1	Supplementary Materials
2	Supplementary Methods
3	HIF-1α knockdown or Inhibition
4	HIF-1 α siRNAs were obtained from GenePharma (163971 and 163972, Suzhou
5	China). The HIF-1 α antibody was obtained from Abcam (51608, Cambridge, USA).
6	The HIF-1 α inhibitor 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) was
7	obtained from MedChem Express (Princeton, NJ, USA). Transfections were
8	performed using Lipofectamine [™] RNAiMAX Transfection Reagent (ThermoFisher,
9	13778150) according to the manufacturer's instructions. After 48 h of transfection,
10	cells were then treated with the indicated exosomes and HUVECs were further
11	analyzed for their tube-forming ability.
12	RNA sequencing and Bioinformatics
13	Sample collection and preparation
14	RNA quantification and qualification
15	RNA integrity was analyzed using the RNA Nano 6000 Assay Kit of the Bioanalyzer
16	2100 system (Agilent Technologies, CA, USA).
17	Library preparation
18	Total RNA was extracted using Trizol (ThermoFisher, USA, Cat no.: 710369) as input
19	for the RNA isolation. Briefly, mRNA was purified from total RNA using poly-T
20	oligo-conjugated magnetic beads. The enriched mRNAs were fragmented using

21 divalent cations under elevated temperature in the First Strand Synthesis Reaction

22 Buffer(5X). First strand cDNA was synthesized using random hexamer primers and

M-MuLV Reverse Transcriptase, followed by RNA degradation using RNaseH 23 Second strand cDNA synthesis was subsequently performed using DNA Polymerase I 24 25 and dNTPs. The remaining overhangs were converted into blunt ends via exonuclease/polymerase activities. After adenvlation of 3' ends of DNA fragments, 26 27 Adapters with hairpin loop structures were ligated to prepare for hybridization. In order to select cDNA fragments of preferentially 370~420 bp in length, the library 28 fragments were purified using the AMPure XP system (Beckman Coulter, Beverly, 29 USA). Then PCR was performed with Phusion High-Fidelity DNA polymerase, 30 Universal PCR primers and Index (X) Primer. At last, PCR products were purified 31 32 (AMPure XP system) and library quality was assessed on the Agilent Bioanalyzer 2100 system. 33

```
34 Clustering and sequencing
```

The clustering of the index-coded samples was performed on a cBot Cluster Generation System using TruSeq PE Cluster Kit v3-cBot-HS (Illumia) according to the manufacturer's instructions. Then library preparations were sequenced on an Illumina Novaseq platform and 150 bp paired-end reads were generated.

39 Data Analysis

40 Quality control

Raw data (raw reads) of fastq format were firstly processed to obtain clean data (clean reads) by removing reads containing adapter, reads containing N base and low quality reads. In this step, the Q20, Q30 and GC content the clean data were calculated. The clean data were used in downstream data analysis.

45 **Reads mapping and Quantification**

46 Reference genome (hg38) and gene model annotation files were downloaded directly 47 from the genome website . Indexing and paired-end clean reads alignment was 48 preformed using Hisat2 v2.0.5. FeatureCounts v1.5.0-p3 was used to count the reads 49 numbers mapped to each transcripts, and the FPKM of each gene was calculated.

50 Differential expression analysis

51 Differential expression analysis of two conditions/groups (three biological replicates 52 per condition) was performed using the DESeq2 R package (1.20.0). The P-values 53 were adjusted using the Benjamini and Hochberg's approach for controlling the false 54 discovery rate. Genes with adjusted P-values <0.05 found by DESeq2 were assigned 55 as differentially expressed.

56 Enrichment analysis of differentially expressed genes

57 Gene Ontology (GO) enrichment analysis of differentially expressed genes was 58 implemented by the clusterProfiler R package, in which gene length bias was 59 corrected. GO terms with corrected P-value less than 0.05 were considered 60 significantly enriched by differential expressed genes.

- 61
- 62
- 63
- 64
- 65

66

68 Supplementary Figures

69

70 Figure S1

A The invasion ability of breast cancer cells with high metastatic potential (MDA-231 71 72 or BT-549) was significantly higher than that of breast cancer cells with low metastatic potential (MDA-468 or T47D). For cell invasion assay, 1×10^5 cells 73 suspended in 200 µL of serum-free medium were loaded onto the upper chambers 74 coated with Matrigel. The incubation time was 24 h. The statistical results were 75 summarized in the right panel. B EPHA2-silenced HM-exos failed to promote the 76 77 migration of endothelial cells. C The inhibitor-treated HM-Exos could not promote the tube formation of endothelial cells. D HM-Exos failed to promote the 78 tube-forming ability of Ephrin A1-KD endothelial cells. E HM-Exos still promote the 79 80 tube-forming ability of EPHA2-KD endothelial cells. Data were expressed as mean \pm SD. All experiments were repeated at least three times. *P < 0.05, **P < 0.01, 81 ***P < 0.001 and ns P > 0.05 indicate no statistical significance. Scale bar: 200 µm. 82

85 Figure S2

A Gene set enrichment analysis (GSEA) of the RNA-Seq data showed that the AMPK
signaling pathway was induced in EPHA2-rich exosomes treated HUVECs compared
with control exosome treated cells. FDR, False Discovery Rate. B Quantification of
the western bloting images in Figure 5B. The analysis was performed using WB scans
from three biological repeats.

92 Figure S3

A Compound C or STO609 eliminated the phosphorylation of AMPK in HUVEC that incubated with HM-Exos. **B**, **C** Inhibition of AMPK signaling by Compound C or STO609 reduced the tube-forming and rat arterial ring outgrowth capacity in HM-Exos treated endothelial cells. **D** Exosomal EPHA2 was significantly upregulated in plasma of mice from the MDA-231 and MDA-231-shControl groups compared

98	with the T47D and MDA-231-shEPHA2 groups. E Representative images of
99	subcutaneous tumor formed in mice. All experiments were repeated at least three
100	times. *P < 0.05, **P < 0.01, ***P < 0.001 and ns P > 0.05 indicate no statistical
101	significance. Scale bar: 200 μm.
102	

104 **Figure S4**

105 A EPHA2-rich exosomes increased HIF-1 α protein levels in endothelial cells whereas 106 Compound C inhibited the upregulation of HIF-1 α by EPHA2-rich exosomes. **B** 107 HIF-1 α expression was silenced in endothelial cells. **C** EPHA2-rich exosomes failed 108 to increase the HIF-1 α protein levels in HIF-1 α -KD cells. **D** EPHA2-rich exosomes 109 failed to promote the tube-forming ability of HIF-1 α -KD HUVECs. **E** YC-1 can 110 inhibit the protein expression level of HIF-1 α in endothelial cells. **F** YC-1 reduced the 111 ability of microvessel growth in EPHA2-rich exosome-treated rat arterial rings.

- 113 Figure S5 The percentage of reads that mapped to the mRNA
- 114 The percentage of reads that mapped to the mRNA. The mapping information of each
- 115 technical replicate was shown as pie plot.
- 116

117 Supplementary Tables

Table S1. The shRNA sequences used in this study

Name	Sequence
shEPHA2 #1	5'-CTATTCTGTCAGTGTTAAA-3'
shEPHA2 #2	5'-GATAAGTTTCTATTCTGTCAG-3'
shEphrin-A1 #1	5'-AGAGGTGCGG GTTCTACATAG-3'
shEphrin-A1 #2	5'-GTCTTCTGGAACAGTTCAAAT-3'

Name	Primers
m Charmy E	ACCTCCATAGAAGATTCTAGAGCCACCATGGTGAGCAAGG
NamemCherry-FACCTCCA GCGAGGmCherry-RTTCGAAT TGCCEPHA2-FACCTCCAEPHA2-RTTCGAAT TGCCEPHA2-ARBD-FACCTCCAEPHA2-ARBD-FACCTCCAEPHA2-S897A-FACCTCCAEPHA2-S897A-RTTCGAAT TGCCEPHA2-D739N-F1ACCTCCAEPHA2-D739N-F2GTGCACCEPHA2-D739N-R1GGCAGCAEPHA2-D739N-R2TTCGAAT ATGCC	GCGAGGA
m Chammy D	TTCGAATTCGCTAGCTCTAGATTACTTGTACAGCTCGTCCA
тспетту-к	TGCC
EPHA2-F	ACCTCCATAGAAGATTCTAGAGCCACCATGGAGCTCCAGG
	TTCGAATTCGCTAGCTCTAGATTACTTGTACAGCTCGTCCA
EPHA2-K	TGCC
EPHA2-∆RBD-F	ACCTCCATAGAAGATTCTAGAGCCACCATGGGCCTGGC
mCherry-F mCherry-R EPHA2-F EPHA2-R EPHA2-ARBD-F EPHA2- Δ RBD-R EPHA2- Δ RBD-R EPHA2-S897A-F EPHA2-S897A-R EPHA2-D739N-F1 EPHA2-D739N-F1 EPHA2-D739N-F2 EPHA2-D739N-R2 EPHA2-D739N-R2	TTCGAATTCGCTAGCTCTAGATTACTTGTACAGCTCGTCCA
ЕРПА2-ДКВД-К	TGCC
EPHA2-S897A-F	ACCTCCATAGAAGATTCTAGAGCCACCATGGAGCTCCAGG
EPHA2-S897A-F EPHA2-S897A-R	TTCGAATTCGCTAGCTCTAGACTTACTTGTACAGCTCGTCC
ЕГПА2-369/А-К	ATGCC
EPHA2-D739N-F1	ACCTCCATAGAAGATTCTAGAGCCACCATGGAGCTCCAGG
EPHA2-D739N-R1	GGCAGCCAGATTACGGTGCACATAGTTCATGTTGGCC
EPHA2-D739N-F2	GTGCACCGTAATCTGGCTGCCCGCAACATCCTCGTCAA
EDITAD D720NLDD	TTCGAATTCGCTAGCTCTAGACTTACTTGTACAGCTCGTCC
EPHA2-D/39N-K2	ATGCC
EDITAD D720NI E2	CTCCCCAGCACGAGCGGCTCGGAGGGGGGGGCCCTTCCGCA
EFHA2-D/39N-F3	C
EPHA2-D739N-R3	AGCCGCTCGTGCTGGGGGGGCCGGATAGACACGC

Table S3. Summary of RNA-Seq data quality

Sample	Raw reads	Clean reads	Clean bases	Error rate	Q20	GC %
EphA2exo1	45324432	42280544	6.34G	0.03	97.59	49.37
EphA2exo2	45356986	44599476	6.69G	0.03	97.85	48.95
EphA2exo3	45116568	42306052	6.35G	0.03	97.5	49.46
NCexo1	45727976	44177416	6.63G	0.03	97.72	50.57
NCexo2	43439160	41605440	6.24G	0.03	97.44	50.4
NCexo3	46196778	43249020	6.49G	0.03	97.51	50.31

Table S4. Statistics of comparisons between samples and reference genome

Exported data											
sam ple Eph	tota Irea ds 422	total_m ap 396179	unique _map 384543	multi_ map	read1_ map 192592	read2_ map 191950	positive _map 192068	negativ e_map 192475	splice_ map 176254	unsplic e_map 208288	proper _map 373046
A2e	805	91(93.7	50(90.9	41(2.7	93(45.5	57(45.4	192000	32(45.5	55(41.6	95(49.2	46(88.2
xol	44	%)	5%)	5%)	5%)	%)	3%)	2%)	9%)	6%)	3%)
Eph	445	419291	407167	12123	204404	202762	203415	203752	185711	221455	397705
A2e	994	06(94.0	34(91.2	72(2.7	95(45.8	39(45.4	04(45.6	30(45.6	38(41.6	96(49.6	16(89.1
xo2	76	1%)	9%)	2%)	3%)	6%)	1%)	8%)	4%)	5%)	7%)
Eph	423	397322	385796	11525	193295	192501	192721	193075	182136	203660	374649
A2e	060	87(93.9	94(91.1	93(2.7	88(45.6	06(45.5	14(45.5	80(45.6	13(43.0	81(48.1	70(88.5
xo3	52	2%)	9%)	2%)	9%)	%)	5%)	4%)	5%)	4%)	6%)
	441	411878	400588	11290	200917	199670	200102	200485	188159	212428	390010
NCe	774	63(93.2	22(90.6	41(2.5	87(45.4	35(45.2	91(45.3	31(45.3	70(42.5	52(48.0	04(88.2
xol	16	3%)	8%)	6%)	8%)	%)	%)	8%)	9%)	9%)	8%)
	416	387968	377383	10585	189223	188160	188498	188885	177835	199548	367153
NCe	054	98(93.2	65(90.7	33(2.5	35(45.4	30(45.2	61(45.3	04(45.4	13(42.7	52(47.9	88(88.2
xo2	40	5%)	1%)	4%)	8%)	2%)	1%)	%)	4%)	6%)	5%)
	432	405239	393721	11517	197188	196532	196670	197051	187323	206397	382356
NCe	490	61(93.7	62(91.0	99(2.6	81(45.5	81(45.4	03(45.4	59(45.5	94(43.3	68(47.7	66(88.4
xo3	20	%)	4%)	6%)	9%)	4%)	7%)	6%)	1%)	2%)	1%)