Supplementary information

Thinking outside the box: non-canonical targets in multiple sclerosis

In the format provided by the authors and unedited

Supplementary table | Overview of selected studies analysing metabolic profile in MS.

Sample type	Sample size	Key Metabolite/pathways analyzed	Method/ Technology	Results/Changes in MS patients*	Ref
Serum	RRMS (209) SPMS (136) PPMS (51)	NAD+; NADH	Thiazolyl blue assay	\downarrow in MS: NAD ⁺ , NAD ⁺ /NADH ratio	1
Serum	MS (23)	glucose, valine, selenium	¹ H-NMR	\uparrow in MS: glucose; \downarrow in MS: valine, selenium	2
Serum	RRMS (47) NMO (44)	scyllo-inositol, glutamine, glutamate, acetate, lactate, lysine	¹ H-NMR	 ↑ in MS: scyllo-inositol, glutamine ↑ in NMO: acetate, glutamate, lactate, lysine 	3
Plasma	RRMS (61) PMS (12)	tryptophan metabolism, energy metabolism	¹ H-NMR	 ↑ in MS: 3-hydroxybutyrate, acetoacetate, acetone, alanine, choline ↓ in MS: glucose, tryptophan, 5-hydroxytryptophan 	4
Serum	RRMS (50) SPMS (20) PPMS (17)	kynurenine pathway, tryptophan metabolism	UHPLC GC–MS	 ↑ in MS: kynurenine, K/T ratio, picolinic acid ↓ in MS: NAD⁺; ↑ in RRMS: kynurenic acid ↑ in PPMS: quinolinic acid 	5
Serum	RRMS (360) SPMS (132) PPMS (26)	mitochondrial energy metabolism	HPLC	\uparrow in MS: lactate, creatinine, uracil, β-pseudouridine, uridine, hypoxanthine, xanthine, inosine, uric acid, Σ oxypurines	6
Plasma	RRMS (22)	amino acids and acylcarnitines	LC-MS/MS	↑ in MS: glutamate; ↓ in MS: leucine, isoleucine, decenoylcarnitine	7
Serum	RRMS (151) PMS (100)	ceramides	HPLC- MS/MS	↑ in MS: Cer16:0; Cer22:1, Hex-Cer24:1, Lac-Cer24:1, Lac-Cer22:0, DH-Cer20:0, DH-Cer24:0; ↓ in MS: Hex- Cer16:1, Lac-Cer20:1, DH-HexCer26:0	8
Plasma	RRMS (28)	plasma metabolome including amino acids	NMR	in MS: arginine, citrate, isoleucine, serine, histidine, phenylalanine, methionine, asparagine, myo-inositol	9
Serum	RRMS (24)	phosphatidylcholine phosphatidylethanolamine	HILIC-MS	phospholipids can differentiate between HC and MS especially: PC (34:3), PC (36:6), PE (40:10), PC (38:1)	10
Serum	RRMS (56) PMS (51)	bile acid metabolism	UPLC- MS/MS LC-MS/MS	 ↓ in PMS: primary bile acid metabolites ↓ in RRMS and PMS: secondary bile acid metabolites 	11
Serum	MS (514)	plasma metabolome including amino acids	GC-MS LC-MS/MS	 ↓ in MS with higher EDSS score: 3-(4-hydroxyphenyl) lactate (tyrosine metabolism) ↓ in MS: AAA metabolites (ILA, imidazole lactate, PLA, kynurenine, kynurenate, tryptophan, and phenylalanine) 	12
Plasma, CSF	MS (32)	tryptophan, amino acids	IEC	↓ in MS: tryptophan, leucine, isoleucine, valine, tyrosine, phenylalanine	13
Serum, CSF	RRMS (5) SPMS (9) NMO (9)	nitric oxide, nitrate, nitrite, l-arginine, asymmetric dimethylarginine	GC–MS/MS	 ↑ in MS/NMO: asymmetric dimethylarginine; ↑ in NMO: nitrate, nitrite ↓ in NMO: I-arginine 	14
Serum, CSF	RRMS (22) PPMS (12)	lipids, biogenic amines, amino acids	NMR GC-MS/ LC-MS	differentiate RRMS vs PPMS; <u>CSF</u> : nitrogen, arginine and ornithine metabolism, branched chain amino acid biosynthesis; <u>Serum</u> : glutathione, nitrogen, arginine and proline met.	15
CSF	MS (19)	lactate, fructose, creatinine, phenylalanine	MRS	↑ in MS: lactate, fructose; ↓ in MS: creatinine, phenylalanine	16
CSF	RRMS (26) SPMS (6)	kynurenic acid	HPLC	↓ in MS: kynurenic acid	17
CSF	RRMS (15)	NO metabolites, glutathione	WB, CLIA	↑ in MS: nitrotyrosine, nitrate, oxidized glutathione and S-nitrosothiols	18
CSF	CIS (33)	glutamine, b- hydroxyisobutyrate (BHIB), fructose, acetate, creatinine, β-glucose	¹ H-NMR	 ↑ in CIS: BHIB, glutamine; fructose; creatinine, β-glucose; ↓ in CIS: acetate 	19
CSF	RRMS (85); SPMS (54)	sorbitol, fructose, lactate, glucose metabolism	GC-MS	↑ in MS: sorbitol, fructose, lactate	20
CSF	RRMS (11); SPMS (3) CIS (1)	energy, biogenic amine, phospholipid metabolism	¹ H-NMR	 ↑ in MS: citrate, mannose, 3-hydroxybutyrate, phenylalanine, 2-hydroxyisovalerate; ↓ in MS: choline, myo-inositol, threonate 	21
CSF	RRMS (13)	Lipidomics, acylcarnitines, aminoacids	MALDI-TOF- MS LCMS/MS	 ↑ in MS: glutamate, lysophosphatydilcholine (18:1; 18:0), lysophosphatidylinositol 16:0, phosphatidylcholine, phosphatidylinositol ↓ in MS: phosphatidic acid 	22

CSF	MS (50) NMO (57)	2-hydroxybutyrate, acetone, formate, citrate, lactate, pyroglutamate, acetate, glucose	¹ H-NMR	↑ in MS/NMO: 2-hydroxybutyrate, acetone, formate, pyroglutamate; ↓ in MS/NMO: acetate, glucose; ↑ in MS: citrate; ↑ in NMO: lactate	23
CSF	SPMS (12)	glycerophospholipids, glycerides, acylcarnitines, sphingolipids, amino acids, biogenic amines, cholesteryl- esters, hexoses	LC-HRMS/ FIA-HRMS	↑ in SPMS: glycine, asymmetric dimethylarginine, glycerophospholipid PC-O (34:0), hexoses	24
Urin	RRMS (8), NMO (9)	ketone bodies, amino acids, propionate, pyruvate, tricarboxylic acid cycle, glycolysis	NMR	↑ in MS: 3-hydroxyisovalerae, oxaloacetate; ↓ in MS: creatinine; ↑ in NMO: oxaloacetate; ↓ in NMO: creatinine, 3-hydroxybutyrate, methylmalonate	25
Urin	RRMS (47)	tryptophan metabolism, kynurenine pathway	HPLCMS/MS	\checkmark in MS: kynurenine, K/T ratio; \checkmark in K/A ratio with recent relapse	26
Retina	RRMS (124) CIS (7) PPMS (9) SPMS (3)	NADH, N-acetyl-aspartate, amyloid-beta	Raman spectroscopy	↑ in MS: amyloid-beta; ↓ in MS: NADH, NAA	27
MRI	non-lesional MS (15) lesional MS (20)	Glutamate, Glutamine, N- acetylaspartate, creatine, myo-Inositol, choline	qMRI	 ↑ in MS: glutamate, glutamine; ↓ in lesional MS: N-acetylaspartate, N-acetylaspartate- glutamate 	28
Micro- biome/ Serum	MS (129/90)	Gut microbiome, plasma metabolome including lipids and amino acids	LC/MS	 In MS: indolepropionate, indolelactate, sphingosine 1-phosphate, β-hydroxyasparagine, carnitine In MS: levels of microboitic species involved in butyrate production 	29

* Limited to the most relevant findings of the publication

Abbreviations: CLIA chemiluminescence assay; FIA-HRMS flow-injection analysis-HRMS; GC-MS gas chromatography-mass spectrometry; HILIC-MS hydrophilic interaction chromatography-mass spectrometry; ¹H-NMR – ¹H nuclear magnetic resonance; HPLC high-performance liquid chromatography; HRMS high-resolution mass spectrometry; IEC ion-exchange chromatography; LC-MS liquid chromatography-mass spectrometry; MALDI-TOF-MS matrix-assisted laser desorption ionization-time of flight - mass spectrometry; MS multiple sclerosis; NAD nicotinamide adenine dinucleotide; NMO neuromyelitis optica; PMS progressive multiple sclerosis; PPMS primary progressive multiple sclerosis; RRMS relapsing remitting multiple sclerosis; SPMS secondary progressive multiple sclerosis; UHPLC ultra-high-pressure liquid chromatography; WB western blot; qMRI quantitative magnetic resonance imaging.

References

- Braidy, N., Lim, C. K., Grant, R., Brew, B. J. & Guillemin, G. J. Serum nicotinamide adenine dinucleotide levels through disease course in multiple sclerosis. *Brain Res.* **1537**, 267–272 (2013).
- Mehrpour, M., Kyani, A., Tafazzoli, M., Fathi, F. & Joghataie, M.-T. A metabonomics investigation of multiple sclerosis by nuclear magnetic resonance. *Magn. Reson. Chem.* 51, 102–109 (2013).
- 3. Moussallieh, F.-M. *et al.* Serum analysis by 1H Nuclear Magnetic Resonance spectroscopy: a new tool for distinguishing neuromyelitis optica from multiple sclerosis. *Mult. Scler. J.* **20**, 558–565 (2014).
- Cocco, E. *et al.* 1H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis. *Neurol. Neuroimmunol. Neuroinflammation* 3, (2015).
- Lim, C. K. *et al.* Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression. *Sci. Rep.* 7, 1–9 (2017).

- Lazzarino, G. *et al.* Serum Compounds of Energy Metabolism Impairment Are Related to Disability, Disease Course and Neuroimaging in Multiple Sclerosis. *Mol. Neurobiol.* 54, 7520–7533 (2017).
- 7. Kasakin, M. F. *et al.* Targeted metabolomics approach for identification of relapsing–remitting multiple sclerosis markers and evaluation of diagnostic models. *MedChemComm* **10**, 1803–1809 (2019).
- 8. Filippatou, A. G. et al. Serum ceramide levels are altered in multiple sclerosis. Mult. Scler. J. 1–14 (2020).
- 9. Sylvestre, D. A., Slupsky, C. M., Aviv, R. I., Swardfager, W. & Taha, A. Y. Untargeted metabolomic analysis of plasma from relapsing-remitting multiple sclerosis patients reveals changes in metabolites associated with structural changes in brain. *Brain Res.* **1732**, 146589 (2020).
- 10. Ferreira, H. B. *et al.* Serum phospholipidomics reveals altered lipid profile and promising biomarkers in multiple sclerosis. *Arch. Biochem. Biophys.* **697**, 108672 (2021).
- 11. Bhargava, P. *et al.* Bile acid metabolism is altered in multiple sclerosis and supplementation ameliorates neuroinflammation. *J. Clin. Invest.* (2020).
- 12. Fitzgerald, K. C. *et al.* Multi-omic evaluation of metabolic alterations in multiple sclerosis identifies shifts in aromatic amino acid metabolism. *Cell Rep. Med.* **2**, 100424 (2021).
- 13. Monaco, F., Fumero, S., Mondino, A. & Mutani, R. Plasma and cerebrospinal fluid tryptophan in multiple sclerosis and degenerative diseases. *J. Neurol. Neurosurg. Psychiatry* **42**, 640–641 (1979).
- Haghikia, A. *et al.* Serum and cerebrospinal fluid concentrations of homoarginine, arginine, asymmetric and symmetric dimethylarginine, nitrite and nitrate in patients with multiple sclerosis and neuromyelitis optica. *Amino Acids* 47, 1837–1845 (2015).
- 15. Murgia, F. *et al.* Multi-Platform Characterization of Cerebrospinal Fluid and Serum Metabolome of Patients Affected by Relapsing–Remitting and Primary Progressive Multiple Sclerosis. *J. Clin. Med.* **9**, 863 (2020).
- 16. Nicoli, F. *et al.* Cerebrospinal fluid metabolic profiles in multiple sclerosis and degenerative dementias obtained by high resolution proton magnetic resonance spectroscopy. *C. R. Acad. Sci. III* **319**, 623–631 (1996).
- 17. Rejdak, K. *et al.* Decreased level of kynurenic acid in cerebrospinal fluid of relapsing-onset multiple sclerosis patients. *Neurosci. Lett.* **331**, 63–65 (2002).
- Calabrese, V. *et al.* Nitric oxide synthase is present in the cerebrospinal fluid of patients with active multiple sclerosis and is associated with increases in cerebrospinal fluid protein nitrotyrosine and S-nitrosothiols and with changes in glutathione levels. *J. Neurosci. Res.* **70**, 580–587 (2002).

- Lutz, N. W. *et al.* Inflammatory Multiple-Sclerosis Plaques Generate Characteristic Metabolic Profiles in Cerebrospinal Fluid. *PLoS ONE* 2, (2007).
- 20. Regenold, W. T., Phatak, P., Makley, M. J., Stone, R. D. & Kling, M. A. Cerebrospinal fluid evidence of increased extra-mitochondrial glucose metabolism implicates mitochondrial dysfunction in multiple sclerosis disease progression. *J. Neurol. Sci.* **275**, 106–112 (2008).
- Reinke, S. *et al.* Metabolomic profiling in multiple sclerosis: insights into biomarkers and pathogenesis. *Mult. Scler.* J. 20, 1396–1400 (2014).
- 22. Pieragostino, D. *et al.* An integrated metabolomics approach for the research of new cerebrospinal fluid biomarkers of multiple sclerosis. *Mol. Biosyst.* **11**, 1563–1572 (2015).
- 23. Kim, H.-H. *et al.* Metabolomic profiling of CSF in multiple sclerosis and neuromyelitis optica spectrum disorder by nuclear magnetic resonance. *PLOS ONE* **12**, e0181758 (2017).
- 24. Carlsson, H. *et al.* Targeted metabolomics of CSF in healthy individuals and patients with secondary progressive multiple sclerosis using high-resolution mass spectrometry. *Metabolomics* **16**, (2020).
- 25. Gebregiworgis, T. *et al.* A Urinary Metabolic Signature for Multiple Sclerosis and Neuromyelitis Optica. *J. Proteome Res.* **15**, 659–666 (2016).
- Gaetani, L. *et al.* Host and Microbial Tryptophan Metabolic Profiling in Multiple Sclerosis. *Front. Immunol.* **11**, (2020).
- Alba-Arbalat, S. *et al.* In Vivo Molecular Changes in the Retina of Patients With Multiple Sclerosis. *Invest. Ophthalmol. Vis. Sci.* 62, 11–11 (2021).
- Tisell, A. *et al.* Increased Concentrations of Glutamate and Glutamine in Normal-Appearing White Matter of Patients with Multiple Sclerosis and Normal MR Imaging Brain Scans. *PLOS ONE* 8, e61817 (2013).
- 29. Levi, I. *et al.* Potential role of indolelactate and butyrate in multiple sclerosis revealed by integrated microbiomemetabolome analysis. *Cell Rep. Med.* **2**, 100246 (2021).