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Figure S1 (related to Figures 1, 3, 7). Reanalysis of published single nuclei RNA-seq datasets characterizing
Alzheimer’s disease and age-matched non-symptomatic donors.

Figure S2 (related to Figure 1). Gating parameters for SOX9* and LHX2*/NeuN- enrichment strategies.

Figure S3 (related to Figures 1, 3, 7). Rationale for removing D5 and D9 donors from final cohort, and
general quality control metavariables for astrocytes and oligodendrocytes.

Figure S4 (related to Figure 2). Oligodendrocyte transcriptomic profiles suggest that the majority of
oligodendrocytes lose critical functions in Alzheimer’s disease.

Figure S5 (related to Figure 2). Sex-specific differential gene expression in oligodendrocytes.

Figure S6 (related to Figures 3, 7). Reanalysis of published single nuclei RNA-seq datasets characterizing
Alzheimer’s disease and age-matched non-symptomatic donors.

Figure S7 (related to Figures 3, 7). Assessment of astrocyte and oligodendrocyte donor metavariables from
previously published datasets.

Figure S8 (related to Figures 3, 7). Quality control assessment of astrocyte and oligodendrocyte integrated
datasets split by cluster or by dataset.

Figure S9 (related to Figure 5). Alzheimer’s disease-specific GO descriptions in
astrocytes.

Figure S10 (related to Figure 5). Sex-specific differential gene expression in
astrocytes.

Figure S11 (related to Figures 4,5). Validation of Alzheimer’s enriched astrocyte
transcripts SPARC and C3.

Figure S$12 (related to Figure 6). Localizing heterogeneous astrocyte gene signatures across the human and
mouse cortex.

Figure S13 (related to Figures 3,7). Visualization of disease-associated transcripts from previously published
datasets.
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Figure S1 (related to Figures 1, 3, 7). Reanalysis of published single nuclei RNA-seq datasets characteriz-
ing Alzheimer’s disease and age-matched non-symptomatic donors. (A) Cell type proportions of total nuclei
captured, (B) total numbers of astrocytes and oligodendrocytes captured split by disease state, and (C) average
number of astrocytes and oligodendrocytes captured per donor split by disease state from reanalyzed snRNA-seq
datasets (Mathys et al., 2019; Grubman et al., 2019; Zhou et al., 2020). (D) PCR confirmation of donor APOE
genotype. (E-M) Evaluation of SOX9* pilot run, and comparison of SOX9* versus LHX2*/NeuN- sorting strate-
gies. (E) tSNE plots of total nuclei (N = 18,991) captured using SOX9* sorting. The tSNE plot on the left highlights
all different cell types captured using this method, and the tSNE plot on the right highlights sample conditions
(i.e., SOX9* nuclei (N = 14,591) and SOX9- nuclei (N = 4,400)). (F) Corresponding average scaled expression
heatmap of cell type-specific transcripts (G) cell type proportions of nuclei captured using SOX9. (H) tSNE plots
of total nuclei (N = 12,611) captured from a single donor using either SOX9* or LHX2*/NeuN- sorting. The tSNE
plot on the left highlights all different cell types captured, and the tSNE plot on the right highlights sample condi-
tions (i.e., SOX9* sorted nuclei (N = 2,692), SOX9 sorted nuclei (N = 1,812), and LHX2*/NeuN- sorted nuclei (N
= 8,107)). (1) Corresponding average scaled expression heatmap of cell type-specific transcripts by cluster and
(J) cell type proportions of nuclei captured. (K) tSNE plots of only astrocytes (N = 5,918) captured from a single
donor using SOX9 or LHX2*/NeuN-. The tSNE plot on the left highlights all astrocyte clusters, and the tSNE
plot on the right highlights sample conditions (i.e., SOX9* nuclei (N = 158), SOX9- nuclei (N = 513), and LHX2*/
NeuN- nuclei (N = 5,277)). (L) Corresponding average scaled expression heatmap of top 5 cluster enriched tran-
scripts per cluster and (M) proportions of clusters captured across samples. Abbreviations: Astro., astrocyte; D,
donor; Endo., endothelial cell; Micro., microglia; Oligo., oligodendrocyte; OPC, oligodendrocyte precursor cell.
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Figure S2 (related to Figure 1). Gating parameters for SOX9* and LHX2*/NeuN- enrichment strategies.
(A) For SOX9* sorting, the following gates were used to identify SOX9* single nuclei: (1) Nuclei were detect-
ed using DAPI; (2) large nuclei were excluded using forward and side scatter properties; (3) doublets were
excluded; and (4) SOX9* nuclei were detected/collected using unlabeled (negative), secondary (488 only),
and isotype controls to establish the final gate. Representative SOX9* sort data are from Pilot D5. (B) For
LHX2*/NeuN- sorting, the following gates were used to identify LHX2*/NeuN- single nuclei: (1) Nuclei were
detected using DAPI; (2) large nuclei were excluded using forward and side scatter properties; (3) doublets
were excluded; and (4) LHX2*/NeuN- nuclei were detected/collected using unlabeled (negative), second-
ary (488 only and 647 only), isotype (Rabbit and Mouse), and single labeled (LHX2 only and N euN only)
controls to establish the final gate. Representative LHX2*/NeuN- sort data are from D10. Abbreviations:
ctrl, control; DAPI, 4’,6-Diamidino-2-Phenylindole Dihydrochloride; FSC, forward scatter; SSC, side scatter.
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Figure S3 (related to Figures 1, 3, 7). Rationale for removing D5 and D9 donors from final cohort, and gener-
al quality control metavariables for astrocytes and oligodendrocytes. (A) tSNE plots of astrocyte nuclei (N =
45,088) captured from all 16 donors using LHX2*/NeuN-. The tSNE plot on the left highlights all astrocyte clusters,
and the tSNE plot on the right highlights donor contribution across clusters. It is clear that D5 drives a single clus-
ter (cluster 7, arrows) and as such these sequencing data were removed from downstream processing. (B) Corre-
sponding average scaled expression heatmap of top 5 enriched/unique transcripts per astrocyte cluster. (C) Total
number of astrocytes identified per donor post-quality check analysis. Donor 9 was excluded from downstream
analysis due to low number of astrocytes identified (116 astrocytes). Additional donor metavariables highlighted
include disease state (blue, NS donors; red, AD donors) and sex (green, female; yellow, male). (D) Proportion of
astrocyte clusters identified in each donor. Additional metavariables highlighted described in panel F. (E) Dotplot
of top 50 enriched transcripts in cluster 7 astrocytes split by donor. NB. Cluster 7 was driven by a single donor
(D5). (E.G) Donor sample metavariables - tSNE plots of (from left to right) uniquely defined clusters, RNA quality of
donor samples, age range of donors, and post-mortem interval of donor samples for (F) captured astrocytes (N =
41,071) and (G) oligodendrocytes (N = 23,840). Ages are listed in years, and PMIs in hours. (H.I) tSNE plots and
total capture rate/percentage capture for astrocytes (H) and oligodendrocytes (1) across donors (see Figures S6.
S7). tSNE plots show no cluster was driven specifically by APOE genotype, thought capture rates for APOE 3/3,
3/4, and 4/4 donors are much lower than for APOE 2/3 donors used in the current study. Abbreviations: AD, Alz-
heimer’s disease; D#, donor number; Dis., disease state; F, female; M, male; NA, not applicable as no information
was available from brain bank; NS, non-symptomatic. PMI, Post-Mortem Interval; RIN, RNA Integrity Number.
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Figure S4 (related to Figure 2). Oligodendrocyte transcriptomic profiles suggest that the majority of
oligodendrocytes have altered critical functions in Alzheimer’s disease. tSNE plots highlighting clusters
of interest, unique/shared GO terms, and differentially expressed genes (DEGs) associated with GO terms.
GO-associated DEGs are plotted as average scaled expression heatmaps by cluster(s) of interest and split by
disease state (blue, NS donors; red, AD donors). Additionally, example DEG violin plots to resolve the range
of expression (log normalized UMI counts) across all oligodendrocytes in single or multiple clusters. (A) Up-
regulated axonogenesis and synapse organization features unique to cluster 1. (B) Upregulated cholesterol
metabolism features unique to cluster 2. (C) Upregulated regulation of GTPase-mediated signal transduction
features and downregulated amino acid synthesis features shared by clusters 0 and 2. (D) Downregulated
synapse transmission, vesicle regulation, and ion transmembrane transport features as well as downregu-
lated metabolism features unique to cluster 0. Abbreviations: AD, Alzheimer’s disease; Comp., compound;
DEG, differentially expressed genes; Dep., dependent; Dis., disease; GO, gene ontology; NS, non-symp-
tomatic; Pos., positive; Reg., regulation; Transmem., transmembrane; UMI, unique molecular identifier.
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Figure S5 (related to Figure 2). Sex-specific differential gene expression in oligodendrocytes. Up-
and down-regulated female (A) and male (B) transcripts split by oligodendrocyte cluster. (C-F) UpSetR plots
highlighting sex-specific upregulated DEGs or GO terms that are unique to or shared between oligodendro-
cyte clusters. Abbreviations: DEG, differentially expressed gene; F, female; GO, gene ontology; M, male.
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Figure S6 (related to Figures 3, 7). Reanalysis of published single nuclei RNA-seq datasets characteriz-
ing Alzheimer’s disease and age-matched non-symptomatic donors. (A) Work process overview for data
reanalysis: realigning original FASTQ files to the same premRNA modified GRCh38 human reference genome
using the same version of Cell Ranger software (v4.0.0), and running quality control/all downstream analyses.
Datasets reanalyzed included Mathys et al. (2019) (B-C), Grubman et al. (2019) (D-E), and Zhou et al. (2020)
(F-G). For each dataset, tSNE plots of all captured nuclei (Mathys N = 64,909; Grubman N = 13,095; Zhou N =
101,383), and clusters defined based on ability to detect transcriptomically unique features (B, D, F). By evaluating
the averaged scaled expression of cell type-specific features in each cluster (C. E, G), cell type identities were as-
signed post-hoc to each respective cluster. Abbreviations: Astro., astrocyte; CR, Cell Ranger software (version
4.0.0); Endo., endothelial cell; Micro., microglia; Oligo., oligodendrocyte; OPC, oligodendrocyte precursor cell.
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Figure S7 (related to Figures 3, 7). Assessment of astrocyte and oligodendrocyte donor metavariables from
previously published datasets. tSNE plots of (from left to right) uniquely defined clusters, disease state, sex, age
range of donors, post-mortem interval, and APOE genotype of donors for (A) Mathys et al. (2019) astrocytes (N =
3,079) and oligodendrocytes (N = 18,229), (B) Grubman et al. (2019) astrocytes. (N = 2,330) and oligodendrocytes
(N=7,604), and (C) Zhou et al. (2020) astrocytes (N = 10,538) and oligodendrocytes (N = 34,949). Ages are listed
in years, and PMIs in hours. Abbreviations: AD, Alzheimer’s disease; NA, not applicable as no information was
available from published manuscript; NS, non-symptomatic; PMI, Post-Mortem Interval; RIN, RNAIntegrity Number.
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Figure S8 (related to Figures 3, 7). Quality control assessment of astrocyte and oligodendrocyte integrat-
ed datasets split by cluster or by dataset. tSNE plots of integrated (A) astrocytes (N = 57,018) and (B) oligo-
dendrocytes (N = 84,622) as visualized by cluster (top) and by dataset (bottom). Representative violin plots of the
number of genes captured per nucleus (“Genes”), the number of UMIs counted per nucleus (“UMI Count”), and
the percentage of mitochondrial DNA contamination (“%Mito”). Mathys et al. (2019) data are in yellow, Grubman
et al. (2019) data are in dark red, Zhou et al. (2020) data are in violet, and the current study’s data are in steel
blue. Abbreviations: %Mito, percentage of mitochondrial DNA contamination; UMI, unique molecular identifier.
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Figure S9 (related to Figure 5). Alzheimer’s disease-specific GO descriptions in astrocytes. (A) Table
lists summarized key upregulated GO descriptions (i.e., manual curation and summation of multiple identified
GO terms) unique to single astrocyte clusters as well as GO descriptions that are shared by multiple clusters.
Differentially expressed genes (DEGs) associated with these GO descriptions are listed on each heatmap for
respective clusters (color coding key listed on the top right). Average scaled expression of DEGs are visualized
comparing astrocytes isolated from non-symptomatic (blue) and Alzheimer’s disease (red) donors. (B) Table
lists summarized key downregulated GO descriptions (i.e., manual curation and summation of multiple identified
GO terms) unique to single clusters as well as GO descriptions that are shared by multiple clusters. Differential-
ly expressed genes (DEGs) associated with these GO descriptions are listed on each heatmap for respective
clusters (color coding key listed on the top right). Average scaled expression of DEGs are visualized comparing
astrocytes isolated from non-symptomatic (blue) and Alzheimer’s disease (red) donors. Abbreviations: AD,
Alzheimer’s disease; BBB, blood brain barrier; Dis., disease state; GO, gene ontology; NS, non-symptomatic.
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Figure S10 (related to Figure 5). Sex-specific differential gene expression in astrocytes. Up- and
down-regulated female (A) and male (B) transcripts split by astrocyte cluster. (C-F) UpSetR plots high-
lighting sex-specific upregulated DEGs or GO terms that are unique to or shared between astrocyte
clusters. Abbreviations: DEG, differentially expressed gene; F, female; GO, gene ontology; M, male.
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Figure S11 (related to Figures 4,5). Validation of Alzheimer’s enriched astrocyte transcripts SPARC
and C3. (A) Violin plot highlighting cluster-specific and Alzheimer’s disease (AD) enrichment in expression
of SPARC in clusters 4 and 5 in the current dataset. (B) This enrichment of SPARC was maintained across
the integrated datasets. (C) Feature plots from the integrated dataset, split per dataset highlighting expres-
sion of SPARC in astrocytes, and enrichment in AD donor samples. (D) Violin plot of Zhou et al (2020) data



from wildtype control, 5xFAD, Trem2”, and 5xFAD/Trem2’ mice highlights enrichment of Sparc in astrocytes
at 7 months (early) by not 15 months (late timepoints) in a mouse model of AD. (E) Immunofluorescent val-
idation of SPARC in non-symptomatic (top) and human AD (bottom) tissue, co-localized with the astrocyte
marker GFAP. (F) Quantification of the percentage of SPARC* astrocytes and global fluorescence intensity
for SPARC across six separate donors. (G) Feature plots from the integrated dataset, split per dataset, high-
lighting expression of C3 in astrocytes, and enriched in AD donor samples. Arrows highlight C3* clusters.
C3* cells were not detected in the Mathys (2019) or Grubman (2019) datasets prior to integration (H) due
to low capture rates of astrocytes. (I) Quantification of C3+ cells as a proportion of GFAP+ astrocytes using
immunofluorescence. Raw quantification values are displayed as well as mean * s.e.m. in panels F and I.
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Figure S12 (related to Figure 6). Localizing heterogeneous astrocyte gene signatures across the human
and mouse cortex. (A) Schematic overview of analysis pipeline used to explore enrichment of cluster-specific
astrocyte gene sets across human and mouse cortex. Maynard et al. (2021) data is from post-mortem human
dorsolateral pre-frontal cortex (DLPFC) with no noted pathology (3 donors, n = 12 sections). Hasel et al. (2021)
data from mice injected with saline or lipopolysaccharide to induce inflammation (n = 3 per condition). 10X Chro-
mium Visium data from each dataset was visualized and tested for differential enrichment across cortical regions
using parallel method (see Methods). (B) Spot-level gene module scores (middle) and resolution-enhanced
enrichment scores (right) for astrocyte Cluster 6 gene set overlaid on a representative section from the Maynard
et al. (2021) data, illustrating the Bayesian resolution enhancement method used for improved visualization. (C)
White matter gene expression score (WM score) overlaid on a representative mouse brain section from Hasel et
al (2021), and density plot of WM score across all six sections. Dotted line indicates threshold used to annotate
spots as white matter or gray matter. (D) (left) tSNE plot of Hasel et al (2021) Visium spots colored by final region
annotation. (right) Representative section overlaid with final spot regional annotations. (E) Spearman correla-
tions between human cortical regions and mouse cortical regions. Correlations were performed using scaled av-
erage expression of all one-to-one orthologous genes that were highly variable in both datasets (707 genes). (F)
Heatmap of z-scored Kruskal-Wallis test statistic H, testing differential enrichment of each cluster gene module
across cortical regions in each dataset. All cluster gene modules were significantly differentially enriched across
regions (Kruskal-Wallis test with Bonferroni correction, p < 0.05). Z-scored test statistics illustrate the degree to
which gene module scores differ across cortical regions in each dataset. (G) Visualization and differential enrich-
ment results for each astrocyte cluster (top: human; bottom: mouse). (left) Relative enrichment of cluster gene
module across representative Visium section. (right) Box and density plot of gene module scores across all spots
and all sections grouped by cortical region. +/- symbol represents whether the cluster gene module is significant-
ly enriched or de-enriched, respectively, in spots from the indicated region compared to the rest of the cortex
(Wilcoxon rank sum test with Bonferroni correction). (H) Box & density plots comparing expression of modules
of genes that were upregulated in AD in each astrocyte cluster in our snRNA-seq data across spots in various
cortical regions in saline versus LPS-injected mice. +/- symbol represents whether the AD gene module is signifi-
cantly upregulated or downregulated, respectively, in spots from the indicated region in LPS versus saline-inject-
ed mice (Wilcoxon rank sum test with Bonferroni correction). See Table S7 for exact test statistics and p-values.
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Figure S13 (related to Figures 3,7). Probing integrated astrocyte and ol
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Zhou data are in violet, and the current study’s data are in steel blue. Heatmaps of differentially expressed genes
(DEGSs) from Mathys et al. 2019 (B), Grubman et al. 2019 (C), and Zhou et al. 2020 (D). Alzheimer’s-associated
DEGs in the Zhou et al. dataset were detectable in the integrated dataset (upregulated — cluster 5; downregu-
lated cluster 2), likely due to increased numbers of sequenced astrocytes. Other reported disease-associated
astrocyte DEGs were not specific to individual clusters. Conversely, reverse-probing for previously described
disease-associated oligodendrocyte cluster-specific DEGs was more successful. (E) tSNE plots of integrated
oligodendrocytes as visualized by cluster (left) and by dataset (right). Mathys data are in yellow, Grubman data
are in dark red, Zhou data are in violet, and the current study’s data are in steel blue. (B-D) Heatmaps of dis-
ease-associated DEGs from each dataset attributed to oligodendrocytes. Abbreviations: AD, Alzheimer’s dis-
ease; DEG, differentially expressed gene; Dir., direction; Dis., disease; F, female; M, male; NS, non-symptomatic.



