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Supplemental Figure 1: Characterization of three Ppclv1a Ppclv1b Pprpk2 triple 

mutant lines. We transformed Ppclv1a Ppclv1b-8 double mutants (Whitewoods, 

Cammarata et al. 2018) with plasmids expressing a PpRPK2-targeting gRNA, Cas9, and a 

selectable marker. We generated independent lines with Pprpk2-like colony 

phenotypes and selected three for in-depth phenotyping of gametophore 

morphogenesis, shown here. A) Portion of PpRPK2 exon 1 with gRNA target sequence 

and PAM (Protospacer Adjacent Motif) highlighted. Below, aligned sequences of the 

Pprpk2 mutant loci from three Ppclv1 Pprpk2 lines. B) All Ppclv1 Pprpk2 mutants 

display the short stature, ectopic stem cell phenotypes, and ectopic midrib 

specification representative of a combination of Ppclv1 and Pprpk2 phenotypes.  



  

Supplemental Figure 2: Non-normalized data set of  wt, Ppclv1a Ppclv1b, Pprpk2, and 

Ppclv1a Ppclv1b Pprpk2 gametophores.  Top panel: boxplot representing raw number of 

stem cells observed on gametophores at each condition. Lower panel: density plot 

showing distribution of stem areas from which stem cell measurements were taken.  



 
 
Supplemental Figure 3: Non-normalized data set of mock and cytokinin-treated wt, Ppclv1a 
Ppclv1b, Pprpk2, and Ppclv1a Ppclv1b Pprpk2 gametophores.  Top panel: boxplot representing raw 
number of stem cells observed on gametophores at each condition. The normalized data is presented 
in Figure 3M. Lower panel: density plot showing distribution of stem areas from which stem cell 
measurements were taken. Includes data from Supplemental Figure 2 to parallel main text. See 

results section for statistics from Poisson regression. 
 



 

 

 

   

Supplemental Figure 4: Predictions of stem cell initiation at zero cytokinin. The best 

performing models of stem cell initiation in wild type Ppclv1a Ppclv1b, Pprpk2, and 

Ppclv1a Ppclv1b Pprpk2 triple mutants with and without exogenous cytokinin were used 

to predict stem cell initiation levels if cytokinin signaling were abolished (highlighted 

blue). Each model predicted a reduction in stem cell initiation. More informatively, 

mutants of whichever gene that acts upstream of x would see their stem cell initiation 

phenotypes fully suppressed upon reduced cytokinin (PpRPK2 above, PpCLV1 below). 

Data points and error bars represent empirical stem cell per area values normalized to 

wild type grown on mock-treated media. From left to right: mock, 10 nM BAP, 100 nM 

BAP. Solid lines represent model simulations after optimization of parameters to the 

data.  



 
 
Supplemental Figure 5: genotyping higher order Ppclv1 Pprpk2 Ppchk mutants. Ppchk1 Ppchk2 
Ppchk3-1 plants were transformed with gRNAs targeting PpCLV1a and PpCLV1b, PpRPK2, or all three.  
Three independent lines for Ppclv1a Ppclv1b Ppchk1 Ppchk2 Ppchk3 quintuple mutants (A) and Pprpk2 
Ppchk1 Ppchk2 Ppchk3  quadruple mutants  were obtained (B). A Ppclv1b Pprpk2 Ppchk1 Ppchk2 



Ppchk3 quintuple mutant line was recovered and re-transformed with a PpCLV1a-targeting gRNA to 
generate two sextuple mutant lines (C). CRISPR mutant lines are indicated with cr-#. On the right, 
examples of gametophore phenotypes for each of these lines show a combination of Ppclv1, Pprpk2, 
and Ppchk phenotypes. Comparison of stem cell phenotype across mutant lines, with pairwise tests 
showing that no lines are significantly different from any other of the same genotype except for cr-80 
and cr-81 (D). Non-significant results (Bonferroni correction-adjusted p > 0.05) are represented by 
gray lines; significant results in red. Distribution of lines used to generate the data for each genotype 
(E).  
 

 

  



 
Supplemental Figure 6: Ppchk mutants are insensitive to cytokinin. A) Five week-old P. patens 

tufts grown on mock (left) or 100 nM BAP (right). From top to bottom, wild type, Ppclv1a Ppclv1b 

Ppchk1 Ppchk2 Ppchk3, Pprpk2 Ppchk1 Ppchk2 Ppchk3, and Ppclv1a Ppclv1b Pprpk2 Ppchk1 Ppchk2 

Ppchk3 mutants with independent mutant lines tested. B) Confocal images of gametophores from 

colonies in panel A. Wild type P. patens responds to 100 nM BAP whereas Ppchk1 Ppchk2 Ppchk3 

mutant lines do not.  

  



 
  
Supplemental Figure 7: Higher order Ppclv1, Pprpk2, and Ppchk mutant phenotypes are variable. 
Examples of weak, moderate, and strong phenotypes observed for Ppchk mutant gametophores and 
each higher order Ppclv1 Ppchk, Pprpk2 Ppchk, and Ppclv1 Pprpk2 Ppchk mutants. Pprpk2 Ppchk1 
Ppchk2 Ppchk3 quadruple mutant phenotypes were particularly variable. However, when quantified 
these lines still presented an increased initiation of stem cells per area (Figure 5 E).  
 

  



 
 
Supplemental Figure 8: Full non-normalized data set.  Top panel: boxplot representing raw number 
of stem cells observed on gametophores at each condition. The normalized data is presented in 
Figure 5E. Lower panel: density plot showing distribution of stem areas from which stem cell 
measurements were taken. Here are the data for all gametophores measured across genotypes and 
treatment conditions. Includes data from supplemental figure 3 to parallel main text. See results 

section for statistics from Poisson regression. 
 



 

 

Supplemental Figure 9: Models fit poorly with PpRPK2 upstream of cytokinin response. Alternative 
versions of models 6 and 7 (Figure 5), with PpRPK2 upstream of cytokinin-mediated stem cell 
induction (x). To  Solid lines represent simulated data while dots represent mean stem cells per area 
from the empirical data. Error bars show the standard error. The x axis shows a log transformation of 
the cytokinin value input to the model.   
 

  

 



 

 

Supplemental Figure 10: Models lacking incoherent feed-forward control cannot recapitulate Ppchk 
and higher order Ppclv Pprpk2 Ppchk phenotypes. The models that best fit the stem cell phenotypes 
of wt, Ppclv1a Ppclv1b, Pprpk2, and Ppclv1a Ppclv1b Pprpk2 gametophores on mock and cytokinin 
treatments were fit to the full dataset including the Ppchk1 Ppchk2 Ppchk3 and higher order Ppclv1, 
Pprpk2, Ppchk mutants (leftmost datapoint on each plot). Dots represent empirical data; lines 
represent simulated data.   
 

 

 



 

Supplemental Figure 11: Gene expression analysis testing cytokinin, PpCLV1, and PpRPK2 
interactions.  A) qPCR-data testing the change in expression of five PpCKX genes in response to 
growth on cytokinin. All PpCKX genes tested were upregulated, although PpCKX6 weekly so. B) PpCKX 
gene expression was used as an indicator of cytokinin transcriptional response. PpCKX1 expression 
was increased in Ppclv1a Ppclv1b, but unchanged in Ppclv1a Ppclv1b Ppchk1 Ppchk2 Ppchk3, 
supporting a role for PpCLV1 in inhibiting cytokinin response. However, other PpCKX genes tested did 
not display this same trend. C) Expression levels of PpCLV1a, PpCLV1b, and PpRPK2 were unchanged 
due to growth on cytokinin.  

 



Supplemental Table 1 primers 

oJCm278 GAGTTAGGGGAGATGACGCG PpRPK2 gRNA target locus genotyping 

oJCm279 CTTGGAGGACTCACCAACCC PpRPK2 gRNA target locus genotyping 

oJCm379 cacctaaacggctcaattcc PpCLV1a exon 4 genotyping 

oJCm380 tgatgatctccgatggtatgg PpCLV1a exon 4 genotyping 

oJCm181 tggagagacgcaacttccat PpCLV1b exon 1 sample – sgRNAs 1 and 2 

oJCm182 ttaagacgccccaaatcagc PpCLV1b exon1 sample – sgRNAs 1 and 2 

oJCm175 gcttcGAGCTCGAATTCAGA 

PpU3 promoter forward for Sanger sequencing of 
gRNA plasmids 

oJCm176 ggtcGACGAGCTCAAAAAAAG 

sgRNA_scaffold_reverse for Sanger sequencing of 
gRNA plasmids 

oJCm208 GAGCTCGAATTCGTCCATTGA 

PpU6 promoter forward for Sanger sequencing of 
gRNA plasmids 

oJCm375 ACGGACATTGCATTTAAGACCT qRT Primer REF gene F: 60s  

oJCm376 GTCGATTACCTGTGGAGAAGAC qRT Primer REF gene R: 60s  

oJCm360 ATTTGTGGATGCTGCTGGTG PpCKX5 qRT-PCR primer F 

oJCm361 ACGTTGCTAATTTCAGGTCCG PpCKX5 qRT-PCR primer R 

oJCm362 CGAAAGTACCTGGAGTCGCT PpCKX1 qRT-PCR primer F 

oJCm363 CAGACTCTAACCTCGCCACA PpCKX1 qRT-PCR primer R 

oJCm364 AATTCACGAGCTGGGTTCAC PpCKX4 qRT-PCR primer F 

oJCm365 AGAGCGACTCCAGGTACATG PpCKX4 qRT-PCR primer R 

oJCm366 TAGACGTCCTGAAAGCCTCT PpCKX6 qRT-PCR primer F 

oJCm367 ACGACTTCCAGCTGCAGAA PpCKX6 qRT-PCR primer R 

oJCm368 CTGGTCTAGAGCCCTTCACC PpCKX3 qRT-PCR primer F 

oJCm369 CCAGCTTTGTCCAGATTCCG PpCKX3 qRT-PCR primer R 

oJCm383 GTATTGGTCCTGAGAGTGG PpCLV1a qRT-PCR primer F 

oJCm384 GAGGTTCACACACACACAAG PpCLV1a qRT-PCR primer R 

oJCm387 TTTCAAGACACTGGCAAATC PpCLV1b qRT-PCR primer F 

oJCm388 TGCTTCAATCGGTCTCTTAC PpCLV1b qRT-PCR primer R 

oJCm391 CACCAGCACCAACATAAAC PpRPK2 qRT-PCR primer F 

oJCm392 TACAGCAACCACCAATCC PpRPK2 qRT-PCR primer R 

 

Supplemental Table 2 gRNA oligonucleotides 

sgRNA Oligo 
for synthesis 

Sequence Target Inserted into 
Vector 

sgJTC5 GGCAgacagtgcccgaggctctct PpCLV1a exon4 cds 
U3_BSAI-
sgRNA 

sgJTC6 AAACagagagcctcgggcactgtc PpCLV1a exon4 cds* 
U3_BSAI-
sgRNA 



sgJTC9 GGCagaagtgcgagaccctcttc PpCLV1b exon1 cds sgRNA1 
U3_BSAI-
sgRNA 

sgJTC10 AAACgaagagggtctcgcacttc PpCLV1b exon1 cds sgRNA1* 
U3_BSAI-
sgRNA 

sgJTC105 catGGGTTTGAGCGACGATGGCC PpRPK2 cds U6_sgRNA 

sgJTC106 aaacGGCCATCGTCGCTCAAACCC PpRPK2 cds U6_sgRNA 

 

Supplemental Table 3: Genes referenced in this study 

Full Gene Name Alias Version 1.6  Version 3 

PpCLAVATA1a PpCLV1a Pp1s14_447V6 Pp3c6_21940 

PpCLAVATA1b PpCLV1B Pp1s5_68V6 Pp3c13_13360 

PpRECEPTOR-LIKE PROTEIN 
KINASE 2 

PpRPK2 Pp1s311_57V6 Pp3c7_5570 

PpCYTOKININ HISTIDINE 
KINASE 1 

PpCHK1 Pp1s50_141V6 
 

Pp3c25_8540 

PpCYTOKININ HISTIDINE 
KINASE 2 

PpCHK2 Pp1s194_72V6 Pp3c16_7610 
 
 

PpCYTOKININ HISTIDINE 
KINASE 3 

PpCHK3 Pp1s252_49V6 
 

Pp3c6_7030 

PpCYTOKININ OXIDASES 1 PpCKX1 Pp1s152_115V6 Pp3c20_2380V3 

PpCYTOKININ OXIDASES 3 PpCKX3 Pp1s222_49V6 Pp3c23_17550V3 

PpCYTOKININ OXIDASES 4 PpCKX4 Pp1s222_68V6 Pp3c23_17360V3 

PpCYTOKININ OXIDASES 5 PpCKX5 Pp1s403_31V6 Pp3c24_13960V3 

PpCYTOKININ OXIDASES 6 PpCKX6 Pp1s595_6V6 Pp3c8_18580V3 

60S RIBOSOMAL PROTEIN 60s Pp1s79_255V6 Pp3c14_7550V3 

 

Supplemental Table 4: Media and Solutions  
Media 
 

Stock Solutions for BCD and BCDAT moss growth media   
 

Stock solution B (100x) 
 

MgSO4·7H2O or 
MgSO4 (anhydrous) 

2.5 g 
1.2 g 

dH2O Fill to 100 ml 

Stock solution C (100x) 
 

KH2PO4 2.5 g 

dH2O Fill to 50 ml 

Adjust pH with 4 M KOH  

dH2O Fill to 100 ml 

Stock Solution D (100x) 

KNO3  10.1 g 

FeSO4·7H2O 0.125 g 

dH2O Fill to 100 ml 



Ammonium tartrate (100x) 
di-ammonium (+) tartrate 9.2 g 

dH2O Fill to 100ml 

Trace element solution 
(20,000x) 
 
 

H3BO3 614 mg 

AlK(SO4)2·12 H2O 55 mg 

CuSO4·5 H2O 55 mg 

KBr 28 mg 

LiCl 28 mg 

MnCl2·4 H2O 389 mg 

CoCl2·6 H2O 55 mg 

ZnSO4·7 H2O 55 mg 

KI 28 mg 

SnCl2·2 H2O 28 mg 

dH2O Fill to 50 ml 

CaCl2 (500x)  
Add after autoclaving 

CaCl2 3.67 g 

dH2O Fill to 50 ml 

Solutions for transformation 

8.5% Mannitol 
Mannitol  85 g 

dH2O 1 L 

Driselase Driselase 4 g 

 8.5% Mannitol 200 ml 

 

Gently stir for 30 minutes at room temperature. 
Keep at 4°C for 30 minutes. 
Stir 5 minutes at room temperature. 
Spin at 2,500g for 10 minutes in 50 ml Falcon Tubes. 
Filter sterilize with 0.22 μm filter. 
Aliquot 10 ml into 15 ml Falcon Tubes. 
 

3M Solution 

Mannitol 4.5g 

1M MgCl2·6H2O 750 μl 

1% MES pH 5.6 5 ml 

H2O to 50 ml 

PEG Solution for Transformation 

8.5% Mannitol 9 ml 

1M Ca(NO3)2·4H2O 1 ml 

1M Tris pH 8.0 100 μl 

PEG 8000 4 g, melted slowly in microwave 

PRMB 

BCDAT  

Mannitol 6% (w/v) 

Agar 0.55% (w/v) 

500 mM CaCl2 (add after 
autoclaving) 

1 ml per 50 ml media 

PRMT 

BCDAT  

Mannitol 6% (w/v) 

Agar 0.3% (w/v) 



500 mM CaCl2 (add after 
melting) 

1 ml per 50 ml media 



Dynamical Model Methods 
Systems of ordinary differential equations can be used to simulate how values of interacting variables 

change over time. In the case of a genetic or developmental network these variables can represent gene 

expression levels or the strength of signaling pathway outputs. We used such dynamical models to 

assess how well competing hypothetical stem cell regulatory network topologies could reconstitute the 

data. Each of the models described here simulated the accumulation of gene products through time, 

simultaneously modeling transcription and translation. The equations are modified from Gordon et al. 

2009, where the authors use similar systems of differential equations to test predictions about CLV3, 

CLV1, WUS, and cytokinin interactions in Arabidopsis(Gordon et al., 2009). 

 

Model 1-5 
Models 1-5 consist of the following equations. Edges in the network (such as RPK2 inhibition of y) were 
changed by setting corresponding k values (in the case of RPK2 and y, k[5] to 0).  

𝑑𝑥

𝑑𝑡
=

𝑝1 + 𝑐𝑦𝑡 ∗ 𝑘1

1 + 𝑝1 + 𝑐𝑦𝑡 ∗ 𝑘1 + 𝑘2 ∗ 𝑐𝑙𝑣 + 𝑘3 ∗ 𝑟𝑝𝑘2
− 𝑑1 ∗ 𝑥 

𝑑𝑦

𝑑𝑡
=

𝑝2

1 + 𝑝2 + 𝑘4 ∗ 𝑐𝑙𝑣 + 𝑘5 ∗ 𝑟𝑝𝑘2
− 𝑦 ∗ 𝑑2 

𝑑𝑖𝑛𝑖𝑡

𝑑𝑡
=

𝑝3 + 𝑥 ∗ 𝑘6 + 𝑦 ∗ 𝑘7

1 + 𝑝3 + 𝑥 ∗ 𝑘6 + 𝑦 ∗ 𝑘7
− 𝑖𝑛𝑖𝑡 ∗ 𝑑3 

Model 6 and 7 
Models 6 and 7 are similar in topology with the inclusion of the variable z downstream of cytokinin. In 
Model 6, z is inhibited by cytokinin, and induces init. In model 7, z is induced by cytokinin, and inhibits 
init. Two versions of each model were run: one with CLV1 inhibiting x and RPK2 inhibiting y, and one 
RPK2 inhibits x and CLV1 inhibits y.  

Model 6 
𝑑𝑥

𝑑𝑡
=

𝑝1 + 𝑐𝑦𝑡 ∗ 𝑘1

1 + 𝑝1 + 𝑐𝑦𝑡 ∗ 𝑘1 + 𝑐𝑙𝑣 ∗ 𝑘2 + 𝑟𝑝𝑘2 ∗ 𝑘3 + 𝑧 ∗ 𝑘9
− 𝑥 ∗ 𝑑1 

dy

dt
=

𝑝2

1 + 𝑝2 + 𝑐𝑙𝑣 ∗ 𝑘4 + 𝑟𝑝𝑘2 ∗ 𝑘5
− y ∗ d2 

𝑑𝑧

𝑑𝑡
=

𝑝4

1 + 𝑝4 + 𝑐𝑦𝑡 ∗ 𝑘8
− 𝑧 ∗ 𝑑4 

𝑑𝑖𝑛𝑖𝑡

𝑑𝑡
=

𝑝3 + 𝑥 ∗ 𝑘6 + 𝑦 ∗ 𝑘7 + 𝑧 ∗ 𝑘9

1 + 𝑝3 + 𝑥 ∗ 𝑘6 + 𝑦 ∗ 𝑘7 + 𝑧 ∗ 𝑘9
− 𝑖𝑛𝑖𝑡 ∗ 𝑑3 

 

Model 7 
𝑑𝑥

𝑑𝑡
=

𝑝1 + 𝑐𝑦𝑡 ∗ 𝑘1

1 + 𝑝1 + 𝑐𝑦𝑡 ∗ 𝑘1 + 𝑐𝑙𝑣 ∗ 𝑘2 + 𝑟𝑝𝑘2 ∗ 𝑘3 + 𝑧 ∗ 𝑘9
− 𝑥 ∗ 𝑑1 



𝑑𝑧

𝑑𝑡
=

𝑝4 + 𝑐𝑦𝑡 ∗ 𝑘8 ∗ 𝑐𝑦𝑡

1 + 𝑝4 + 𝑐𝑦𝑡 ∗ 𝑘8
− 𝑧 ∗ 𝑑4 

𝑑𝑦

𝑑𝑡
=

𝑝2

1 + 𝑝2 + 𝑐𝑙𝑣 ∗ 𝑘4 + 𝑟𝑝𝑘2 ∗ 𝑘5
− 𝑦 ∗ 𝑑2 

𝑑𝑖𝑛𝑖𝑡

𝑑𝑡
=

𝑝3 + 𝑥 ∗ 𝑘6 + 𝑦 ∗ 𝑘7

1 + 𝑝3 + 𝑥 ∗ 𝑘6 + 𝑦 ∗ 𝑘7 + 𝑧 ∗ 𝑘9
− 𝑖𝑛𝑖𝑡 ∗ 𝑑3 

 

Model Variables 
The variables used in this work are summarized here: 

Variable Describes 
x Cytokinin-response pathway that induces stem cell formation 

y Cytokinin-independent pathway inducing stem cell formation 

z Cytokinin feedforward control of stem cell formation 

init Level of stem cell initiation 

clv Strength of CLV1 signaling. This is a static, non-dynamical parameter 

rpk2 Strength of RPK2 signaling. This is a static, non-dynamical parameter  

cyt Strength of cytokinin signaling. Set to 0 for chk, 1 for mock-treated wt, and to 10 and 100 for 
cytokinin treatments 

 

It is important to note that these variables are not meant to exactly reflect the level of a protein, but 
more the presence/absence and strength of the signaling pathway.  

Model parameters 
Each equation in the model describes how one of the above variables changes over time. The change 
over time is proportional to the current value of the parameters and other variables in the model. Each 
of the other variables in an equation is associated with a proportionality constant that describes how 
that variable affects the accumulation rate described by that equation. Additionally, a differential 
equation might include a term to describe accumulation independent of the other variables as well as 
degradation rates.  These constants were assigned to the following categories: 

- p = production; describes basal accumulation rates 
- d = degradation; describes degradation rates 
- k = interaction coefficient/proportionality constant 

Each model also used a set of initial conditions (a vector called base)and a time vector that ran the 
model over 2000 or 3000 time intervals.  

Summary of workflow 
1) Run the model and confirm that it converges to a steady-state value within the allotted steps. 
2) Simulate each mutant genotype at each cytokinin level of interest with the initial parameters to 

generate a starting fit score. 
3) Optimize parameters and determine fit to empirical data  

1) Running a model 
Each model was solved using the LSODA solver for Ordinary Differential Equations (ODEs) and the R 
statistical programming language Version 4.0.2(Soetaert et al., 2010; Team, 2016). Models were 



confirmed to converge to steady state values before and after each run of the optimizer, as determined 
by each variable reaching a plateau by the end of the modeled time period. All plotting used the ggplot2 
package(Hadley et al., 2016). Models were run for 2000 or 3000 time points (steps) distributed over 200 
or 300 ‘seconds’, as depicted by the sample model run below. Dynamical variables change through time 
and converge at steady state values. The final values at time 200 or 300 (more steps were given to 
models that took longer to converge) were taken and stored as the output of the model.  

  

2) Simulate mutant genotypes and different levels of cytokinin 
To simulate mutant genotypes in models 1-7, we set CLV1 or RPK2 to 0 and their synthesis parameters 
to 0. Cytokinin was coded as a static parameter and altered in the following ways to simulate different 
conditions from our experimental datasets: 

Cytokinin value Simulates the condition 

0 chk triple mutant 

1* growth on minimal media (BCD) with wild type CHK genes 

10 10 nM BAP 

100 100 nM BAP 

* As ‘1’ here is somewhat arbitrary, we also tried values of 0.5 and 0.75 in its stead, which did not 
significantly change the model outputs (not shown).   

3) Optimization of the fit to the empirical data  
We used an optimizer to identify the parameter values of k, p, d, and base for which the model output 
best fit the empirical data. Each model was initially run with semi-arbitrary parameters that allowed the 
model to converge within the given time frame. We started each model from a similar starting 
parameter set before optimization.  

To optimize the model parameters, we first needed to be able to compare the model output with the 
empirical data. Comparing the simulated data to the empirical data required that the two datasets be 
normalized to a unified scale. To achieve this, the empirical data set was normalized to the ectopic stem 
cell per area value of wild type moss grown on minimal media. For the model, ‘area’ was not considered, 
and the modeled stem cell initiation values (termed init) were also normalized to the modeled stem cell 
values of wild type on minimal media (cytokinin = 1). This allowed us to compare the trends in the data, 
for instance if clv1 mutants on minimal media made four times as many stem cells per area as wild type 
on minimal media, we assigned a value of four to this condition in the dataset. The model optimizer 
would then attempt to converge on parameters that yielded stem cell initiation values for clv1 mutants 



at the minimal media cytokinin input parameter that was four times higher than wild type at the same 
cytokinin level. After normalization, each simulated value was compared to its corresponding empirical 
data value to generate a fit score (F). These scores were used to penalize a model with a given set of 
parameters; higher scores were worse than lower scores. The score was intended to accomplish the 
following: 

1) Equally penalize simulated values that overshot or undershot the data 
2) Weigh all datapoints equally, regardless of magnitude. To do this, the score had to minimize 

fold changes between the simulated and empirical data. Otherwise, a change from 1->2 would 
be penalized less than a change from 10 to 14, despite the former constituting a much larger 
relative change. 

3) Penalize larger deviations from the data more severely than smaller ones. Otherwise, a model 
might be ‘optimized’ to have good fits to some data points but terrible fits to others. Since the 
intention of the model is to capture the trends in the data across all conditions, such a scenario 
was unacceptable. 

We used the log of the fold change between the simulated (mi) and empirical data (di) to accomplish the 
above aims one and two, and then squared to accomplish aim 3. The sum of these penalty scores at 
each data point (Pi) then yielded the total fit score F: 

𝑃𝑖 = ln (
𝑚𝑖

𝑑𝑖
) 

𝐹 =  ∑𝑃𝑖
2  

After each run, new model parameters k, p, d, and base were randomly selected from a normal 
distribution based around the previous parameter value and the model was run again. The standard 
deviation of the distribution was 0.1.  The Fit Score F for the new model was compared with the 
previous F. If the new F proved lower than the previous, then the new model parameters were saved 
and mutated (used as the mean of the normal distribution from which the next parameter value was 
selected) again for the next run. If instead the new F was not lower than the previous, the original 
parameter set was randomly mutated again. The optimizer was run for 200-300 iterations, after which 
the fit scores no longer meaningfully changed. We then compared the best fit scores generated by each 
model after optimization to determine which network architecture(s) were most likely given their ability 
to reproduce the data.  

On Poisson coefficients 

Poisson coefficients are akin to Beta values reported by linear regressions, in that they are proportional 
to the expected change in the dependent variable given the change in independent variable associated 
with the coefficient. In the case of a Poisson coefficient, the exponentiation of the coefficient tells you 
the predicted effect due to the change in factor level. For instance, with a Poisson coefficient of 0.64, 
the estimated change in apical cell number due to the clv1 mutation is ~1.9 ( = e^0.64). It is important to 
note that our models make use of both categorical and continuous variables, which makes the 
coefficients appear deceptively different in magnitude. For example, the coefficient associated with 
exogenous cytokinin is small because cytokinin is coded as a continuous variable. The coefficient is 0.013 
and it’s exponent is 1.013, which appears much lower than the expected change due to clv1 of 1.9. 
However, the cytokinin coefficient of 1.013 shows the predicted change per unit cytokinin. The 
predicted change for 10nM BAP is the exponentiation of 10*the coefficient, so e^(10*.013) = 1.14. 



Going on to predict the change for 100nM bap is e^(1.3) = 3.67. Finally, these numbers represent the 
fold change from the ‘intercept’ value also reported by the model.  

 

List of parameters, starting values, and finishing values for a sample run 

Model 1 (Figure 4 A) 

Parameter Description Starting Value Finishing Value 

k1 cytokinin ↑ x 1 1.500644 

k2 clv ↓ x 1 0.525365 

k3 rpk2 ↓ x 1 20.8025 

k4 clv ↓ y 1 4.652118 

k5 rpk2 ↓ y 1 0.190285 

k6 x ↑ init 0.1 0.019766 

k7 y ↑ init 0.1 0.319337 

p1 basal x synthesis .01 0.00365 

p2 basal y synthesis 0.01 0.02994 

p3 basal init synthesis 0.01 0.008979 

d1 x degradation 0.05 0.035265 

d2 y degradation 0.05 0.035136 

d3 init degradation 0.05 0.02294 

base1 initial x 1 1.165125 

base2 initial y 1 0.84229 

base3 initial init 1 0.402657 

 

Model 2 (Figure 4 B) 

Parameter Description Starting Value Finishing Value 

k1 cytokinin ↑ x 1 0.304867 

k2 clv ↓ x 1 5.506337 

k3 rpk2 ↓ x 0 0 

k4 clv ↓ y 0 0 

k5 rpk2 ↓ y 1 3.955426 

k6 x ↑ init 0.1 0.048441 

k7 y ↑ init 0.1 0.209578 

p1 basal x synthesis 0.1 0.025085 

p2 basal y synthesis 0.1 0.0416 

p3 basal init synthesis .01 0.003168 

d1 x degradation 0.01 0.047735 

d2 y degradation 0.01 0.017703 

d3 init degradation 0.05 0.041424 

base1 initial x 0.05 0.452641 

base2 initial y 0.05 0.333642 

base3 initial init 1 0.351427 

 



Model 3 (Figure 4 C) 

Parameter Description Starting Value Finishing Value 

k1 cytokinin ↑ x 1 0.655062 

k2 clv ↓ x 0 0 

k3 rpk2 ↓ x 1 7.480788 

k4 clv ↓ y 1 2.17663 

k5 rpk2 ↓ y 0 0 

k6 x ↑ init 0.1 0.055229 

k7 y ↑ init 0.1 0.27232 

p1 basal x synthesis 0.1 0.014258 

p2 basal y synthesis 0.1 0.015025 

p3 basal init synthesis .01 0.002324 

d1 x degradation 0.01 0.159216 

d2 y degradation 0.01 0.03027 

d3 init degradation 0.05 0.04435 

base1 initial x 0.05 1.239331 

base2 initial y 0.05 0.899113 

base3 initial init 1 0.540307 

 

Model 4 (Figure 4 D) 

Parameter Description Starting Value Finishing Value 

k1 cytokinin ↑ x 1 0.841983 

k2 clv ↓ x 1 2.50779 

k3 rpk2 ↓ x 1 9.162987 

k4 clv ↓ y 0 0 

k5 rpk2 ↓ y 0 0 

k6 x ↑ init 0.1 0.218686 

k7 y ↑ init 0.1 0.070918 

p1 basal x synthesis 0.1 0.009767 

p2 basal y synthesis 0.1 0.004626 

p3 basal init synthesis .01 0.003158 

d1 x degradation 0.01 0.057663 

d2 y degradation 0.01 0.106677 

d3 init degradation 0.05 0.019892 

base1 initial x 0.05 0.072355 

base2 initial y 0.05 0.866898 

base3 initial init 1 0.740589 

 

Model 5 (Figure 4 E) 

Parameter Description Starting Value Finishing Value 

k1 cytokinin ↑ x 1 0.035789 

k2 clv ↓ x 0 0 

k3 rpk2 ↓ x 0 0 

k4 clv ↓ y 1 0.296071 



k5 rpk2 ↓ y 1 6.576975 

k6 x ↑ init 0.1 0.027982 

k7 y ↑ init 0.1 0.359106 

p1 basal x synthesis 0.1 0.004176 

p2 basal y synthesis 0.1 0.03289 

p3 basal init synthesis .01 0.000394 

d1 x degradation 0.01 0.045523 

d2 y degradation 0.01 0.030657 

d3 init degradation 0.05 0.045014 

base1 initial x 0.05 0.551109 

base2 initial y 0.05 0.300094 

base3 initial init 1 0.702136 

 

Models 6 and 7 

Model 6 (CLV inhibits x, Figure 5) 

Parameter Description Starting Value Finishing Value 

k1 cytokinin ↑ x 1 0.435963 

k2 clv ↓ x 1 5.048187 

k3 rpk2 ↓ x 0 0 

k4 clv ↓ y 0 0 

k5 rpk2 ↓ y 1 8.082593 

k6 x ↑ init 0.1 0.017249 

k7 y ↑ init 0.1 0.169828 

k8 cytokinin ↓ z 0.5 8.181178 

k9 z ↑ init 0.5 0.768938 

p1 basal x synthesis 0.01 0.004266 

p2 basal y synthesis 0.03 0.023539 

p3 basal init synthesis .01 0.004809 

p4 basal z synthesis  0.01 0.008215 

d1 x degradation 0.05 0.04629 

d2 y degradation 0.05 0.027294 

d3 init degradation 0.05 0.032801 

d4 z degradation 0.05 0.063203 

base1 initial x 1 1.927968 

base2 initial y 1 0.232216 

base3 initial init 1 0.379397 

base4 initial z 1 0.656615 

 

Model 6 (RPK2 inhibits X) 

Parameter Description Starting Value Finishing Value 

k1 cytokinin ↑ x 1 0.380677 

k2 clv ↓ x 0 0 

k3 rpk2 ↓ x 1 6.363934 

k4 clv ↓ y 1 2.772667 



k5 rpk2 ↓ y 0 0 

k6 x ↑ init 0.1 0.053368 

k7 y ↑ init 0.1 0.205299 

k8 cytokinin ↓ z 0.5 12.45164 

k9 z ↑ init 0.5 0.854566 

p1 basal x synthesis 0.01 0.059793 

p2 basal y synthesis 0.03 0.032342 

p3 basal init synthesis .01 0.002267 

p4 basal z synthesis  0.01 0.008643 

d1 x degradation 0.05 0.097205 

d2 y degradation 0.05 0.048109 

d3 init degradation 0.05 0.052553 

d4 z degradation 0.05 0.074966 

base1 initial x 1 0.933395 

base2 initial y 1 1.584061 

base3 initial init 1 0.876901 

base4 initial z 1 0.579399 

 

Model 7 (CLV inhibits X, Figure 5) 

Parameter Description Starting Value Finishing Value 

k1 cytokinin ↑ x 1 0.863826 

k2 clv ↓ x 1 19.77114 

k3 rpk2 ↓ x 0 0 

k4 clv ↓ y 0 0 

k5 rpk2 ↓ y 1 1.999533 

k6 x ↑ init 0.1 0.040456 

k7 y ↑ init 0.1 0.173769 

k8 cytokinin ↑ z 0.5 1.685863 

k9 z ↓ init 0.5 0.311607 

p1 basal x synthesis 0.01 0.028438 

p2 basal y synthesis 0.03 0.056778 

p3 basal init synthesis .01 0.004693 

p4 basal z synthesis  0.01 0.005662 

d1 x degradation 0.05 0.014775 

d2 y degradation 0.05 0.018722 

d3 init degradation 0.05 0.038537 

d4 z degradation 0.05 0.118948 

base1 initial x 1 0.654166 

base2 initial y 1 0.251628 

base3 initial init 1 2.202736 

base4 initial z 1 0.992124 

 

Model 7 (RPK2 inhibits X) 

Parameter Description Starting Value Finishing Value 

k1 cytokinin ↑ x 1 1.463869 



k2 clv ↓ x 0 0 

k3 rpk2 ↓ x 1 19.17415 

k4 clv ↓ y 1 1.013134 

k5 rpk2 ↓ y 0 0 

k6 x ↑ init 0.1 0.027886 

k7 y ↑ init 0.1 0.087528 

k8 cytokinin ↑ z 0.5 2.157959 

k9 z ↓ init 0.5 0.190479 

p1 basal x synthesis 0.01 0.039586 

p2 basal y synthesis 0.03 0.061077 

p3 basal init synthesis .01 0.00435 

p4 basal z synthesis  0.01 0.012878 

d1 x degradation 0.05 0.012762 

d2 y degradation 0.05 0.024692 

d3 init degradation 0.05 0.055329 

d4 z degradation 0.05 0.042331 

base1 initial x 1 0.432841 

base2 initial y 1 1.570673 

base3 initial init 1 0.574236 

base4 initial z 1 0.270798 
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