voltage. Therefore, when a 5 nF 
capacitor is used in the artificial neuron, then the neuron fires after integrating a single 
presynaptic spike. However, if the capacitance increases into 10 nF, it requires two pulses to 
fire the post-synaptic spikes. Finally, when the capacitance is 20 nF, the neuron requires five 
spikes to fire. These results demonstrate that the developed artificial neuron can be easily 
tuned by modifying the capacitor. 
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Supplementary Figure 14. The effect of the resistor and capacitor to the artificial 
neuron’s characteristic. When two neurons have different resistance and capacitance but the 
RC value remains same, the neuron shows same responses. This is because the threshold 
voltage is determined by the charges in the capacitor, and the speed of charging the capacitor 
is represented as R×C. In the experiments, an artificial neuron is composed of 94 kΩ 
resistance and 10 nF capacitance (a neuron that easily fires but has a weak synapse), and the 
other is composed of 47 kΩ resistance and 20 nF capacitance (a neuron that hardly fires but 
has a strong synapse). The neurons show similar response to the presynaptic spike trains. The 
4 V, 200 μs spike is used with 50 μs interval for the experiment. 
 
 

 
Supplementary Figure 15. A device I-V hysteresis curve (left), and an extracted on/off 
ratio of the device for each voltage point from the I-V curve (right). To investigate the 
maximum achievable on/off ratio of the device, the on/off ratio is extracted from the I-V 
curve of the device. The on/off ratio has the highest value (>2,700) when about 1 V is applied 
to the device. 
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Supplementary Figure 16. A schematic of the memristors processing two different 
sequence input. (a) Input ‘ABCDEFGH’ feed into the memristors. Each alphabet in the input 
data is assigned to the memristor in a cross-bar array. When the corresponding alphabet is 
received, a SET pulse is applied to the assigned memristor. The states of the memristors are 
read for every time step. The memristor for an earlier entering element has lower conductance, 
because of the self-decaying property. (b) Input ‘EBDGCFAH’, which has different order but 
identical elements, feed into the memristors. Due to the self-decaying property of the gradual 
TiOx memristor, the memristors can distinguish two different alphabet sequences from the 
output. 
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Supplementary Figure 17. The normalized responses of the gradual TiOx memristor 
during the potentiation and decaying with various W/I ratios. To investigate the effect of 
the W/I ratio to the decaying time constant of the device, the gradual TiOx memristor is 
potentiated with various W/I ratios from 5/95 to 50/50, and the decaying time constant is 
analyzed. The decaying time constant increases as the W/I ratio increases. The time constant 
is saturated to about 15 ms when the W/I ratio is smaller than 10/90. Similarly, the time constant 
is saturated to about 40 ms when the W/I ratio is larger than 40/60. The minimum and the 
maximum time constants are ~ 15 ms and ~ 40 ms, respectively. The W/I ratio that makes the 
time constant saturated can be different according to the pulse amplitude and the unit pulse 
width. 
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Supplementary Figure 18. The normalized memristor output current according to the 
binary pulse train with various W/I ratios. The unit pulse length is 100 μs, and the W/I ratio 
increases from 20/80 to 95/5 with a 5 μs interval. When the W/I ratio is low, the potentiation 
and decaying are abrupt. On the contrary, the potentiation and decaying are gradual in the high 
W/I ratio cases. The results show that memristors with different W/I ratios process the same 
sequential input differently, because of the different potentiation ratios and the decaying speed. 
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Supplementary Figure 19. A circuit schematic for the neuro-memristive computing 
system composed of the highly reliable dynamic memristor array and the peripheral 
circuit. Each sequence element (character) is assigned to a different column of the cross-bar 
array. Memristors in a same row of the cross-bar array shares a same W/I ratio (duty cycle), 
and memristors in different rows have different W/I ratios. A sequence enters each row of the 
memristor cross-bar array in form of a pulse train. The sequence data is transformed to the 
pulse train of desired duty cycles for each row by the pulse generator. The high voltage 
(amplitude) of the pulse is determined to the set voltage and the read voltage by the voltage 
selector. The selected column that is assigned to a certain character is grounded and the others 
are floated by the switches connected to the columns of the cross-bar array. The readout circuit 
is composed of an integrator and an analog-digital converter (ADC) and is connected to every 
column after the switch. The outputs from each memristor device are mapped to each node of 
the readout function, and the readout function trains its weights with backpropagation method 
based on the error between the readout function output and the target data. 
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Supplementary Figure 20. An illustration of the operation of the developed neuro-
memristive computing system. In the given example, input character “G” enters the cross-bar 
array and the column for the “G” in the array is grounded to potentiate the column “G”. The 
pulse duty cycle for each row in the array is different to make the memristor to process the 
input differently. When the potentiation of the column finishes, the states of the memristors are 
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read through the read pulses through the row lines while the column lines are grounded. Then, 
the conductance of the memristors in the array are transferred to the input of the readout 
function. Based on the error between the readout function’s output and the target “I”, which is 
the next input of the input “G”, the readout function trains its weights. The same processes 
repeatedly progressed until the end-cursor enters the system.  
 
 
 
 
 

 
Supplementary Figure 21. The results of AMP prediction tool (CAMP). The results of 
AMP prediction tool about training set, generation sets from the mixed case (various W/I ratios), 
short-term (low W/I ratio), and long-term (high W/I ratio) cases respectively. P(AMP) is a 
probability of a sequence being AMP. When the P(AMP) of a sequence is bigger than 0.5, that 
sequence is considered as an AMP. The mixed case generates much more sequences with 
P(AMP)>0.5 compared to the short-term or long-term cases.
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Supplementary Figure 22. The 20×20 gradual TiOx memristor cross-bar array. A top-
view optical microscopy image of the cross-bar array. The inset shows the schematic of the 
cross-section of the cross-bar array. The gradual TiOx is patterned to disconnect Ti/TiOx/Ti 
ohmic path, which causes cell-to-cell interference. 
 
 
 
 
 

 
Supplementary Figure 23. The memristor modeling results. Pulsed responses of a gradual 
TiOx memristor with various W/I ratios are modeled to simulate the neuro-memristive 
computing system. The above 4 W/I ratios and the corresponding models are used for the 
simulation. The SET voltage is 4 V and the pulse width is controlled by modifying the duty 
cycle from 5 to 25 among the total of 100 µs. 
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Supplementary Figure 24. Schematic of the neuro-memristive computing system with 
mixed W/I ratios. (a) The schematic of a neuro-memristive computing system with four 
groups of memristors which have different pulse W/I ratios. The memristors with a high W/I 
ratio process the input data in a long time window, while the memristors having a low W/I ratio 
process the input only in the short time window. Each element of the input (such as alphabet) 
is assigned to the one memristor for each W/I ratio group, thus total four memristors are 
assigned for each element in this case. The memristor outputs are feed into the readout function, 
and the readout function trains its trainable parameters through backpropagation. (b) The 
schematic representing the processing abilities in terms of weights between each time step 
according to the W/I ratios. In the short-term case (low W/I ratio), the weight (𝜃𝜃) between each 
time step is small, while it is much larger in the long-term case (high W/I ratio). The time 
between each time step is 100 𝜇𝜇s in both short-term and long-term cases. 
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Supplementary Figure 25. Schematic of the selection of the next amino-acid based on the 
soft-max output. The 3rd layer of the readout function makes output value using the soft-max 
function as an activation function. A soft-max is used to make the readout function output 
values as probabilities of each amino-acid being selected. The system selects the next amino-
acid by making the random selection based on the probability from readout function output. 
This method gives variation to the generated sequences and prevents the neuro-memristive 
system from making the sequences already existing in the training set. 
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Supplementary Figure 26. Schematic of the neuro-memristive computing system 
operation at training phase and generation phase. At a training phase, the system learns the 
amino-acid grammar by predicting the next amino-acid. A conventional machine learning 
algorithm (logistic regression) is used for the training, based on the error (loss) between the 
target and selected amino-acid. At a generation phase, the system predicts the next amino-acid 
based on the trained information. The selected amino-acid becomes the next input of the system. 
The schematic does not consider the mixed case. 
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Supplementary Table 1. Comparisons with various memristor-based artificial neurons. 
The cycle-to-cycle and device-to-device uniformities of the gradual TiOx memristor are 
compared to the other existing neuron memristors (diffusive memristors and Mott memristors). 
The gradual TiOx memristor shows superior uniformities in both cycle-to-cycle and device-to-
device compared to the other neuron memristors. In addition, the gradual TiOx memristor can 
be integrated in the cross-bar array form thanks to its superior reliability, while the others hardly 
show cross-bar array integration. 
 
 

 
 
Supplementary Table 2. Comparisons with other various memristors for neuro-
memristive computing. To demonstrate the effectiveness of the gradual TiOx memristor for 
neuro-memristive computing system, several characteristics of the device are compared to the 
various memristors used for neuro-memristive computing system. The gradual TiOx 
memristor satisfies the superior uniformity, high on/off ratio, fast speed, high endurance, and 
high rectifying ratio for sneak path problems simultaneously. 
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