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Preamble 
This appendix provides methodological detail for estimating health worker densities, estimating minimum health 
worker density thresholds to achieve universal health coverage, and supplementary results. This study complies with 
the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER) recommendations.1 It includes 
detailed modelling write-ups and information on data sourcing to maximise transparency in our estimation processes 
and provide a comprehensive account of analytical steps. Many of the methods outlined in this appendix have been 
described in previous GBD publications.2,3 Portions of this appendix have been reproduced or adapted from Lozano2 
and the GBD 2019 Universal Health Coverage Collaborators.3 
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GATHER statement 
This study complies with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER) 
recommendations.1 We have documented the steps involved in our analytical procedures and detailed the data 
sources used in compliance with GATHER. For additional GATHER reporting, please refer to appendix table 1 on 
pages 8-9.  
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Table 1. GATHER checklist 
GATHER checklist of information that should be included in reports of global health estimates, with description of 
compliance and location of information 
 

# GATHER checklist item Description of compliance Reference 
Objectives and funding    
1 Define the indicators, 

populations, and time periods for 
which estimates were made. 

Description of indicators, 
definitions, relevant time 
periods, and populations in 
paper and appendix. 
 

Main text; Appendix, Sections 
1-2 
 

2 List the funding sources for the 
work. 

Funding sources listed in paper. Main text Summary 

Data inputs    
For all data inputs from multiple 
sources that are synthesized as 
part of the study: 

   

3 Describe how the data were 
identified and how the data were 
accessed.  

Narrative description of data-
seeking methodology provided. 

Main text Methods; Appendix 
Sections 1-2 

4 Specify the inclusion and 
exclusion criteria. Identify all 
ad-hoc exclusions. 

Narrative about inclusion and 
exclusion criteria by data type 
provided. 

Main text Methods; Appendix 
Sections 1-2 

5 Provide information on all 
included data sources and their 
main characteristics. For each 
data source used, report 
reference information or contact 
name/institution, population 
represented, data collection 
method, year(s) of data 
collection, sex and age range, 
diagnostic criteria or 
measurement method, and 
sample size, as relevant.  

An interactive, online data 
source tool that provides 
metadata for data sources by 
geography and time.  

Appendix Section 3 
 
Online data tools will be updated 
at time of publication and 
findable at this link: 
http://ghdx.healthdata.org/gbd-
2019  
 

6 Identify and describe any 
categories of input data that have 
potentially important biases (eg, 
based on characteristics listed in 
item 5). 

Summary of some known biases 
included in paper. 

Main text Methods and 
Discussion 

For data inputs that contribute 
to the analysis but were not 
synthesized as part of the study: 

   

7 Describe and give sources for 
any other data inputs.  

An interactive, online data 
source tool that provides 
metadata for data sources. 

Appendix Section 3 
 
Online data tools will be updated 
at time of publication and 
findable at this link: 
http://ghdx.healthdata.org/gbd-
2019  
 
   

For all data inputs:    
8 Provide all data inputs in a file 

format from which data can be 
efficiently extracted (eg, a 
spreadsheet as opposed to a 
PDF), including all relevant 
meta-data listed in item 5. For 
any data inputs that cannot be 
shared due to ethical or legal 
reasons, such as third-party 
ownership, provide a contact 
name or the name of the 
institution that retains the right 
to the data. 
 

Downloads of input data are 
available through online tools, 
including data visualisation tools 
and data query tools.  

Appendix Section 3 
 
Online data tools will be updated 
at time of publication and 
findable at this link: 
http://ghdx.healthdata.org/gbd-
2019  
 
 

Data analysis    
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9 Provide a conceptual overview 
of the data analysis method. A 
diagram may be helpful.  

Flow diagrams of the overall 
methodological processes 
provided. 

Appendix Section 1 

10 Provide a detailed description of 
all steps of the analysis, 
including mathematical 
formulae. This description 
should cover, as relevant, data 
cleaning, data pre-processing, 
data adjustments and weighting 
of data sources, and 
mathematical or statistical 
model(s).  

Flow diagrams and 
corresponding methodological 
write-ups and modelling 
processes have been provided. 

Main text Methods; Appendix 
Sections 1-2 

11 Describe how candidate models 
were evaluated and how the final 
model(s) were selected. 

Provided in the methodological 
write-ups.  

Appendix Sections 1-2 

12 Provide the results of an 
evaluation of model 
performance, if done, as well as 
the results of any relevant 
sensitivity analysis. 

Provided the results of an 
evaluation of model 
performance.  

Appendix Section 1 

13 Describe methods for calculating 
uncertainty of the estimates. 
State which sources of 
uncertainty were, and were not, 
accounted for in the uncertainty 
analysis. 

Cited source that describes 
method for calculating 
uncertainty of estimates. We did 
not account for uncertainty in 
the frontier analysis. 

Included citation in main text 
and Appendix for information on 
uncertainty with respect to ST-
GPR. Method for calculating 
uncertainty also referenced in 
Appendix Section 1. 

14 State how analytic or statistical 
source code used to generate 
estimates can be accessed. 

Access statement provided. Links to code will be updated at 
time of publication and can be 
found here: 
http://ghdx.healthdata.org/gbd-
2019 

Results and discussion    
15 Provide published estimates in a 

file format from which data can 
be efficiently extracted. 

GBD 2019 results are available 
through online data visualisation 
tools, the Global Health Data 
Exchange, and the online data 
query tool. 

Online data tools will be updated 
at time of publication and 
findable at this link: 
http://ghdx.healthdata.org/gbd-
2019  
 
 

16 Report a quantitative measure of 
the uncertainty of the estimates 
(eg, uncertainty intervals). 

Uncertainty intervals are 
provided with all results, except 
for the frontier analysis and 
corresponding thresholds and 
shortages. 

Main text results, Main text table 
1, Appendix table 1 

17 Interpret results in light of 
existing evidence. If updating a 
previous set of estimates, 
describe the reasons for changes 
in estimates. 

 Summary; Research in Context; 
Main text 

18 Discuss limitations of the 
estimates. Include a discussion 
of any modelling assumptions or 
data limitations that affect 
interpretation of the estimates. 

Discussion of limitations 
provided in the narrative of the 
main paper. 

Main text 
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Methods 
Overview 
Many of the methods described below were reported in previous Global Burden of Diseases, Injuries, and Risk 
Factors Study (GBD) publications.2–4 Analyses were conducted with R version 4.0.3, Python version 2.7.5, or Stata 
version 15.1, and figures were generated with R version 4.0.3.  
 
Section 1. Estimating human resources for health 

 

Figure 1. Flowchart of estimation process  

 
1.1 Input data and indicators 
Our estimates of health worker densities leveraged nationally representative cross-sectional surveys and censuses 
conducted between 1990 and 2019 to identify members of the general working-age population who self-reported 
current active employment in a health-related occupation. All such published sources were identified and obtained 
either through the Global Health Data Exchange (GHDx) using occupation-related keyword searches (eg, 
“Occupations,” “Occupational risk factors”) or through the International Labour Organization’s (ILO) tabulations 
and database of employment-related surveys and censuses. Working age was defined as ages 15 to 69, since this was 
the standard age range for most labour force surveys. The two types of indicators extracted from these sources were 
employment ratios and occupation distributions. 
 
The employment ratio indicator reflects the proportion of the working-age population that self-reports currently 
being employed. The corresponding dataset consisted of all downloadable data tabulations of employment-to-
population ratios by age and sex available from the ILO, as well as employment levels that we extracted directly 
from individual-level survey microdata obtained through the GHDx. 
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Typical survey questions for identifying active employment asked individuals if they had worked for at least one 
hour in the previous seven days in any of the following capacities: for a wage, as an apprentice, in self-employment, 
or for a family business. Those reporting only a temporary absence from such a position in the preceding seven days 
were also considered to be employed.  
 
Among employed individuals, occupation distributions were determined from a respondent’s self-reported 
description of their main job in the previous seven days, or their typical main job if they were temporarily absent 
from work. The corresponding extracted indicator was the proportion of the employed population working in 
different occupational categories. Occupation descriptions were coded according to the source’s occupational coding 
system, often a version of the International Standard Classification of Occupations (ISCO) or a closely related 
system. The distribution of our data across these coding systems is summarized in table 2. Such systems apply 
standard criteria for classifying distinct occupations. Details on the classification criteria for each occupation within 
ISCO can be found on the ILO website. Coding systems also range dramatically in granularity, typically reflected by 
the length of the codes themselves, and can thus classify respondents into broadly defined categories of work or 
provide very specific descriptions of their occupations.  
 
Table 2. Input sources by coding system and level of granularity 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
To meet this study’s inclusion criteria for occupation data, a survey needed to code respondent occupations to a level 
of granularity that could identify health workers directly or identify a small aggregate group from which health 
worker cadres could be accurately split out. This level of granularity corresponds to ISCO three-digit and four-digit 
codes, as well as those alternate coding systems that could be mapped to ISCO at such a level of detail based on 
available documentation. This requirement restricted many of the eligible sources, since most standard international 
survey series and censuses do not code occupations to the level of detail required to identify health workers, let 
alone specific cadres of health workers. Due to the large number of distinct occupations at this level of granularity, 
few identified sources released tabulated data that met our inclusion criteria. Consequently, included population-
based sources were those for which individual-level microdata could be accessed to allow direct extraction of 
occupational codes (employment ratio data were directly extracted from these sources as well). In addition to 
microdata files already accessible through the GHDx, we searched the ILO database of sources containing 
occupation data coded to at least two digits of ISCO granularity to identify publicly available microdata that also 
met this study’s inclusion criteria. All such sources were added to the GHDx and subsequently extracted. In total, 
1,473 microdata sources with employment and occupation data were identified and extracted through the GHDx, 69 
of which were censuses and 1,404 of which were surveys. Surveys included labour force surveys and household 
surveys with sufficient labour-related questions. Given the similar nature of both survey types, distinctions between 
the two are not made in this paper. Both are included in any reference to “labour force participation surveys” in the 
main text and appendix. 
 
 
 
 
 
 
 

Coding system Number of country-years 

Country-specific coding system 78 

ISCO 08 4-digit 3038 

ISCO 08 3-digit 181 

ISCO 88 4-digit 322 

ISCO 88 3-digit 588 

Total 4207 
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Table 3. Input and output data source counts by adjustment status and data type  
 

Input data  

Administrative data   2,950 
Adjusted administrative data 2,307 

Location-specific adjusted administrative data  976 
Super-region/Region-specific adjusted administrative data  1,331 

Labour force surveys  1,404 
Censuses 69 

Output data  

Modelled Estimates  5,916 

*Administrative data sourced from the WHO GHO database  
 
 
In addition to the survey and census data, we included data from the World Health Organization (WHO) Global 
Health Observatory database17. The WHO Global Health Observatory database reports health worker data with 
sufficient granularity (four digit ISCO-08) to meet our inclusion criteria.  By incorporating this data source, we 
added 2,950 country-years of data for the four main cadres in our study: physicians, nurses and midwives, 
pharmacists and pharmacist technicians, and dentists and dental assistants.  Figures 2a – 2d summarize the total 
number of country-years comprised in all data sources employed in this study.  
 
 
 
 
Figure 2a. Country-years of occupation data for physicians, by country and territory, 1990-2019 
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Figure 2b. Country-years of occupation data for nurses and midwives, by country and territory, 1990-2019 

 
 
 
 
 
 
 
 
 
Figure 2c. Country-years of occupation data for dentists, by country and territory, 1990-2019 
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Figure 2d. Country-years of occupation data for pharmacists, by country and territory, 1990-2019 

 
 
This study considers surveys and censuses to be the gold standard for measuring human resources for health because 
they are both population-based sources. Both sources rely on population-based sampling and tend to employ nearly 
identical occupational questionnaires and coding structures. While surveys and censuses do differ in their sample 
sizes and corresponding sampling errors, these are random errors that do not constitute systematic biases. Therefore, 
we refer to surveys and censuses as comparable source types, even though they may differ in their level of precision. 
Labor force surveys and censuses avoid many of the potential biases affecting other data sources, such as concerns 
related to the quality, coverage, and maintenance of administrative records, payrolls, and registries, which can result 
in both over-reporting and under-reporting of HRH levels as well as double-counting. For instance, WHO reports 
that the data in the Global Health Observatory database are reported by countries themselves through the National 
Health Workforce Accounts reporting portal, but limited information is publicly available about the source of data, 
any assumptions or modelling used to produce the data, whether data only captured the public sector, whether the 
data could have double-counting, and any other features. We provide a detailed discussion of the adjustment process 
we use for the WHO data in section 1.4 below.  
  
1.2 Defining health worker cadres 
We referred to the WHO Handbook on Monitoring and Evaluation of Human Resources for Health to create a list of 
relevant health worker cadres identified by four-digit ISCO 88 codes, the highest level of granularity in the coding 
system.5 While some of these cadres are themselves an aggregation of multiple types of health workers that we 
would have wished to identify individually, we were constrained by the preponderance of data using coding systems 
that did not provide such levels of detail in their coding structures. The included cadres and their corresponding 
occupation codes are listed in table 3.  
 
 
Table 4. Cadres and corresponding occupation codes 

Health worker cadre 4-digit ISCO 88 code 

Physicians* 2221 
Nurses and midwives * 2230, 3231, 3232 
Pharmacists* 2224 
Pharmaceutical assistants* 3228 
Dentists* 2222 
Dental assistants* 3225 
Physiotherapists and prosthetic technicians 3226 
Medical imaging and therapeutic equipment technicians 3133 



14 
 

 
* Included in the definition of SDG indicator 3.c.1 and in this study’s minimum threshold analyses. Similar cadres 
were grouped together in this study, such that the 20 occupations listed above were consolidated into 16 cadres for 
the purposes of the analysis. See the threshold analysis section for additional details on cadre groupings. 
 
The ISCO has standardised occupation codes, with documentation describing each in detail, and has organised them 
hierarchically. Codes for the most general category of occupations are one digit in length. Occupational sub-
categories are represented by two-digit codes, and further sub-specialties are represented with three-digit and four-
digit codes. ISCO also consists of multiple versions, which were developed over time to update the system to reflect 
modern labour markets. The two versions included in this analysis are ISCO 88 and ISCO 08, released in 1988 and 
2008, respectively, which thus cover the majority of the study’s time period of interest. Although the two versions of 
ISCO are generally similar in their distinctions between occupations, they differ in their hierarchical structuring of 
the coding system, with ISCO 08 consolidating health workers at higher levels of the hierarchy and facilitating the 
identification of more detailed occupations at its most granular level.6 However, ISCO 88 was substantially more 
common among identified sources, as shown in figure 3. 
 
Figure 3. Number of sources by coding system, 1980-2019 

 
 

Mapping between versions inherently results in some loss of precision, and utilising the greater granularity of ISCO 
08 for a few cadres would require using available ISCO 08 data to split out the less detailed ISCO 88 categories into 
smaller occupations. Given the paucity of ISCO 08 sources and the limited temporal overlap in the use of both 
versions, mapping all data to the ISCO 08 system and splitting less granular codes as necessary was not tenable for 

Medical laboratory technicians 3211 
Clinical officers, medical assistants, and community health workers 3221 
Health-care aides and ambulance workers 5132, 5139 
Environmental health workers 3222 
Optometrists and opticians 3224 
Dieticians and nutritionists 3223 
Audiologists, speech therapists, and counsellors 3229 
Psychologists 2445 
Home-based personal care workers 5133 
Traditional and complementary practitioners 3241 
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this analysis. Consequently, we used ISCO 88 as the gold standard according to which the HRH cadres in this study 
are defined. At a point when a much greater proportion of surveys rely on ISCO 08, future iterations of this analysis 
might be able to use ISCO 08 and thus generate more granular cadre-specific estimates. Figures 2 and 3 below 
present examples of these two coding frameworks. 

 
Figure 4a. Example subsection of the ISCO 88 hierarchy 
 

 
 

Note: only relevant occupations shown.  
 
 
Figure 4b. Example subsection of the ISCO 08 hierarchy  
 

 
 

Note: only relevant occupations shown.  
 
In figures 4a and 4b, occupational categories and their corresponding codes are shown in a tree structure, reflecting 
the respective hierarchies of the ISCO system. At the top, one-digit codes identify very general categories of 
occupation. At the bottom, longer codes use additional digits to differentiate occupations at greater levels of detail. 
Marked in blue are codes for the HRH cadres included in this analysis, or less-granular codes which contain an HRH 
cadre within them. More details on the criteria used to differentiate occupational classifications are available on the 
ILO’s website pertaining to ISCO.6 
 
For some sources that claimed to use an ISCO version, microdata sometimes exhibited a few codes that did not 
adhere to standard ISCO frameworks. In all such cases, the few non-ISCO codes were slight deviations from the 
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standard framework, with one or two of the last digits altered either to identify particular occupations not normally 
highlighted in ISCO, or to express ambiguity when an occupation description was not quite detailed enough for 
ISCO classification at the desired digit level of detail. Descriptions of such deviations were usually missing from 
source documentation. In the absence of explanatory documentation, we truncated individual ambiguous codes to 
the longest length that was valid in the corresponding ISCO system. For example, we truncated invalid four-digit 
codes to valid two-digit or three-digit codes. When the truncated code was known to be unrelated to the HRH cadre 
in question (eg, the code pertained to a non-specific type of farmer), which was usually the case, the truncation did 
not have an impact on the extracted data. In some cases, however, it was unclear whether the truncated code was 
related to an HRH cadre of interest (eg, a truncated code for social science professionals might have pertained to 
psychologists or to another non-HRH social scientist). If a source contained a large number of invalid codes with 
potential relevance to HRH, then the source’s entire set of occupation codes was truncated by one digit, and the 
source was dropped entirely if truncation resulted in occupation codes of less than three digits. If a survey contained 
few invalid codes with potential relevance to HRH, then all codes were retained and any HRH-ambiguous codes 
were excluded from both numerator and denominator of the extracted data for only those HRH cadres for which 
they were ambiguous. For instance, a truncated code potentially pertaining to psychologists was excluded from both 
numerator and denominator for the psychologist data due to ambiguity, but was still included in the denominator for 
every other HRH cadre to avoid biasing their respective estimates. Consequently, some sources exhibited minor 
deviations in extracted sample sizes across the various cadres of interest. 
 
1.3 Mapping and splitting 
All usable data were mapped to ISCO 88 four-digit codes for this analysis, or were split to such codes if data 
corresponded to the less detailed three-digit level of granularity. When surveys used country-specific coding systems 
that were based on ISCO, mapping to ISCO codes could be accomplished easily. When surveys used coding not 
clearly based on ISCO, only occupations where associated descriptions sufficiently matched those of ISCO were 
mapped.  
 
In order to map ISCO 08 codes to ISCO 88 codes, we referenced the ILO’s ISCO concordance documentation. 
Frequently, precise matches between four-digit codes existed between versions, allowing exact mapping from one 
version to the other.6 At other times, a four-digit ISCO 88 code corresponded to an aggregation of multiple ISCO 08 
codes, which also allowed exact mapping to ISCO 88. When occupation categories between versions did not exactly 
match or aggregate to one another, we created an approximate mapping, whereby the most common ISCO 88 code 
corresponding to an ISCO 08 code in the concordance documentation was considered to be the sole match and was 
mapped accordingly. Table 4 provides examples of health worker cadre mapping across ISCO versions.  
 
 
Table 5. Examples of health worker cadre mapping across ISCO versions 

Occupation titles ISCO 08 code ISCO 88 
code 

ISCO 88-defined  
health worker cadre Type of mapping 

Dentists 2261 2222 Dentists Exact match 

Clinical officers 2240 3221 Clinical officers, medical assistants, and 
community health workers Exact aggregation 

Medical assistants 3256 3221 Clinical officers, medical assistants, and 
community health workers Exact aggregation 

Community health workers 3253 3221 Clinical officers, medical assistants, and 
community health workers Exact aggregation 

Nursing Professionals 2221 2230 Nurses and midwives Exact aggregation 

Midwifery Professionals 2222 2230 Nurses and midwives Exact aggregation 

Nursing Associate 
Professionals 3221 2230 Nurses and midwives Exact aggregation 

Midwifery Associate 
Professionals 3222 2230 Nurses and midwives Exact aggregation 
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Our objective in mapping across ISCO versions was to create consistency and retain as much information as 
possible, but some inconsistencies and information loss were unavoidable. The table above draws on ISCO 
concordance documentation to illustrate how we mapped four-digit health worker codes from ISCO 08 to ISCO 88.6 
For example, the table shows that for dentists there is an exact match between ISCO 08 and ISCO 88, which made it 
possible to map dentists across versions with no information loss. For other occupation titles, matching to 
comparable occupation categories was possible, but it resulted in a loss of granularity. For example, while ISCO 08 
placed clinical officers, medical assistants, and community health workers into separate occupational categories, 
each with a different code, ISCO 88 grouped these into one category with a single code. Similar aggregations of 
seemingly divergent occupations are seen in other ISCO-88 HRH codes, such as audiologists, speech therapists, and 
counsellors (for which counsellors encompass a broad range of specialties, including family planning and HIV). 
 
In other cases, the grouping of occupations between versions could not be made entirely consistent without 
including large numbers of non-health-related occupations, as was the case with environmental health workers. 
ISCO 88 groups environmental health workers with food inspectors, whereas ISCO 08 groups them with 
occupational hygienists. Finding an exact match between versions would require including codes that also pertain to 
quality controllers, electrical product inspectors, and a wide range of other non-health occupations. Instead of 
including a large number of unrelated professions, we settled on an approximate mapping between versions, such 
that the environmental health workers cadre identified from ISCO 88 sources would also include food inspectors, 
whereas the cadre identified from ISCO 08 sources would include occupational hygienists. This resulted in some 
inconsistency but was preferable to dropping the cadre entirely or diluting it with many unrelated occupations. 
 
Three-digit ISCO occupation codes were common, particularly in the censuses included in this study. While three-
digit ISCO codes generally did not allow us to identify specific HRH cadres, information from three-digit 
occupation codes was useful in creating envelopes from which individual health worker cadres could be split. To do 
this, we first used data extracted from surveys with four-digit codes to inform preliminary models of each health 
worker cadre. We used these preliminary models to split three-digit code data into cadre-specific estimates for each 
GBD location and year. This required modelling not only each HRH cadre, but also the residual categories made up 
of four-digit codes associated with each three-digit code of interest that did not correspond to any health worker 
cadre. The advantage of using four-digit data to split three-digit codes rather than enacting one global split is that the 
proportional makeup of health worker cadre estimates exhibited variation across space and time. Yet, because splits 
were informed exclusively by four-digit inputs, data prepared from three-digit surveys were dependent upon the 
quality and coverage of four-digit data. 
 
For country-specific coding systems not derived from ISCO, there was considerable variation in the level of detail 
available for different health worker cadres, and the digit length of an occupation code was generally not a good 
predictor of granularity. A two-digit country-specific occupation coding system, for instance, might distinguish 
between multiple categories of physicians, while using only one code for all nurses and midwives. When it was 
possible to match or aggregate some country-specific codes to the four-digit ISCO 88 framework, we mapped those 
codes accordingly. Where codes could be split into multiple estimated cadres without residual groups, we used the 
method described above for three-digit ISCO codes. Other types of country-specific codes were not usable, as we 
did not have enough information to map them to ISCO 88. Consequently, sources using country-specific coding 
systems typically only provided data for a subset of the HRH cadres included in this analysis. 
 
We also generated a dataset for estimating the aggregate of all health workers combined. Data for this group 
comprised the sum of density data for all cadres – after mapping and splitting – that were obtained from sources 

Environmental health 
workers 2263 3222 Environmental health workers Approximate match 

Food inspectors 3257 3222 Not HRH (ISCO 08) / Environmental health 
workers (ISCO 88) Approximate match 

Occupational hygienists 2263 3152 Environmental health workers  
(ISCO 08) / Not HRH (ISCO 88) Approximate match 

Quality controllers, Electrical 
product inspector, etc. 3257 3152 Not HRH Approximate match 
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whose coding system allowed identification of every cadre in this study (including, for example, all sources that 
used ISCO 88 or 08 coding). 
 
1.4 Input data adjustment strategy  
  
We consider the survey and census data to be the “gold standard” for measuring human resources for health because 
they are population-based and nationally representative. In an effort to use all available sources of data, we also 
included the WHO Global Health Observatory database in our analysis.  Besides their origin with countries, there is 
little information about how these data came about, including any potential biases.  Thus, we needed to evaluate the 
WHO data and determine whether the data were systematically biased from the population-based data.  To perform 
this analysis, we matched the WHO data with survey or census data by country and year, resulting in 2636 matched 
pairs. Where we had both a survey and a census data point, we took the average to compare to the WHO data point.  
We depict scatter plots of the matched pairs of WHO data and population-based data for the cadres with more than 
300 data points from the WHO, namely physicians, nurses and midwives, dentists and pharmacists (figure 5a – 
figure 5d).   
 
 
Figure 5a. Matched pairs of IHME population-based points and WHO data points for physicians, 1990-2019 
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Figure 5b. Matched pairs of IHME population-based points and WHO data points for nurses and midwives 

 
 
 
 
 
Figure 5c. Matched pairs of IHME population-based points and WHO data points for dentists 
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Figure 5d. Matched pairs of IHME population-based points and WHO data points for pharmacists, 1990 - 2019 

 
 
In figures 6a-6d, we provide maps of the average percent difference between the WHO points and the population-
based data by country and territory for each of these cadres.    
 
Figure 6a. Average percent difference between IHME population-based data and WHO data for physicians 
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Figure 6b. Average percent difference between IHME population-based data and WHO data for nurses and 
midwives 

 
 
 
 
 
Figure 6c. Average percent difference between IHME population-based data and WHO data for dentists 
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Figure 6d. Average percent difference between IHME population-based data and WHO data for pharmacists 

 
 
 
 
Table 6. Average percent difference between IHME population-based data and WHO data for all cadres 
  Physicians Nursing and 

midwifery personnel Dentists Pharmacists 
Super-region/Region  
Central Europe, Eastern Europe, and Central Asia  9.83  -0.91  -14.16  -19.80  
High-income  0.56  -4.64  -3.89  -3.23  
Latin America and Caribbean  4.05  -5.04  -7.44  85.90  
North Africa and Middle East  11.57  -12.13  4.55  15.38  
South Asia  1.46  -0.39  31.71  5.71  
Southeast Asia, East Asia, and Oceania  8.14  24.08  -22.78  2.60  
Sub-Saharan Africa  -10.88  -18.82  -17.26  -27.73  
Location  
Central Europe, Eastern Europe, and Central Asia  11.04  4.44  -11.58  -24.13  
High-income  -0.11  -10.40  -4.67  -8.88  
Latin America and Caribbean  0.70  -12.93  -22.23  86.59  
North Africa and Middle East  21.68  -16.41  15.50  37.69  
South Asia  8.18  -2.90  128.09  104.43  
Southeast Asia, East Asia, and Oceania  0.85  15.93  -38.53  41.82  
Sub-Saharan Africa  -12.96  -26.02  -27.11  -16.16  
 
Figures 6a-6d highlight that the WHO data were not consistently biased in one direction or another, although 
regional patterns are apparent.  For example, WHO data tends to be lower than population-based data in sub-Saharan 
Africa across all cadres, suggesting the WHO data for the region potentially only captures the public sector. Another 
regional trend depicted figure 5a is that the WHO physician data appears to be systematically higher than 
population-based sources in eastern Europe. Based on these types of regional patterns, we performed bias 
adjustments based on GBD region and GBD super-region, where no matched pairs existed for a given location.  We 
computed location-specific adjustments when matched pairs were available for a given location.   
 
For each geographical unit, we tested whether there was sufficient evidence to implement an adjustment first. There 
were some locations where the WHO data were comparable to the population-based data we did not want to make 
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an adjustment. We initially tested whether a location needed adjustment using a lasso regression, with cadre per 
population regressed on indicators for region and super-region, or alternatively, location. Where the indicators were 
zero in the lasso regression, we did not conduct an adjustment. The penalty (lambda) in the lasso regressions was 
based on the 1st standard deviation from the mean minimum lambda selected from minimum root mean square error 
from cross-validation, iterated 1000 times to ensure fold selection did make our results unstable. Table 5 shows the 
lambdas selected and the RMSE from each lasso model.  Figures 7a-7d show the countries in which a location 
adjustment was used, a super-region or region adjustment was used or no adjustment was applied.    
 
Table 7. Lambdas and RMSE from the lasso covariate selection regressions, by cadre  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7a. Adjustment type for physicians  

    
 
 
 
 
 
 
 
 
 

 Location adjustment  Super-region/region adjustments 

Cadre Lambda RSME Lambda RSME 

Physicians  0.010507 0.494645 0.011254 0.554383 

Nurses and midwives 0.004176 0.409446 0.007937 0.484956 

Dentists 0.009028 0.572764 0.014393 0.602905 

Pharmacists 0.009017 0.589479 0.046735 0.989457 
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Figure 7b. Adjustment type for nurses and midwives 

 
 
 
 
 
 
Figure 7c. Adjustment type for dentists 
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Figure 7d. Adjustment type for pharmacists 

 
 
To implement the adjustment, we performed two crosswalks using the MR-BRT tool developed for GBD, estimating 
adjustments based on the ratio of population-based sources to WHO data.18, 19   MR-BRT propagates model 
uncertainty and data uncertainty through to the adjusted estimates (of the WHO data), important for subsequent 
modeling steps.  The WHO data do not have reported variance since they are sourced from reports from countries. 
We imputed variance of the WHO data based on the mean regional variance of the labor force surveys and censuses 
where population-based sources where available; we imputed the mean variance of these sources by super-region in 
locations without population-based sources. Because in some locations, regions and super-regions, data were sparse 
and we were concerned about over-fitting the adjustment model, we used a Gaussian prior in the crosswalk. The first 
crosswalk was for region-super-region adjustments, based on the indicators selected in the lasso regression with 
geographic indicators for region and super-region.  The second crosswalk was for location-specific adjustments, 
with adjustments estimated only for locations selected in the lasso regression.  We opted to perform a single super-
region adjustment in sub-Saharan Africa instead of individual regional adjustments due to a limited number of 
matched pairs in the super-region (only 27 matched pairs for physicians for the super-region and just 1 matched pair 
for central sub-Saharan Africa in particular). Furthermore, we declined to implement super-region-region 
adjustments where the direction of the adjustment was inconsistent with population-based sources – if the 
adjustment would lower the WHO point but a population-based source was higher than the WHO point, we 
concluded we did not have sufficient evidence to implement the adjustment. 
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Where:  

𝑖𝑖 denotes a given matched pair of population-based sources to WHO data  
   𝐼𝐼(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) denotes an indicator for each location selected in the lasso regression  
  𝐼𝐼(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) denotes an indicator for each region selected in the lasso regression 
  𝐼𝐼(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) denotes an indicator for each super-region selected in the lasso regression 

𝛽𝛽 is the adjustment factor for locations, regions or super-regions selected in the lasso regression, 
modeled with a Gaussian prior in MR-BRT  
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  𝜀𝜀𝑖𝑖 is the residual 
   
Maps of the percentage adjustment relative of the WHO data are found in figures 8a-8d  The MR-BRT crosswalk 
package computes uncertainty for each point, based on both data and model uncertainty.   
 
Figure 8a.  Average percent adjustment to the WHO data input data, physicians     

 
 
 
Figure 8b. Average percent adjustment to the WHO data input data, nurses and midwives     
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Figure 8c. Average percent adjustment to the WHO data input data, dentists     

 
 
 
Figure 8d. Average percent adjustment to the WHO data input data, pharmacists     

  
  
1.5 Modelling strategy 
To estimate the prevalence of health workers around the world over time, this analysis used a three-stage 
spatiotemporal Gaussian process regression (ST-GPR). ST-GPR is a flexible modelling strategy that synthesises 
noisy data by incorporating covariates and borrowing strength across both geography and time to produce 
comprehensive time series estimates of an indicator with corresponding uncertainty. ST-GPR has been used widely 
in GBD research and has been described in detail in other recent publications.7 As stated in the main text, the first 
stage of the model fits a linear regression to the data with random effects on specified covariates. The second stage 
smooths the residuals between the regression fit and the data across time and geography to generate a non-
linear trend that better follows available data in each national location, as well as in the surrounding region and 
super-region. The third stage uses that trend as a mean function in a Gaussian process regression to account for input 
data variance and to generate uncertainty in the final estimates. In this study, ST-GPR was used to model 1000 
draws of densities for each health worker cadre separately, all health worker cadres combined, and employment 
ratios, for every location from 1990 to 2019. Health workers were not modelled separately by age or sex. 
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Uncertainty was propagated through all analytical steps, such that final UIs reflect uncertainty from survey sampling 
as well as from the models themselves. 
 
In addition to handling noisy data and providing estimates of uncertainty, the space-time smoothing component of 
ST-GPR made it an ideal tool for modelling HRH. Since available input data on this topic are heavily skewed 
toward high-income geographies like Europe, it was important to select a model that would not extrapolate findings 
from such data-rich areas to unduly influence estimates for locations lacking in data, which tend to have very 
different health worker densities and distributions. By incorporating data from surrounding regions and super-
regions in the model fit, ST-GPR ensures that estimates for locations lacking in data better reflect patterns observed 
in inputs from nearby geographies, rather than patterns from the most data-rich locations. ST-GPR therefore makes 
the default assumption (unless the data indicates otherwise) that locations nearby geographically will follow similar 
patterns in HRH levels, though this assumption is partially mitigated by the use of additional covariates to inform 
location-specific differences in anticipated workforce densities. Geographical proximity in ST-GPR is determined 
from the GBD 2019 location hierarchy, which divides the world into seven super-regions, 21 regions, and 204 
countries and territories. GBD regions and super-regions were generated to group countries that are similar in 
physical geography as well as in epidemiological profiles (for example, patterns in causes of death). Given the wide 
range of health topics estimated within the GBD framework, these regional distinctions do not always align perfectly 
with patterns in the disease or indicator being estimated. Nevertheless, these groupings were constructed to capture 
many potentially unmeasured contextual similarities (related to culture, climate, economics, health burdens, etc.) 
that produce similar trends across a wide range of health-related indicators. We assume that a country’s regional 
grouping is no less informative to the modelling of health worker densities than it is to the modelling of other 
prevalent health issues (eg, heart disease, cancer, exposure to lead, etc.). While health workers are certainly needed 
everywhere, the local disease burden, training capacity, workforce demand (in terms of monetary and workplace 
incentives for workers), and general health system infrastructure are all incredibly relevant factors to a country’s 
health worker densities that do follow distinct regional patterns.  
 
In order to model health worker cadres – both separately and in the aggregate – in ST-GPR, we first used linear 
models with fixed effects on combinations of the following GBD 2019 estimated covariates: Socio-demographic 
Index (SDI), log-transformed total national per capita health expenditure, and estimates of the size of the 
professional workforce. Estimates of SDI and total national per capita health expenditure were generated by 
affiliated research groups using methodology described elsewhere.8,9 The professional workforce size was calculated 
as the proportion of the employed population working in ISCO-defined professional occupations. Data for the 
professional workforce covariate came from the same types of censuses and surveys used in extracting health 
worker cadre data. However, many more censuses and surveys were available for this covariate due to the fact that 
professional occupations can be identified from even those sources that only code occupations to the ISCO one-digit 
level of detail. ST-GPR was used to model the professional workforce across all GBD locations and years. 
Additional details on the modelling process for professional occupations are available in the Global Burden of 
Diseases, Injuries, and Risk Factors Study 2017 comparative risk assessment appendix.10 To model each health 
worker cadre, we used the same model settings for intermediate and final estimates. Intermediate estimates, which 
were exclusively used in splitting, were run using only four-digit mapped censuses and surveys, while final 
estimates were run on all available data after three-digit codes had been split into the underlying four-digit cadres.  
Covariates were primarily selected based on predictive power rather than any causal interpretation of their impact on 
HRH densities. However, each covariate does have some an expected relationship with HRH. First, we included the 
Socio-demographic Index (SDI), an index of lag-distributed income per capita, total fertility rates, and education, 
which represents social and economic development and has a strong relationship with health outcomes. Where SDI 
is higher, we would expect there to be a more educated workforce and better ability to pay for health care, both of 
which would increase HRH densities. We would also expect there to be better health outcomes, which could 
plausibly be connected to the size of the health workforce. Second, we selected total per capita health expenditure, a 
proxy for the expenditure on HRH. As total health expenditure grows, we would expect HRH densities to also 
increase – part of the higher spending is likely driven by more spending on health workers. Finally, to capture trends 
in the broader workforce that correspond with the health workforce specifically, we used the share of the employed 
population represented by the professional workforce. The professional workforce is defined as major group 2 in the 
ISCO-88 coding framework. In models that exclude one of the aforementioned covariates, the covariate was 
excluded because it did not prove to have strong predictive power for a given health worker cadre. For example, the 
total per capita health expenditure covariate was omitted from every cadre’s modelable entity except the “all health 
workers” cadre because the covariate had low predictive power for those cadres. Because total health expenditure 
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captures variation in spending on all health workers rather than variation specific to a cadre, this covariate was not 
informative for the cadre-specific HRH models. Table 8 depicts the covariates that are employed in each of the 
models.  
 
We generated employment ratio estimates in ST-GPR by age and sex, using a linear model with fixed effects on 
total government expenditure levels, average educational attainment in years, the proportion of the population that is 
Muslim (a proxy used only in the female model fit to reflect the notably lower levels of employment recorded 
among women, primarily in North Africa and the Middle East), and five-year age group, and with random effects on 
GBD location, region, and super-region. We then aggregated results within every location-year to calculate the 
employed population ages 15-69 as a proportion of the total population, using GBD 2019 estimates of age-specific 
populations. 
 
Due to the small size of specific health worker cadres relative to the total employed population – and the instability 
that consequently resulted from data transformations in the modelling process – we removed cadre-specific values of 
zero and modelled the remaining proportion data in log space as the number of workers per 10 000 employed 
population. This greatly increased the stability of these models. Since all health workers combined constituted a 
larger proportion of the total employed population, it was not necessary to adjust these data in any way, and it was 
modelled directly as a proportion in logit space. To control for unrealistic trends due to stochastic variation in 
smaller cadre models and to ensure consistency across modelled results, estimates for all health workers in the 
aggregate were used as a more trustworthy envelope to which cadre-specific estimates were raked at the draw level. 
Raking here refers to the application of a rescale factor to all cadre-specific estimates to ensure that they summed to 
the envelope category of all health workers. Finally, we converted raked estimates of health worker cadres from 
proportions of employed populations ages 15-69 to proportions of total populations, using the output draws from the 
employment ratio model. 1000 draws of final estimates were summarised using the mean and the 2.5th and 97.5th 
percentile as the 95% uncertainty interval. 
 
Table 8. Covariates for ST-GPR models by cadre  

Model Covariates 

All health workers 
Socio-demographic Index (SDI) 

Professional workforce share 
Total Health Expenditure (THE) per capita 

Physicians Socio-demographic Index (SDI) 
Professional workforce share 

Nursing personnel  Socio-demographic Index (SDI) 
Professional workforce share 

Dentists Socio-demographic Index (SDI) 
Professional workforce share 

Dental assistants Socio-demographic Index (SDI) 

Pharmacists Socio-demographic Index (SDI) 
Professional workforce share 

Pharmaceutical technicians and assistants Socio-demographic Index (SDI) 
Professional workforce share 

 
 
Section 2. Estimating the relationship between health worker densities and universal health 
coverage 
2.1 Previous thresholds 
In the 2006 World Health Report, WHO identified 22.8 physicians, nurses, or midwives per 10 000 population as a 
minimum health workforce threshold.11 This figure was based on the average number of health workers observed in 
countries achieving skilled birth attendance above 80%.12 In 2016, WHO revised this number, suggesting that 44.5 
physicians, nurses, or midwives per 10 000 population were needed.13 This second threshold was based on skilled 
health worker densities associated with global median achievement on an index composed of 12 SDG indicators. 
Although these threshold estimates have received widespread attention, particularly in relation to the Millennium 
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Development Goals and later the Sustainable Development Goals, they have several shortcomings. First, these 
thresholds are based on datasets that were not produced using standardised methods, but rather compiled 
predominantly from government reports that used varying data-collection methods and cadre definitions. WHO 
researchers engage in triangulation efforts to standardise these heterogeneous inputs to available censuses and other 
gold-standards, though WHO HRH datasets still exhibit discrepancies between sources of different types for the 
same location in similar years. Second, WHO thresholds identify minimum health worker levels in the aggregate, 
rather than providing cadre-specific health worker thresholds. In other words, the WHO thresholds do not identify 
needs for specific cadres and imply a 1:1 substitutability between cadres within their aggregate threshold. Third, 
WHO thresholds rely on a limited measure of health-care performance. The 12 SDG indicators used to fit the WHO 
threshold all reflect crude coverage rather than effective coverage, and therefore do not incorporate the quality or 
effectiveness of the services provided. They are also heavily skewed toward interventions pertaining to maternal, 
neonatal, and communicable conditions rather than non-communicable conditions, for which disease burdens are on 
the rise in most parts of the world.7 Two of the indicators also pertain to risk factors, such as the prevalence of 
tobacco smoking, which largely fall outside of the direct influence of health system interventions. For these reasons, 
the WHO thresholds may not accurately capture the broad range of health-care services on which HRH levels are 
likely to have an impact. 
 
2.2 Universal health coverage (UHC) effective coverage index  
We measured health system performance using a universal health coverage (UHC) effective coverage index 
developed during the GBD 2019 estimation cycle. The index leverages a variety of estimates related to disease 
burden and intervention coverage from GBD 2019. It was intended to improve upon the UHC service coverage 
index proposed in the GBD 2017 round,2 and followed measurement guidance from consultations with the WHO 
General Programme of Work 13 Expert Reference Group. Further details on the construction of the GBD 2019 
effective coverage index are available elsewhere.3 
 
The UHC effective coverage index quantifies on a scale of 0 to 100 the availability, use, and quality of essential 
health services for a number of service areas (promotion, prevention, and treatment) applicable to a range of ages 
across the lifespan. The index is composed of 23 tracer indicators, four of which directly measure intervention 
coverage and 19 of which, in the absence of reliable effective coverage data, are indirect proxies for access to 
quality care based on disease outcomes. The four coverage indicators encompass met need for modern 
contraception, DTP3 immunisations, MCV1 immunisations, and ART coverage. The 19 outcome-based indicators 
are related to antenatal, peripartum, and postnatal care for mothers and neonates and treatment for the following 
conditions: lower respiratory infections, diarrhoea, tuberculosis, leukaemia, asthma, epilepsy, appendicitis, paralytic 
ileus and intestinal obstruction, diabetes, ischaemic heart disease, stroke, chronic kidney disease, chronic obstructive 
pulmonary disease, cervical cancer, breast cancer, uterine cancer, and colon/rectum cancer. These indicators were 
each associated with one or more age groups to which existing health system interventions are applicable. The 
following age groups were used: reproductive and newborn age spans, children under age 5 years, children and 
adolescents ages 5-19 years, adults ages 20-64 years, and older adults at least 65 years of age. For every location, 
year, and age group, each indicator was scored using estimates pertaining to the corresponding population (eg, one 
score for chronic kidney disease treatment among adults ages 20-64 in Thailand in 2005).  
 
Scores for the four health service coverage indicators came directly from estimates of coverage percentages. For the 
19 outcome-based proxy measures, scores came from mortality-to-incidence ratios, mortality-to-prevalence ratios 
(for longer-term conditions), risk-standardised deaths, or other mortality measures like maternal mortality ratios, all 
of which strive to capture the degree to which health system activities successfully prevent adverse outcomes. These 
proxy measures were scaled from 0 to 100 within each age group using the 2.5th and 97.5th percentiles estimated 
across all locations and years. 
 
A weighted average of scores was used to estimate a single index value for every location and year from a variety of 
indicators and age groups. Weights for these indicators varied across contexts based on the intervention’s 
importance in contributing to health gains. The rationale for weighting indicators is that the meaning of health-
service coverage will vary by location due to variations in local disease burdens. Health gain weights were 
calculated using estimates of what the disease burden would have been if there had been full health-service coverage 
and what it would have been if there had been no health-service coverage. Disease burdens were measured in 
disability-adjusted life-years (DALYs). 
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DALY burdens for the two counterfactual scenarios of zero and full intervention coverage were calculated using 
estimates of intervention coverage, observed DALYs associated with a disease or condition, and external 
assessments of intervention effectiveness. Interventions were assigned to ordinal categories with associated 
effectiveness percentages based on the findings of published literature reviews in order to facilitate these 
calculations. The difference in DALYs between the zero and full service coverage scenarios constituted the potential 
health gain of the intervention for a given location, year, and age group. Dividing a potential health gain by the sum 
of all potential health gains for a given location and year resulted in a fraction representing the health gain weight 
for that combination of indicator, age group, location, and year. To prevent any specific indicator from dominating 
the index, health gain weights were grouped into terciles for every location-year, and only the tercile’s average 
health gain weight was used for all associated combinations of intervention and age group. For a given location-
year, the weighted average of all indicators and age groups using these health gain weights yielded the overall index 
value for UHC effective coverage. 
 
Uncertainty was propagated throughout the UHC index estimation using 1000 draws of each measure. Contributions 
to uncertainty in final index values included uncertainty in modelled estimates of coverage and mortality-based 
proxies as well as uncertainty in estimated health gain weights. The mean and variance of the draws of the overall 
UHC effective coverage index for all 204 locations from 1990 to 2019 were then used in this study’s SFM threshold 
analysis. 
 
For this study’s estimation of minimum health worker density thresholds, we aimed to generate cadre-specific 
targets rather than one aggregate value. To this end, we used the four health worker cadre groups identified in the 
Sustainable Development Goals (SDGs) indicator 3.c.1: physicians; nurses and midwives; dentists and dental 
assistants (dentistry personnel); and pharmacists and pharmaceutical assistants (pharmaceutical personnel). Since 
some of the modelled cadres in this study are more detailed than these four groups, there are actually six cadre-
specific models that contribute to estimates for the groups: one for physicians, one for nurses and midwives, two for 
dentistry personnel, and two for pharmaceutical personnel. 
 
While aggregating estimates into these groups precludes the identification of distinct thresholds for sub-categories of 
each type of health worker, it also controls for potential substitution effects between highly related occupations and 
accounts for variation in the way that different locations and sources may have operationalised ISCO guidelines for 
very similar positions. Beyond these aggregations, this analysis does not account for substitution effects between 
cadres. This means that if a location driving the frontier in physicians, for instance, can only maintain its level of 
UHC by compensating with very high levels of nurses and midwives, then the physician threshold estimated from 
such a frontier would not account for that, and thus might be too low for countries with fewer nurses and midwives. 
The substitution phenomenon is particularly relevant in the case of task-shifting cadres, such as nurse practitioners, 
where there is notable overlap in roles between cadres. Because this study was unable to estimate task-shifting 
cadres in isolation, we are unable to comment on the extent to which the proposed thresholds are predicated on the 
presence of task-shifting in a health system. 
 
Other cadres, though perhaps less similar in their titles than those that were aggregated, likely have the potential for 
substitution effects with the primary four as well. However, expanding the threshold analysis to include such cadres 
could have led to substantial misinterpretation of our results. For example, it might be possible for some high-
income countries that invest a lot in health system quality and accessibility to achieve high levels of UHC with very 
few community health workers. If so, the global minimum threshold for community health workers would be very 
small. Because the thresholds represent minimum necessary levels, this would not be an inaccurate finding. But if 
we briefly presented such a low threshold without having space to properly discuss its implications, readers might 
misinterpret this as a statement that community health workers are not valuable or do not serve a critical function in 
many health systems. That would be an erroneous implication.  
 
Space constraints in the main text also militated against a broader analysis that included more cadres. We could not 
do justice within such a short article to the range of health workers, their distribution globally, and their 
corresponding thresholds. Consequently, we have chosen to focus on a more parsimonious set of high-priority 
cadres highlighted in the SDGs, but do not mean to imply that these are the only HRH cadres with meaningful 
contributions to national health-care performance. 
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2.3 Stochastic frontier meta-analysis (SFM)  
In order to establish global evidence-based minimum thresholds for health worker densities, we developed a meta-
analytic extension for stochastic frontier analysis (SFA). The classic SFA builds a non-deterministic production 
frontier expressing the maximum output value obtainable from a given input value, based on all observed inputs and 
outputs provided in a dataset. In this study, datapoints for the stochastic frontier come from modelled results, and 
therefore have associated estimates of variance (uncertainty). A meta-analytic extension is required to properly 
account for these variances. We call the modified approach stochastic frontier meta-analysis (SFM). Just as with 
standard random-effects SFA, the SFM tool models inefficiencies as random effects that must be negative, using a 
half-normal model. Unlike SFA, SFM accounts for the variances of individual datapoints. In addition, SFM is 
equipped with three features that make the analysis of the data robust and straightforward. The first is a robust 
extension that simultaneously detects and removes outliers from the analysis, based on generalised trimming 
methodology.14,15 The second is a spline model for the frontier, which does not assume any parametric function and 
allows the SFM to be applied directly to the data without pre-analysis or post-analysis (no transformations are 
needed). The third feature is a Bayesian module that permits placing shape constraints and priors on the frontier. 
Technical details of the SFM approach are described in detail in the attached technical supplement. 
 
We applied the SFM tool using an established universal health coverage (UHC) effective coverage index (based on 
GBD 2019 results)3 and its associated variance as the output, and estimates of health worker cadre groups as the 
input. The four cadre groups included in the frontier analyses were those specified in SDG indicator 3.c.1: 
physicians, nursing and midwifery personnel, dentistry personnel, and pharmaceutical personnel.16 We therefore 
generated four distinct production frontiers, each using all estimates for the cadre group being analysed, for all 
locations and years. Using all locations and years increased the representativeness and stability of our frontier, as it 
was fit to a much larger dataset reflecting locations from all parts of the world, and also expanded the range of 
inputs and outputs for which the frontier could provide estimates. We suspected a priori that frontiers would 
monotonically increase (the addition of more health workers would not decrease maximum potential UHC 
achievement) and would exhibit diminishing returns (the contribution of each additional health worker would be 
more significant where workforce levels are lower). Having observed this suspected relationship in preliminary 
analyses, we incorporated both as constraints in the frontier fits. SFM analyses were thus run using monotonically 
increasing concave splines with six knots. These constraints ensured that where data were sparse (for example, at 
very high levels of HRH), stochastic variations and inefficiencies did not drive the flexible frontier toward 
unrealistic trends (insinuating, for example, that at certain health workforce densities, additional workers would be 
detrimental to maximum potential UHC attainment). The right-most segment of the spline was also constrained to be 
flat in order to preclude extrapolation beyond observed levels of UHC attainment. We used 7.5% trimming, so that 
the most extreme 7/5% of observations were detected as outliers and excluded as the frontier was constructed. This 
reduced any subjectivity inherent to ad-hoc outlier identification.  
 
For any cadre-specific health worker density, the corresponding production frontier value provides an estimate of 
the maximum UHC attainment that is theoretically possible if countries or territories are optimising the efficiency 
with which they translate human resources into UHC. By comparing actual UHC performance to the estimated 
maximum potential UHC attainment, our frontier analysis identifies the productive efficiencies with which countries 
and regions are attaining UHC with their existing health worker densities. To be clear, productive efficiency 
estimates highlight country capacities related to health system components and contexts beyond health workforce 
densities, such as workforce distribution, the quality of workforce training, or non-workforce factors related to 
health-care access and quality, such as health-care technology, population distributions, and transportation 
infrastructure. Accordingly, countries and territories with the same health workforce densities can exhibit a range of 
productive efficiency scores.  
 
Across the spectrum of health worker densities, countries and territories may be identified as highly efficient, and 
thus driving the UHC frontier at their level of HRH, or less efficient given what would be expected from the size of 
their health workforce. For example, a country with a relatively small nurse workforce density may have a UHC 
performance close to the theoretical maximum, and may therefore have a higher efficiency score than a country that 
has a larger nurse workforce density and a higher level of UHC yet does not come as close to its theoretical 
maximum. Countries with low frontier efficiencies may look to more efficient performers with similar health 
workforce densities for insight into potential improvements in other health system factors that would facilitate better 
UHC attainment. Therefore, reaching a minimum threshold for health workforce density is by no means sufficient 
for achieving a target level of UHC effective coverage, and many countries with or without health worker shortages 
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also have low productive efficiencies, indicating a need for investments beyond just expanding the health workforce 
size. Since reaching 100% efficiency in the translation of human resources into UHC effective coverage 
performance is not possible for every location, many countries and territories may require workforce densities 
beyond the minimum thresholds proposed in this study. However, it is important to note that increasing workforce 
sizes cannot always compensate for issues underlying low productive efficiency, and certainly may not be a cost-
effective or appropriate means of advancing UHC when HRH levels are already sufficient. 
 
In this analysis, we use the fitted production frontiers to identify minimum cadre-specific health worker densities 
needed to achieve specific UHC attainment targets, assuming countries and territories are operating at maximum 
productive efficiency. Minimum density thresholds for each health worker cadre can be determined as the x-values 
of each corresponding frontier as it crosses a given target value of UHC performance. We determined minimum 
density thresholds for each health worker cadre to achieve performance targets of 80 and 90 out of 100 on the UHC 
effective coverage index. Since UHC is a measure of essential health services for all populations, every country 
should strive for the highest attainable score on the corresponding index. However, because SFM is fit to historical 
data, these production frontiers cannot be used to extrapolate HRH requirements for UHC effective coverage beyond 
what was achieved between 1990 and 2019. This is one reason why the fitted frontiers never reach the x-axis, 
because no locations in this analysis achieved UHC effective coverage scores so close to zero. During this study 
period, the highest levels of estimated UHC effective coverage (at or above 90 out of 100) almost entirely occurred 
in high-income countries and territories. Given limitations in the number and diversity of locations reaching this 
UHC effective coverage score, the frontier results for such a target are less likely to be accurate or representative at a 
global scale. For that reason, we chose to focus on a UHC effective coverage of 80 out of 100 for this study, since it 
was the highest approximate score that had been reached by a wide range of locations. In future analyses as more 
countries achieve higher levels of UHC, it may be possible to establish stable and representative thresholds for even 
higher targets of effective coverage. 
 
It is important to note that choosing a high UHC attainment target should not conflict with the interpretation of 
thresholds as minimum health workforce densities. Our research aimed to determine the minimum human resources 
required to achieve a high level of health service coverage and quality. In other words, the findings of this frontier 
analysis are predicated on a high level of UHC effective coverage (an appropriate health system goal) but provide 
estimates of the minimum HRH densities needed to meet that target (minimising costs and inefficiency). 
 
It is also important to note that the thresholds proposed in this analysis do not necessarily represent an ideal HRH 
skill mix for any given location. Health systems around the world differ dramatically in their distribution of HRH 
cadres for a variety of reasons, and this study does not intend to prescribe exact levels or ratios in the makeup of a 
health workforce. Instead, this study aims to use existing estimates of HRH to identify a globally applicable 
common denominator of minimum workforce requirements necessary to meet a specified health system performance 
goal. This study would suggest, for instance, that health systems more heavily reliant on nurses and midwives 
should still require the minimum threshold densities for physicians, dentistry personnel, and pharmaceutical 
personnel in order to reach a UHC level of 80 out of 100. However, in maintaining its own preferred skill mix, that 
health system would likely find itself surpassing the threshold for nurses and midwives in the process. This example 
is presented to emphasise that these thresholds only reflect minimum HRH densities, not exact targets. They do not 
imply that all health systems must employ the same strategies or HRH skill mix in order to achieve high levels of 
UHC. Future work may explore frontier analyses on subsets of locations that exhibit similar skill mixes to better 
characterise additional contextual workforce requirements beyond this study’s minimum levels. Such tailored 
thresholds might better characterise what the health workforce would look like in countries achieving high levels of 
UHC while maintaining a particular skill mix, which could be useful for health system planning purposes.  
 
Section 3. Online tools and glossary of terms 
Online tools  
GBD 2019 data sources and additional results are presented in a series of tools and dynamic visualisations, available 
at http://ghdx.healthdata.org/gbd-2019. 
 
Analytic source code for estimates are available at: http://ghdx.healthdata.org/gbd-2019 under the GBD 2019 code 
for the paper “Measuring the availability of human resources for health and its relationship to universal health 
coverage: estimates for 204 countries and territories from 1990 to 2019.” 

http://ghdx.healthdata.org/gbd-2017
http://ghdx.healthdata.org/gbd-2017
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List of abbreviations 
DAH   development assistance for health 
GATHER  Guidelines for Accurate and Transparent Health Estimates Reporting 
GBD   Global Burden of Diseases, Injuries, and Risk Factors Study 
GHDx   Global Health Data Exchange 
GPR   Gaussian process regression 
HAQ   Healthcare Access and Quality Index 
HRH   human resources for health 
ILO   International Labour Organization 
ISCO   International Standard Classification of Occupations 
MDGs   Millennium Development Goals  
MIRs   mortality-to-incidence ratios 
NCDs   non-communicable diseases 
OECD   Organisation for Economic Co-operation and Development 
PAF   population attributable fraction 
PCA   principal components analysis 
SDGs   Sustainable Development Goals 
SDI   Socio-demographic Index 
SFA   stochastic frontier analysis  
SFM   stochastic frontier meta-analysis  
ST-GPR  spatiotemporal Gaussian process regression 
UHC   universal health coverage 
UI   uncertainty interval 
VR   vital registration 
WHO   World Health Organization 
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Stochastic Frontier Meta-Analysis

1. Stochastic Frontier Meta-Analysis (SFM)

Stochastic frontier analysis (SFA) [1] is a stochastic analysis of the frontier production function, which
expresses the maximum amount of output obtainable from a linear combination of variables of interest.
The SFA model we start with is given by

yi = 〈xi,β〉 − vi, (1)

where yi are observations, 〈xi,β〉 is the linear model (linear combination of variables in xi with weights
β), while vi is the deviation from the maximum output, and so is modeled as a non-negative random
effect. In the context of Human Resources for Health, the observations yi are measures of universal
health coverage (UHC), and the model 〈x,β〉 is a spline that relates a measure of coverage (e.g. average
number of personnel per 10 K population) to UHC.

We develop a meta-analytic extension of SFA, which we call Stochastic Frontier Meta-analysis (SFM).
Every observation yi is subject to random error (computed from aggregated data). We consider the
modified model

y = Xβ∗ − v + ε, (2)
with each entry vi of v a half-normal non-negative random effect with unknown variance η, while each
entry εi of ε is Gaussian N (0, σ2

i ), and represents the reported study-specific error sources with known
variances σ2

i . We introduce three innovations in this method.

• We formulate the explicit likelihood problem for the SFM model, assuming a half-normal model
for the non-negative random effects vi.

• Outliers are a big problem for SFA [1]. We apply the trimmed robust approach [2] in order to
automatically identify and remove outliers from each dataset.

• We allow priors and constraints for the SFM model. In particular this lets us incorporate shape
constraints on the spline, similar to what was proposed by [8].

The resulting approach lets us model inherently nonlinear relationships through the linear model (2)
using splines, remove outliers, and incorporate reported errors across geographic regions. Each of the
pieces listed above is now described in detail.

2. SFM: modeling non-negative random effects.

In this section we derive all likelihood formulations for the Stochastic Frontier Meta-analysis (SFM)
approach. We use the half-normal model for the random effects vi:

f(vi|η) =
{ √

2√
πη exp

(
− v

2
i

2η

)
vi ≥ 0

0 vi < 0.

The goal is to estimate β∗ and η∗ from observations. The mixed effects framework provides a natural
statistical model which can be used for this inference. The joint distribution of fixed and random effects
is then given by

p(β, η,v|y) = p(β, η, |v,y)p(v|y)

∝
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i=1
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Integrating out the random effects, and taking the negative log of the resulting distribution, we arrive
at equivalent maximum likelihood formulation that does not depend on the random effects v, but only
depends on β and η. Define Φ̃ to be the complementary error function

Φ̃(z) = 1− 2√
π

∫ z

0
exp(−t2)dt.

Then we have the following closed form likelihood.

M(β, η|y) =− ln
(∫

Rm
+

p(β, η,v|y) dv
)

=
m∑
i=1

(yi − 〈xi,β〉)2

2(η + σ2
i ) + 1

2 ln
(
η + σ2

i

)
− ln

(
Φ̃
(√

η(yi − 〈xi,β〉)√
2(η + σ2

i )(σ2
i )

)) (4)

The SFM approach optimizes these likelihoods to estimate (β, η).

3. Priors, Constraints, and Splines.

In this section we describe how to set up Bayesian priors, constraints for parameters of interest, and
spline models for nonlinear relationships in the SFM setup.

3.1. Priors

The likelihood M can be updated using prior information. Imposing priors is equivalent to adding
penalties to the likelihood function. For the SFM analysis, the only priors we use are those related to
the final section of the frontier.

Given a Gaussian prior on β ∼ N(β), we find the a posteriori estimate by solving the problem

min
β,η
M(β, η) + 1

2(β − β)TΣ−1
β (β − β). (5)

3.2. Constraints

We allow box constraints and general linear inequality constraints on (β, η). Taking (5) as a running
example, we can impose constraints of the form

min
β,η

M(β, η) + 1
2(β − β)TΣ−1

β (β − β) + 1
2(η − η)TΣ−1

η (η − η)

such that lf ≤
[
β
η

]
≤ uf , C

[
β
η

]
≤ c,

(6)

where (lf ,uf ) are lower and upper bounds on the variables, while C is any matrix. This function-
ality can be used to impose shape constraints on spline models, including increasing/decreasing, con-
vex/concave, and combinations of these designs.

3.3. Splines

In this section we discuss spline models for dose-response relationships. For general background on
splines and spline regression see [5] and [6].
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Figure 1. Recursive generation of bspline basis elements (orders 0, 1, 2).

B-splines and bases. A spline basis is a set of piecewise polynomial functions with designated degree
and domain. If we denote polynomial order by p, and the number of knots by k, we need p + k basis
elements spj , which can be generated recursively as illustrated in Figure 1.

Given such a basis, we can represent any dose-response relationship as the linear combination of the
spline basis elements, with coefficients β ∈ Rp+k:

f(t) =
p+k∑
j=1

βpj s
p
j (t). (7)

t0 t1 t2 t3 t4 t0 t1 t2 t3 t4

Figure 2. Spline extrapolation. Left: linear extrapolation. Right: nonlinear extrapolation.

An explicit representation of (7) is obtained by building a design matrix X. Given a set of t values at
which we have data, the jth column of X is given by the expression

X·,j =

s
p
j (t0)
...

spj (tk)

 .
The model for direct observations data coming from the spline (7) can now be written compactly as

y = Xβ + v + εi,

and has the same form as (1).
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Enforcing linear tails. For the frontier analysis, we need to ensure that the last segment of the spline
does not go above a theoretical limit, typically set at 1. To do this, we allow an option to make the
last segment linear. The prior capabilities can then be used to set a prior for the slope of this segment
to be 0 (i.e. flat). The estimated spline is then a best fit to the data, subject to this specification.

In general, using linear head and/or tail pieces to extrapolate outside the original domain or interpolate
in the data sparse region is far more stable that using higher order polynomials, see Figure 2. The
figure shows symmetric linear tail modifications, but for the analyses in the paper we only impose a
right linear tail shape constraint.

Shape constraints. We can use constraints to enforce monotonicity, convexity, and concavity. Mono-
tonicity across the domain of interest follows from monotonicity of the spline coefficients. This re-
lationship is derived for particular basis constructions by [5], and has been used in the literature to
enforce shape constraints [8]. Current approaches work around the natural inequality constraints by
using additional ‘exponentiated’ variables. Instead we impose these constraints directly as described
below.

Focusing just on α, the relationship α1 ≤ α2 can be written as α1 − α2 ≤ 0. Stacking these inequality
constraints for each pair (αi, αi+1) we can write all constraints simultaneously as

1 −1 0 . . . 0
0 1 −1 . . . 0
. . . . . . . . . . . .

...
0 . . . . . . 1 −1


︸ ︷︷ ︸

C


α1
α2
α3
...
αn

 ≤


0
0
...
0

 .

These constraints are directly imposed through the IPOPT interface, along with any lower- and upper-
limit constraints on α.

Convexity and Concavity. For any C2 (twice continuously differentiable) function f : R → R, con-
vexity and concavity are captured by the signs of the second derivative. Specifically, f is convex if
f ′′(t) ≥ 0 is everywhere, an concave if f ′′(t) ≤ 0 everywhere. We impose linear inequality constraints
on the expressions for f ′′(t) over each interval. We can therefore easily pick any of the eight shape
combinations given in [8, Table 1], as well as imposing any other constraints on α (including bounds).

4. Robust Extension via Trimming

Trimming estimators is a general methodology for robust estimation [10, 2]. For convenience, define

θ =
[
β
η

]
.

Given any likelihood problem of form

min
θ

m∑
i=1

fi(θ) +R(θ),

with fi is the contribution from the ith datapoint, while R(θ) collects all terms that do not depend on
the data, including priors in Section 3.1 and constraints in Section 3.2 1.

Then the trimmed estimator is formulated as

min
θ,w

m∑
i=1

wifi(θ) +R(θ), 0 ≤ wi ≤ 1, 1Tw = h (8)

1In particular, since R includes constraints, it is infinite-valued off of the feasible region.
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where h ≤ m is the estimate of inlier datapoints. The set

∆h :=
{
w : 0 ≤ wi ≤ 1,1Tw = h

}
is known as the capped simplex, since it is the intersection of the simplex with the unit box [2]. The
estimator (8) is compactly written as

min
θ,w∈∆h

m∑
i=1

wifi(θ) +R(θ). (9)

5. Optimization

The SFM model is fit using an algorithm based on variable projection [4, 7, 3], which allows us to
leverage a third-party solver, IPOPT [9] to optimize over θ, significantly reducing complexity. Consider
the joint likelihood (9) and define the value function v(w) and values (θ(w),γ(w)) by

v(w) = min
θ

m∑
i=1

wifi(θ) +R(θ)

θ(w) = arg min
θ

m∑
i=1

wifi(θ) +R(θ).
(10)

We use IPOPT to solve this problem for each w, reducing the problem to

min
w∈∆h

v(w).

where v(w) is differentiable with derivative given by

∇v(w) =

 f1(θ)
...

fm(θ)

 (11)

The top level algorithm is simply a projected gradient method

w+ = proj∆h
(w − α∇v(w))

for an appropriately chosen stepsize. Each evaluation of ∇v requires a full minimization step over the
constrained weighted likelihood with respect to θ using IPOPT, see (11) and (10). The capped simplex
∆h is a closed convex set with a simple projection [2]; a simple proximal gradient with line search
converges in this case.

6. Estimating Random Effects (Inefficiencies).

Once fixed effects θ have been estimated, we want to obtain estimates of inefficiency from the joint
likelihood (3). We optimize

min
vi≥0

(yi − 〈xi,β〉+ vi)2

2σ2
i

+ v2
i

2η
(12)

We get the closed form solution

v̂i = max
(

0,
1
σ2

i
(xTi β − yi)

1
σ2

i
+ 1

η

)
= max

(
0, η(xTi β − yi)

σ2
i + η

)
. (13)
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