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Appendix 1: Complete methods

The following appendix contains a complete description of the materials and methods to accompany the
manuscript: “Biodiversity effects of food system sustainability actions from farm to fork,” by Quentin D.
Read, Kelly L. Hondula, and Mary K. Muth.

Notes on spatially explicit data

Spatial harmonization of county-level datasets: We used three datasets with values at the USA county (or
county-equivalent) level: spatial boundaries (U.S. Census Bureau, 2014b), agricultural production data
provided by the U.S. Census of Agriculture (U.S. Department of Agriculture, National Agricultural Statistics
Service, 2014), and consumer expenditure data (U.S. Bureau of Economic Analysis (BEA), 2021). We
harmonized the three datasets by spatially aggregating units where necessary to achieve a common set of
counties across all three datasets. This required us to update the FIPS classification to the most recent
scheme, then to aggregate Virginia’s independent cities with their surrounding counties, as well as summing
the production values for Aleutians East and West census areas in Alaska, which were separated in the
expenditure dataset but not the production dataset.

Spatially explicit environmentally extended input-output models: In this manuscript, we used an EEIO model
to estimate the total indirect and direct demand required to satisfy final consumer demand, and to derive
the associated land requirements, making the model spatially explicit where possible. Any of the three
components of an EEIO model (final demand, transactions among industries required to satisfy that demand,
and environmental extensions) can be made spatially explicit (Sun et al., 2019). This can be done either
by using endogenous spatially explicit data or by downscaling using an external spatial dataset. In this
study, we used spatially explicit environmental extensions: crop production and land use at the county
level, and biodiversity threat characterization factors at the ecoregion level. However, because county-level
data are lacking, the final demand and transactions are not spatially resolved. We used values for the
whole United States, downscaled by assuming that final demand across all demand categories for each
county are proportional to the total income of that county. However, we do not present the results of the
spatial downscaling of demand in the manuscript, but we retain the description of the methods here to
facilitate potential later improvements to the values if better spatially resolved data for the final demand and
transactions become available.

Production of agricultural and non-agricultural goods and consumption of food
in each county

We derived data on agricultural production for the year 2012 for counties in the United States from the Census
of Agriculture (U.S. Department of Agriculture, National Agricultural Statistics Service, 2014). We obtained
production values, in 2012 dollars, for each of the 50 states and for the highest North American Industry
Classification System (NAICS) code resolution available. In addition, we obtained land area used for the
production of each crop and for pastureland in 2012. We aggregated the land area into annual cropland and
permanent cropland, because the biodiversity characterization factors used later in the analysis to determine
virtual biodiversity threat transfers are also divided up in this way.

State-level production: We obtained the County Business Patterns data for 2012 (U.S. Census Bureau, 2014a).
The Census of Agriculture provides the total value of agricultural production and the total harvested area at
the state level for a variety of four- and six-digit agricultural NAICS codes. We harmonized those NAICS
codes with the relevant Bureau of Economic Analysis (BEA) codes. In most cases, there was a one-to-one
or many-to-one correspondence between NAICS and BEA classifications; in the many-to-one case we could
simply sum the production values for the multiple NAICS codes corresponding to one BEA code. However,
there was one case of a one-to-many correspondence: the NAICS code classification for grain and oilseed
production value is presented as a single aggregate value in the Census of Agriculture but corresponds to two
BEA codes. To disaggregate the grain and oilseed production values, we used the state level crop sales data
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for the individual grain and oilseed crops. For industries other than those producing primary agricultural
goods, e.g., food-processing industries such as cheese manufacturing (BEA code 311513) and snack food
manufacturing (BEA code 311910), we obtained the total receipts of each industry in each state from the
Statistics of U.S. Businesses data for 2012 (U.S. Census Bureau, 2015). These data are provided by NAICS
code, typically six-digit resolution. We harmonized the NAICS classification with the BEA classification.

Downscaling state-level production to county level: We downscaled the state-level production data for each
BEA code, including both agricultural and non-agricultural codes, to the county level. The number of
establishments classified under each BEA code in each county was the variable we used to downscale state-
level annual production values to county-level. We obtained the number of establishments in each county
classified under agricultural NAICS codes from the 2012 Census of Agriculture, and the non-agricultural
codes from the County Business Patterns data from 2012 from the U.S. Census Bureau. In each case we
harmonized the NAICS classification with the BEA classification. We multiplied the state-level production
data for each BEA code by the proportion of establishments in each county classified under that BEA code
to yield the downscaled production values for each county.

Downscaling national consumption to county level: We obtained the 2012 personal consumption expenditure
vector classified by the 411 BEA commodity codes for the USA from the BEA input-output data, and
additionally obtained household income totals at the county level for 2012 (U.S. Bureau of Economic
Analysis (BEA), 2021). Because of the lack of county-specific personal consumption expenditure data, we
downscaled the national personal consumption expenditure vector to the county level by multiplying the
consumption vector by each county’s total personal income divided by the total income for the USA. Note:
as mentioned above, due to the strong assumptions underlying the downscaling of national consumption to
the county level, we do not present the estimates generated from the downscaling in the main manuscript
or in the supplements (see “Notes on spatially explicit data” above). Instead, we present the estimates of
consumption-side footprint summed across all counties to yield a total country-wide footprint; we retain
the spatial disaggregation of the production-side footprint in our main results. However, the estimates for
the spatial downscaling of the production-side footprints are available in our interactive data visualization
(https://qdread.shinyapps.io/biodiversity-farm2fork/).

Total production required to satisfy final demand in each county: Producing the food to satisfy final consumer
demand for food products requires the production of goods across all sectors of the economy to supply the
industries that produce the goods directly purchased and consumed by households. An input-output model
allows the estimation of the total production required to satisfy both the indirect and direct demand. The
basic formulation of an environmentally-extended input-output model is given in Equation 1.

m = B(I − A)−1f

(Eq. 1)

Here, A is the direct requirements coefficients (DRC) matrix from the USEEIOv2.0 model (Yang et al.,
2017); this matrix is derived from the make and use tables for 2012 supplied by the BEA. The DRC matrix
represents, for each commodity produced, the intermediate requirements of all other commodities to produce
one unit of output. The DRC matrix is generated by first normalizing the transactions in the make and use
tables to produce a table of market shares of each industry for all commodities it produces (commodities
× industries) and a table of the direct requirements of each commodity by each industry to produce its
output (industries × commodities). Multiplying these two matrices results in the DRC matrix (commodities
× commodities). This procedure is described in detail in (Miller and Blair, 2009). This method has been
previously used to calculate the consumption of goods that drive land use under different scenarios (Zeng
and Ramaswami, 2020). We took the Leontief inverse, i.e., (I − A)−1, of the DRC matrix and multiplied
it by the downscaled final demand vector f for each county; the product (I − A)−1f represents the total
demand at the county level required to satisfy the final demand. In the following, we only consider the ten
elements of the total demand vector representing primary agricultural goods: BEA code 1111A0, oilseeds and
soybeans; 1111B0, wheat, corn, rice, and other grains; 111200, vegetables; 111300, fruits; 111400, greenhouse
crops; 111900, all other crops (including peanuts and sugar crops); 112120, dairy cattle; 1121A0, beef cattle;
112300, poultry; 112A00, all other livestock. Code 114000, for wild-caught fish and seafood, is included in our
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final consumption results for completeness. However, because we only consider biodiversity threats due to
terrestrial land use change, we do not account for any biodiversity impacts of wild-caught seafood (all excess
demand for fish and seafood in alternative scenarios is assumed to be satisfied by expanded aquaculture
rather than increased wild fish capture).

Food-related flows of goods between USA counties

We allocated the consumption footprint of agricultural goods to counties using the strong assumption that
agricultural goods are transported from producer to consumer within the United States independently of
the geographic distance between them. We assume that the consumption of goods in each county is directly
proportional to the income of that county. In other words, all agricultural goods contribute to a common
pool of goods that are drawn from by individual counties. Additionally this requires the assumption that the
populations of all counties consume the same mix of foods, and that spending on food makes up an equal
proportion of household budgets in all counties. Given these strong simplifying assumptions, we allocated a
proportion of the total production of every individual county to be consumed by each county. We did this by
taking the outer product of each county’s production vector and the normalized county income vector. The
result is a 411 × 3112 total consumption matrix for each county, including all primary agricultural goods
required to produce the food consumed in that county, where each column is a vector with the production
from a single county required to satisfy consumption in the target county.

Land use due to agriculture in each USA county

From the 2012 Census of Agriculture, we found the total land area devoted to each agricultural NAICS code
and the total receipts of each NAICS code, at the state level, then converted the NAICS classification to
the BEA classification using the method described above. The land area divided by the receipts is a land
exchange factor representing the amount of land required to produce a dollar of output of each primary
agricultural commodity in each state. We constructed a 3 × 10 satellite land exchange matrix for each state,
corresponding to element B of Equation 1, where the rows represent the three agricultural land use types
we considered (annual cropland, permanent cropland, and pastureland), and the columns represent the ten
primary agricultural BEA commodity classifications that occupy agricultural land in the United States.

Food-related virtual land flows between USA counties and ecoregions

Estimating land flows between counties: For each county, we took the 10 × 3112 subset of its consumption
matrix representing the consumption of primary agricultural goods sourced from each other county. The
product of the 3 × 10 land exchange matrix and the 10 × 3112 consumption matrix is a 3 × 3112 matrix
containing the land footprint of food consumption in each USA county, geographically resolved at the level of
producing county.

Converting inter-county flows to ecoregion-to-county flows: We converted flows between counties to flows
between ecoregions as follows. First, to divide the outgoing flows from counties among the ecoregions making
up that county (many of the counties or county equivalents in the United States have more than one TNC
ecoregion within their borders), we determined the proportion of cropland and pastureland pixels from the
National Land Cover Dataset in each county that lie within each of the ecoregions that overlap with it.
We weighted the outgoing annual and permanent cropland flows by the proportion of cropland pixels in
each ecoregion (assuming that annual and permanent cropland are divided up by ecoregions in the same
proportions), and the outgoing pastureland flows by the pastureland proportion. The result of this weighting
is a vector of virtual land flows into each county from each TNC ecoregion.

Converting ecoregion-to-county flows to inter-ecoregion flows: Next, we divided the incoming flows to each
county among its constituent ecoregions by finding the proportion of the county’s population living within
each ecoregion. We used the U.S. Census gridded demographic data product prepared by CIESIN (2017),
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with population totals at 30 arc-second pixel resolution for the United States in the year 2010 to generate
the population estimates for the portion of each ecoregion intersecting with each county. The result of this
second weighting is a vector of virtual land flows between each pair of TNC ecoregions. We did not use these
flows in any further analysis but describe their calculation here for completeness.

Food-related virtual biodiversity threat transfers between USA counties

Technical background on biodiversity threat estimates: To estimate the virtual biodiversity threat transfers
embodied in the virtual land transfers, we used biodiversity characterization factors developed by (Chaudhary
and Brooks, 2018). The characterization factors represent the marginal number of species committed to
eventual extinction for each additional 1 square meter of land converted from natural to human use in each
Nature Conservancy ecoregion, assuming that the impact of land conversion does not vary spatially within
an ecoregion. The characterization factor for a particular combination of taxon, human land use type, and
ecoregion is a function of the following inputs: the original species richness of that taxon in the ecoregion;
the habitat affinity, or the relative proportion of species richness lost from that taxon in that ecoregion when
natural habitat is changed to a particular human land use type; the rate at which species richness increases
as area sampled increases; and the vulnerability score for that taxon in the ecoregion, which essentially
represents the proportion of endemic species in the ecoregion. Additional data required to estimate affinity
values include the amount of natural habitat that has been converted into each human land use type in each
ecoregion to date, and the number of species lost from the ecoregion as a result.

The theory underlying the characterization factors is based on the countryside species-area relationship
(cSAR) (Pereira et al., 2014). Originally, ecologists observed a power-law relationship between land area and
the number of species of a particular taxon found there, dubbed the species-area relationship (SAR). The
power law takes the form S = cAz, where A is the sampled area, S is the number of species encountered,
and the parameter c is a constant that reflects the taxon’s overall species richness. The power law exponent
z typically varies around ¼, varying based on taxon, biome, and scale (Drakare et al., 2006). However,
directly using the SAR power law to estimate potential extinctions in a region due to habitat loss may
yield inflated estimates (He and Hubbell, 2013); direct use of the SAR implicitly assumes that when land is
converted from natural to human use, it becomes completely hostile to life and cannot support any natural
populations; of course, there are many possible human land uses with varying ability to support natural
populations. Furthermore, different taxonomic groups have different affinities for human land use types.
The countryside species-area relationship captures both those nuances to yield more reasonable estimates
of potential extinctions when natural landscapes are affected by humans. When comparing the predictions
derived from the cSAR to those derived from the SAR and another SAR-based approach, and validating
all three against a database of bird extinctions in biodiversity hotspots, the predictions made by the cSAR
model were a significantly better match to the observed data (Pereira et al., 2014).

A full description of the cSAR implementation from which we derive our biodiversity characterization factors
is found in Chaudhary & Brooks (2018), including the data sources from which the parameters were taken.
Following is a brief description of the model, paraphrasing Chaudhary & Brooks. The underlying cSAR
model is given in Equation 2:

Sloss,g,j = Sorg,g,j

(
1 −

(Anew,j +
∑16

i=1 hg,i,jAi,j

Aorg,j

)zj
)

(Eq. 2)

The subscript g refers to taxon (mammals, birds, amphibians, reptiles, and plants), the subscript i refers to
land use type (there are 16, of which we only consider annual cropland, permanent cropland, and pastureland
in this study), and the subscript j refers to ecoregion (804 globally, of which 86 are found within the contiguous
United States, Alaska, and Hawaii).

In Equation 2, Sorg,g,j is the original number of species of taxon g in ecoregion j before human land use
modification. A represents land areas within ecoregion j, where Aorg is the original unmodified natural
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habitat area, Anew is the remaining unmodified area after human intervention, and Ai is the land area
devoted to a particular human-modified land use type after intervention. hg,i,j is the affinity of taxon g to
land use type i in ecoregion j. A value of h close to zero would indicate that land use type i is hostile to the
taxon in that ecoregion and can support only very low species richness of that taxon, and a value of one
would indicate no change in richness with land modification. A value above one would indicate that the
modified landscape could support a higher richness than the unmodified. When averaging h values by taxon
and land use type across all ecoregions, no values greater than one are present in the cSAR model parameters
used in the present analysis (Chaudhary & Brooks 2018; Table 2). Finally, zj is the species-area relationship
exponent for the ecoregion; typically, values of z range around 0.25. Therefore, if the original species richness,
the extent of modified land, the taxon affinities, and the SAR exponent are known, this equation results in
the expected number of species ultimately committed to extinction within the ecoregion given that land use.
Details of how the parameters Sorg, A, h, and z were derived are found in Chaudhary & Brooks (2018).

The cSAR formulation is used to derive characterization factors (CFs) that express potential biodiversity
damage as a rate of global species extinctions per square meter of land use converted to a particular land use
in a particular ecoregion for a particular taxon. This requires first converting the species loss to a marginal
rate and then deriving a global extinction rate from the ecoregion-specific extinction rate, as follows. First,
an allocation factor ag,i,j is calculated for each taxon g across each land use type i in each ecoregion j as
given in Equation 3. The allocation factors for a particular taxon in a particular ecoregion sum to 1 and
indicate the share of regional extinctions due to each type of land conversion.

ag,i,j = Ai,j(1 − hg,i,j)∑16
i=1 Ai,j(1 − hg,i,j)

(Eq. 3)

Next, a regional land-occupation characterization factor CFregional,occ,g,i,j is calculated for each taxon g
across each land use type i in each ecoregion j. This represents the projected number of species of taxon g
committed to local extirpation in ecoregion j for each unit area of land use type i (Equation 4).

CFregional,occ,g,i,j = Sloss,g,jai,j

Ai,j

(Eq. 4)

The regional characterization factor is converted to a global characterization factor by multiplying by the
vulnerability score V Sg,j , or the weighted proportion of the range of each species in taxon g that occurs in
ecoregion j, derived from IUCN range maps, with an additional weighting factor applied representing the
IUCN category of extinction risk (Equation 5). For example if 100% of species in taxon g are completely
endemic to ecoregion j and are listed as critically endangered by the IUCN Red List, they will all go globally
extinct if they are locally extirpated from ecoregion j (V S = 1). Details of the derivation of V S are provided
in Chaudhary et al. (2015).

CFglobal,g,i,j = CFregional,occ,g,i,j ∗ V Sg,j

(Eq. 5)

These global characterization factors are used in our further analysis. They are expressed in units of species
potentially committed to global extinction per square meter. Within each ecoregion, there are a number of
characterization factors: one for each combination of biological taxon (plants, mammals, birds, amphibians,
and reptiles) and agricultural land use type (annual cropland, permanent cropland, and pastureland). We
present the characterization factors associated with land occupation and medium land use intensity in all
cases. We reran the analysis with the low-intensity and high-intensity characterization factors and found
that the median sensitivity of the species extinction threat totals for each combination of land use type,
taxon, and scenario was 1.5% for medium versus low intensity, and 0.4% for medium versus high intensity.
Because of the relatively low sensitivity and because of the lack of nationally available data to distinguish
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between levels of land use intensity, we chose to use the medium-intensity factors. We used the factors for
land occupation rather than land transformation because we are dealing with land that has already been
transformed to agricultural use and our alternative scenarios involve a contraction of this land area rather
than any new expansion.

Conceptual issues regarding the biodiversity threat estimates: The biodiversity threat estimates we generated
here represent the number of species committed to extinction by agricultural land use in the United States.
Although few plant and vertebrate species have been conclusively proven to have gone globally extinct due to
agricultural land transformation in the United States, the current level of agricultural land use has reduced
the available habitat so much for some species that they cannot maintain a non-negative population growth
rate in the long term. Therefore, they are inevitably committed to extinction if current trends continue.
However, reducing the land area devoted to agriculture would allow natural habitats to regenerate over time,
possibly allowing population growth rates to recover.

Here, biodiversity threat is expressed in units of potential global species extinctions per meter squared of
land converted from natural land to food production. This translates all activities related to food production
to a single common metric that can be compared across geographical regions. The cSAR approach is a
“top-down” approach that calculates losses at the level of taxonomic groups rather than a “bottom-up”
approach that estimates impacts at the level of individual species before summing them up to find the total
impact. Therefore, it is less data-hungry than other potential candidate methods. However, it suffers from
a few limitations. First, because threats are expressed in absolute number of species extinctions, if results
are summed across taxa, they will be weighted toward the taxon with the highest species richness. Because
we used characterization factors for plants and several vertebrate groups, and plants have a much higher
species richness than vertebrates, around 75% of the species extinctions we predict in the baseline case are
plants. Second, because the units are global extinctions, it tends to ignore local impacts in areas that have
low endemism. In fact, for a few of the ecoregions that have relatively low endemism, threat is shown to be
negligible or zero, though that might not be the case considering local or regional extinctions.

Calculation of biodiversity threat transfers: We joined all the ecoregion-to-county virtual land flows (estimation
of these flows is described in the section above titled “Food-related virtual land flows between USA counties
and ecoregions”) with the characterization factors for the exporting ecoregion. The product of the land flow
in square meters and the characterization factor represents the number of species committed to extinction by
ongoing agricultural land use in the exporting ecoregion that contribute to the importing county’s biodiversity
threat footprint due to food consumption. We used the population weights described above to convert the
pairwise virtual biodiversity threat transfers between ecoregions to pairwise transfers between counties.

Virtual land and biodiversity threat transfers due to imported agricultural goods

Foreign food imports contribute substantially to the global land and biodiversity footprint of U.S. consumers.
To address this, we compiled and/or derived the following data from FAOSTAT (FAO (Food and Agriculture
Organization of the United Nations)), 2021): food production in all countries that are agricultural trading
partners with the United States, the proportion of those countries’ food production that is exported to
the United States, the harvested land area of each crop, and the proportion of crops grown for feed and
pastureland that are used to feed livestock eventually exported to the United States.

Virtual land transfers due to imported crops: First, we averaged the most recent five years of data for the
relevant FAOSTAT data series, all at the country level: production in tons and area harvested for each
crop, food balance sheets including the proportions of each crop used for feed and human consumption,
export data reported by the United States’ trading partners, land use inputs data including total amount
of pastureland, and livestock patterns data including the total amount of livestock in each major species
converted to common biomass-based units. We harmonized the commodity codes in the crop and livestock
production dataset with those in the trade dataset. We joined the crop production dataset with the trade
dataset and multiplied the total area harvested for each crop in each country by the proportion of that crop’s
production that is exported to the United States. We summed these values across annual and permanent
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crops within each exporting nation. This represents the virtual annual and permanent cropland transfers due
to directly exported crops.

Virtual land transfers due to imported animal products: For virtual land transfers embodied in animal products,
the calculation is more complex because it requires estimating the pastureland footprint for grazing animals
as well as the land used to grow feed for the animals. We made a number of simplifying assumptions. First,
we joined the food balance sheet for each crop in each country with the crop production, crop trade, and area
harvested data for those countries. The product of the proportion of each crop that is used for feed times
the area harvested is the land area of each crop used to feed animals in each country. Next, we joined an
additional dataset: the livestock patterns dataset, which presents the amount of each major type of livestock
(excluding smaller types such as honeybees, turkeys, rabbits, etc.) in each country in biomass-equivalent
units. We multiplied the total annual and permanent cropland footprint associated with animal feed in each
country by the relative share of the livestock patterns for each major livestock type. This resulted in the
annual and permanent cropland footprint used to feed each livestock species in each country, assuming for
simplicity that all livestock species receive the same mix of crops as feed.

We additionally joined the livestock patterns dataset with the land inputs dataset, including the area of
pastureland in each country. We multiplied the total pastureland in each country by the relative share of
the livestock patterns for each major livestock type, this time including only ruminant grazers that use
pastureland. This resulted in the pastureland footprint used to feed each grazing livestock species in each
country. The livestock patterns dataset also includes the amount of livestock for each species in each country
used to produce meat, milk (for ruminants), and eggs (for chickens). We multiplied the land footprints for
each species by the proportion of stock used to produce each type of product, resulting in the annual and
permanent cropland footprint associated with meat, dairy products, and eggs for each species. Finally, we
derived conversion factors to estimate the approximate weight of milk required to produce a unit of butter or
cheese. We averaged the conversion factors provided by FAO (FAO (Food and Agriculture Organization of
the United Nations)), 1972) and ERS (USDA Economic Research Service, 2021); we used the average of the
conversion factors for all dairy products as the factor for the “other dairy” category in the FAOSTAT food
export dataset. We used the conversion factors to disaggregate the milk cropland footprints into footprints
associated with each dairy product specifically.

Finally, we joined the cropland and pastureland footprints associated with all exported animal product from
all countries exporting to the United States with the trade data and multiplied the animal-derived land
footprints with the proportion of each animal product exported to the United State from each other country.
This results in the virtual land transfer, of each major land type, embodied in animal products exported from
foreign countries into the United States.

Virtual biodiversity threat transfers from foreign countries: We proportionally allocated the virtual land flows
from exporting countries to ecoregions within those countries. First, we counted the pixels in the global
cropland and pastureland layers in each intersected country-ecoregion polygon. We used these counts to
determine the proportion of cropland and pastureland in each country that lies within each of its ecoregions.
Assuming the same proportional division of annual and permanent cropland, we divided the virtual land flows
originating from each country among the ecoregions within it, weighted by the relative proportions of pixels
from the global cropland mask layer (Thenkabail et al., 2016) and pastureland layer (Ramankutty et al.,
2010) within each of a country’s ecoregions. To estimate the virtual biodiversity threat transfers associated
with the virtual land transfers, we used the characterization factors published by Chaudhary and Brooks in
the same way as above, then summed the transfers from each ecoregion back up by exporting country.

Alternative consumption scenarios: diet shifts and food waste reduction

We modeled the effects of nationwide diet shifts and food waste reduction on the land footprint of agricultural
production and consumption in the United States, and associated implications for biodiversity threats. Note
that these alternative scenarios do not account for costs or other issues in transitioning to different diets or to
a food system with greatly reduced waste; instead, we simply assume that the changes occur instantaneously.
Furthermore, the biodiversity threat reduction relative to the baseline scenario is calculated assuming that
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land taken out of agricultural production can immediately support the same number of species as previously
undisturbed land (i.e., no hysteresis and no time lag to full recovery). However, a meta-analysis of ecosystem
recovery studies documented only partial recovery of pre-disturbance diversity for recovering agricultural land
after roughly 20 years (Moreno-Mateos et al., 2017). In addition, we do not account for wild populations’
potential to adapt to agricultural habitats (i.e., affinity of taxa to a particular land use type is constant).
Therefore it is more appropriate to consider the alternative scenarios as counterfactual cases rather than a
simulation of a process occurring over time.

The alternative diets we consider are the Planetary Health diet proposed by the EAT Lancet Commission
(Willett et al., 2019) and the three healthy dietary patterns presented in the United States’ 2020-2025 dietary
guidelines (U.S. Department of Health and Human Services and U.S. Department of Agriculture, 2020).
While both diets attempt to deliver balanced, healthy nutrition, the Planetary Health diet explicitly considers
sustainability and minimizing land footprint in its formulation; in contrast, the three USDA-recommended
diets only consider the individual’s health and not environmental sustainability. The daily allowance of meat
on the Planetary Health diet is much lower than the current average meat consumption in the USA. Dairy
products, added fats (any fat added during processing or cooking, such as cooking oils), and added sugars
are also allocated fewer calories than currently consumed. In contrast, calories from fruits, grains, nuts,
and vegetables are higher than the current USA consumption. While all three of the USDA-recommended
diets have fewer calories due to meat and added fats than the current average American eats daily, they
compensate for this with a substantially increased dairy consumption, in addition to increases in the fruit,
grain, and vegetable food groups. In further contrast to the Lancet diet, the USDA-recommended diets
allocate roughly the same or slightly more calories per day to added sugars as the current typical American
level of consumption.

To simulate the effects of food waste reduction, we separately assumed a 50% reduction in avoidable pre-
consumer food waste (including retail waste but excluding on-farm and manufacturing waste) and a 50%
reduction in avoidable consumer food waste (including household and food service waste). In summary, our
analysis included five distinct diet scenarios: the baseline and four counterfactual diet scenarios (Planetary
Health diet and the three USDA diets) and four waste scenarios (the baseline, 50% pre-consumer waste
reduction, 50% consumer waste reduction, and 50% reduction in both pre-consumer and consumer waste).
We did a full-factorial cross of the diet and waste scenarios, resulting in 20 scenarios total. Note that we
only present the baseline and full waste reduction scenarios in the manuscript, for a total of 10 scenario
combinations; the methods for all waste scenarios are presented here for completeness.

To determine the projected consumption of agricultural goods across the different scenarios, we needed to
(1) harmonize the food group categories from both the Planetary Health and USDA diets with the food
categories in the USDA’s Loss-Adjusted Food Availability (LAFA) dataset from which we obtained the food
waste rates for 2012 (using years as close to 2012 as possible for those food items that did not have data for
2012 available) and then (2) convert the daily food group servings values to common units (cal/day). First,
we manually constructed a crosswalk table to harmonize the food group categorizations from the two diets
with the list of food categories in the LAFA dataset. Because the LAFA categorization is much finer than the
food group categorization for any of the recommended diets, this entailed many-to-one mapping of LAFA
categories to diet categories. The exceptions to this are that the diet categories distinguish between whole
and refined grains, and between saturated and unsaturated fat, while LAFA does not; those categories were
aggregated for our harmonized classification. Next, we converted the daily food group allowances to calories
per day by using the per capita food availability in the LAFA dataset, which presents availability in a variety
of different units for each food and facilitates conversion to calories. Finally, we used the “retail to consumer”
food waste rate from LAFA to represent pre-consumer waste, and used the “edible consumer” food waste
rate for the consumer stage. We calculated the reduction in production that would result from 50% reduction
in food waste at both of these stages, assuming that if waste is reduced, production reduces by the amount
needed to satisfy the new reduced amount of consumption.
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Potential changes in virtual land and biodiversity threat transfers in the alter-
native scenarios

To estimate possible changes to land and biodiversity footprints of food production and consumption under
the alternative scenarios, we applied the scenario factors for each BEA code to the baseline food consumption
final demand vector to generate 19 alternative final demand vectors in addition to the baseline. Again
the 20 scenarios are a full factorial cross between four waste scenarios (baseline, 50% pre-consumer waste
reduction, 50% consumer waste reduction, 50% waste reduction across both sectors) and five diet scenarios
(baseline, Planetary Health, USDA/DHHS Dietary Guidelines US-style, USDA Mediterranean-style, and
USDA vegetarian). We applied the same procedure as described above for the baseline final demand
vector to estimate the total direct and indirect demand for primary agricultural goods in each county. To
operationalize the assumption that all excess demand for seafood above baseline (summing across direct
consumer demand and indirect demand via processed products containing seafood), we found the difference
between total demand for BEA code 114000 (wild-caught fish) in the alternative scenario versus the baseline
scenario. If this difference was greater than zero, we reassigned that amount of demand to BEA code 112A00
(animal farms and aquaculture). Next we continued with the procedures as described above to estimate the
proportional allocation of production to consumption based on population, the land footprints associated with
the consumption, and finally the biodiversity threats associated with the land footprints. We also applied the
same procedure to estimate foreign imports of land and biodiversity threats in the alternative scenarios.

Key assumptions

Unfortunately, the data sources we used for this analysis do not have any quantitative uncertainty associated
with them. Therefore, it is difficult to determine how sensitive our final results are to uncertainty in the
underlying data. The exception is the biodiversity characterization factors provided by Chaudhary & Brooks
(2018), who provided a low, medium, and high intensity value for each characterization factor. As we describe
above, we performed a sensitivity analysis and found that the median difference in total biodiversity threat
estimates by region was negligible. Here, we outline the most important assumptions we made in the modeling
exercise.

Assumptions: Baseline waste rates

• We assumed that no losses before the retail stage were avoidable waste, and thus that no pre-retail
food loss was addressable by waste reduction interventions. This is a conservative assumption: many
interventions have been proposed or partially implemented to reduce on-farm food loss, as well as waste
during the manufacturing and processing stages (Muth et al. 2019).

• We inherit all assumptions made in the estimation of the loss factors from the USDA Loss-Adjusted
Food Availability (LAFA) data series. Most of these loss factors are broadly extrapolated from a small
number of data points across many food groups and contexts. In many cases, loss factors have been
assumed to be constant since they were first estimated several decades ago, although loss rates may
have changed significantly since then. The LAFA data series comprises the best available estimates of
food loss and waste at the national level for the USA, and therefore are widely used in analyses like this
one. Improving the quality of the loss factors would provide a more accurate picture of the potential
benefits of waste reduction.

Assumptions: Domestic land footprint

• The indirect demand required to satisfy final demand is uniform across the country. In other words,
a final consumer product requires the same inputs to produce regardless of where it is produced or
consumed.
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• All individuals in the United States spend an equivalent proportion of their income on food, and consume
the same average diet. Therefore the only variation in consumption land footprint across counties is
from the variation in total consumer spending by county, which is a function of the population and
affluence of the county.

• Total land area harvested per crop at the state level can be downscaled to the county level by the
relative numbers of establishments for that crop’s NAICS code at the county level.

• The yield of a crop measured in monetary value per land area is the same for all counties in a state.
• All consumers in the United States consume an equal mix of goods sourced from everywhere in the

United States and world, completely independent of the geographic location of the consumer. This is a
strong assumption but does not affect the main findings which are summed across all consumers.

• The only consumption of agricultural goods that we consider for the land footprint is final consumer
demand by households, as captured by the personal consumption expenditure totals in the BEA
input-output data. This ignores, e.g., government purchases of food.

• All pastureland is actively used. This assumption derives from our calculation of land exchange factors
by state as the quotient of total pastureland area and monetary output of grazing animals. This
assumption was not as strong for cropland because in that case the numerator is area harvested,
implying active land use.

• We further assumed that all agricultural land has a single use, although it is possible that some land
may be used for both animal forage and food crops. Any such land would be double-counted, potentially
overestimating the land footprint.

Assumptions: Foreign land footprint

• We use the export values reported by the United States’ trading partners (because they are more likely
to be comparable to the total production quantities for those countries) rather than import values
reported by the United States, though the two differ.

• The foreign land footprint may be exaggerated relative to the domestic because it is not possible
to disaggregate exports destined for household consumption from other exports. Therefore, the
foreign footprint has a slightly wider boundary than the domestic one. Furthermore, note the other
methodological differences between the estimation of domestic and foreign land footprints (see above)
when comparing the two.

• All livestock in a particular country consume the same mixture of feed crops. The apportioning of total
crop quantity used for animal feed among livestock species was done purely based on the biomass of
each livestock species, not accounting for differences in diet among livestock species.

• Livestock are either used for meat production, or milk/eggs production, but not both. This may
overestimate the land footprint because in reality some individual animals may produce multiple
products.

• All pastureland in foreign countries is actively used. As in the domestic analysis, we account for the
fact that not all cropland is actively harvested each year, but do not have analogous data allowing
us to account for this in the case of pastureland. This may lead to overestimation of the pastureland
footprint.

• As in the domestic analysis, we assumed that agricultural land has a single use, ignoring any potential
multiple use of the same land for producing animal forage and food crops.

• The values for cropland and pastureland used to produce animal products for export depend on the
conversion factors that underlie the FAOSTAT livestock patterns dataset, as well as the dairy conversion
factors we derived from FAOSTAT and USDA ERS.

• The FAOSTAT livestock patterns dataset only includes the most numerous livestock species (asses,
buffaloes, camels, cattle, chickens, goats, horses, mules, pigs, and sheep), ignoring less common species.
Therefore we assume that the land footprint of imported livestock production of less common species is
negligible.

• The portion of output exported to the United States has the same land footprint by weight as the rest
of the output.
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Assumptions: Domestic and foreign biodiversity footprint

We inherit all assumptions made by Chaudhary and Brooks (2018) when developing the biodiversity charac-
terization factors. See Table 1 in Chaudhary and Brooks (2018) for a list of the data sources used in the
calculation of the characterization factors.

• The most important of these assumptions is that the countryside species-area relationship holds, and
that it is possible to derive a marginal extinction per square meter of land that is relatively consistent
across the range of land use values we present here. In other words the slope of the relationship does
not change substantially over the range we are considering).

• Once we assume that cSAR is a valid foundation, the biodiversity threat model yielding the characteri-
zation factors has numerous parameters and may be more or less sensitive to the literature-derived
values for those parameters. This includes the habitat affinity values for taxon/land use/ecoregion
combinations, and the endemism proportions used to convert local extinction threats to global.

• The parameter h (habitat affinity for each taxon for each land use type in each ecoregion) was a
function of three inputs: the broad habitat affinity taken from the IUCN habitat classification scheme
(five classes), a relative richness parameter taken from a meta-analysis by Newbold et al. (2015) for
vertebrate taxa and from a meta-analysis conducted by Chaudhary et al. (2016) for plants, and the
species-area power law exponent for each taxon taken from a study by Drakare et al. (2006). The
relative richness parameter was used to derive habitat affinities for a finer classification of land use than
the coarse five classes in the IUCN scheme.

• Furthermore, the biodiversity threat reduction relative to the baseline scenario is calculated assuming
that land taken out of agricultural production can immediately support the same number of species as
previously undisturbed land (i.e., no hysteresis and no time lag to full recovery).

• We assume that there is no cost of time or resources required to restore agricultural land to natural
habitat capable of supporting the same level of biodiversity as undisturbed habitat.

• Finally, our approach also assumes that wild populations of organisms do not adapt to agricultural
landscapes, meaning that their affinities to different land use types remain constant over time.

Code and data availability

All code required to reproduce the analyses described in this paper is contained in a permanent copy of
a GitHub repository on Zenodo (GitHub link https://github.com/qdread/biodiversity-farm2fork-analysis;
permanent Zenodo DOI https://doi.org/10.5281/zenodo.5949590). Data required to reproduce the analysis is
archived on a Figshare repository (https://doi.org/10.6084/m9.figshare.14892087). View our interactive data
visualization app at https://qdread.shinyapps.io/biodiversity-farm2fork/.
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Appendix 2: Supplemental figures

This appendix contains supplemental figures for the manuscript “Biodiversity effects of food system sustain-
ability actions from farm to fork” by Quentin D. Read, Kelly L. Hondula, and Mary K. Muth.

Please note that not all possible visualizations of data and model results are presented in this document. To
interactively view results and generate tables, plots, and maps, please visit the Shiny app accompanying this
manuscript at https://qdread.shinyapps.io/biodiversity-farm2fork.
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Figure S1. Methods graph

This figure graphically shows the relationship between each component in our data synthesis and modeling
procedure. Each cluster (blue box with rounded corners) represents a phase of the data synthesis and
modeling. Within each cluster, green boxes represent data sources incorporated in that phase, and red boxes
represent models used in that phase. In each scenario, the food consumption data are derived from the USDA
LAFA dataset, modified by the appropriate set of diet shift and waste reduction scenario parameters. Food
consumption determines the required levels of domestic and foreign production (the USEEIO input-output
model is used to estimate domestic production, and FAOSTAT trade and production data are used directly
for foreign production). Next, the land exchange tables we developed are used to convert domestic production
to domestic land footprint, and FAOSTAT yield and food balance sheet data are used for the foreign land
footprint. We used the Chaudhary & Brooks model parameterized with IUCN and WWF data to convert the
land footprints to biodiversity footprints for each scenario.

Figure S1: Data sources and models used in the study
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Figures S2-S3. Summary maps

Figures S2 and S3 show global ecoregions colored by WWF realm in the United States and across the entire
world respectively.

Figure S2: United States map showing global ecoregions categorized by realm
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Figure S3: World map showing global ecoregions categorized by realm
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Figure S4. Disaggregated production totals

This figure shows the total production, in units of value (billion USD), of each type of domestically produced
primary agricultural good in each scenario (in contrast to Figure 2 in the main text, which shows the same
values divided by the baseline consumption). Bars representing plant-derived goods are shaded in green, and
bars representing animal-derived goods are shaded in pink. Each panel represents a different combination of
diet scenario (baseline, three USDA diets, and planetary health diet) and waste scenario (baseline and 50%
reduction). Note: A similar accounting is not possible for agricultural goods imported from foreign countries
because of the different methodology and underlying data used for foreign imports.

Figure S4: Total consumption of each primary domestic agricultural good in each scenario, by value

18



Figure S5. Disaggregated virtual land footprints

This figure shows the virtual land footprint of food consumed in the United States in the baseline scenario
and alternative diet and waste scenarios, disaggregated by domestic (blue shading) versus foreign origin
(orange shading), with separate totals for annual cropland, pastureland, and permanent cropland. The
bars represent total amounts of land virtually consumed in the United States each year, in units of square
kilometers per year. Each panel represents a different combination of diet scenario (baseline, three USDA
diets, and planetary health diet) and waste scenario (baseline and 50% reduction).

Figure S5: Total virtual land consumption in each scenario, by origin and land type
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Figures S6-S12. Disaggregated virtual biodiversity threat footprints

The following figures show the virtual biodiversity threat footprints for the baseline case and the alternative
diet and waste scenarios, disaggregated by origin, land use type, and taxon. In all these figures, the heights of
the bars represent the number of terrestrial species forecast to eventually become globally extinct due to land
used to produce food consumed in the United States. The biodiversity threat footprints are disaggregated by
origin (blue shading represents domestic origin and orange shading represents foreign origin) and by land use
type. Each panel of each figure represents a different combination of diet scenario (baseline, three USDA
diets, and planetary health diet) and waste scenario (baseline and 50% reduction). Figure S6 shows the
values for all taxa summed, Figure S7 shows plants only, Figure S8 shows all animal taxa summed, Figure S9
shows amphibians, Figure S10 shows birds, Figure S11 shows mammals, and Figure S12 shows reptiles.

Figure S6: Total virtual biodiversity threat footprint in each scenario, by origin and land type: all taxa
summed
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Figure S7: Total virtual biodiversity threat footprint in each scenario, by origin and land type: plants

Figure S8: Total virtual biodiversity threat footprint in each scenario, by origin and land type: all animals
summed
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Figure S9: Total virtual biodiversity threat footprint in each scenario, by origin and land type: amphibians

Figure S10: Total virtual biodiversity threat footprint in each scenario, by origin and land type: birds
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Figure S11: Total virtual biodiversity threat footprint in each scenario, by origin and land type: mammals

Figure S12: Total virtual biodiversity threat footprint in each scenario, by origin and land type: reptiles
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Figures S13-S15. Maps showing domestic goods production

The following groups of figures in this document are maps showing values spatially disaggregated by county
in the United States. In maps where we present absolute values of each of the quantities for each scenario,
we use a colorblind-friendly viridis color gradient to fill the polygons on the maps. Note that the color
gradient represents values on a logarithmic scale.

On the maps showing relative values, a colorblind-friendly scico divergent color gradient is used. Blue colors
indicate decreases relative to the baseline and reddish-brown colors indicate increases. The starting or ending
values of the color gradient are modified in each case so that white color indicates no change relative to
baseline. On all maps, gray polygons indicate missing values or zero values that produce negative infinity
when log-transformed.

The maps showing differences across scenarios have ten panels, each of which represents a combination of
diet scenario (baseline, three USDA diets, and planetary health diet) and waste scenario (baseline and 50%
reduction).

The contiguous United States map is displayed with an Albers equal-area projection for the continental
United States identical to the one used by the National Land Cover Database. The inset maps for Alaska
and Hawaii are displayed with Albers equal-area projections with parameters appropriate for those regions.

Figure S13 shows the absolute value of domestic production of all primary agricultural goods, in units of
million USD (2012), with a log-transformed color gradient. Figure S14 shows the total across the ten groups
of goods divided by the baseline value, resulting in a difference for each scenario relative to the baseline.
Figure S15 shows the domestic production, by value in million USD, of the following ten primary agricultural
goods listed above in this document, as well as the total, for the baseline scenario only. Each panel shows
production for a different good.

• oilseeds and soybeans
• grains
• vegetables, including melons and potatoes
• fruits and nuts
• greenhouse crops grown for food, including mushrooms
• other crops, primarily sugar crops, peanuts, and herbs
• dairy products
• beef cattle
• poultry and eggs
• other meat, including farm-raised fish

Maps disaggregated by type of good across each scenario can be generated using the Shiny app.

Figure S13: Total production value of all agricultural goods in each county by diet and waste scenario
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Figure S14: Change in production relative to baseline of all agricultural goods in each county by diet and
waste scenario

Figure S15: Total production value of agricultural goods in each county in the baseline scenario
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Figures S16-S18. Maps showing land use in each county across scenarios

The following set of figures shows the land used in each county in the United States to produce food for
domestic consumption under all combinations of diet and waste scenario, summed across all land use types
(annual cropland, permanent cropland, and pastureland). Land use is shown in hectares (ha). Layout of
panels and other details are the same as in the goods production figures above. Figure S16 shows the absolute
values for each scenario, and Figure S17 the percent change relative to the baseline value. Maps disaggregated
by land use type can be generated using the Shiny app.

Figure S18 shows land use for each of the land use types in the baseline scenario only. The figure has a
separate panel for annual cropland, permanent cropland, pastureland, and the total across all four land use
types.

Figure S16: Land use summed across land use types in each county by diet and waste scenario

Figure S17: Change relative to baseline in land use summed across land use types in each county by diet and
waste scenario
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Figure S18:Land use by type in each county in the baseline scenario
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Figures S19-S20. Maps showing foreign virtual land imports to the United States
across scenarios

The following set of figures shows the virtual land imports to the United States from all foreign trading
partners across all combinations of diet and waste scenarios, both as absolute values in hectares (Figure S19)
and percentage change relative to baseline (Figure S20). These world maps use the Robinson equal-area
projection. Color scales and layout of panels are as described above. Maps disaggregated by land use type
can be generated using the Shiny app.
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Figure S19: Virtual imports totaled across all land use types from all countries to the United States by diet
and waste scenario
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Figure S20: Change relative to baseline in virtual imports totaled across all land use types from all countries
to the United States by diet and waste scenario
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Figures S21-S26. Maps showing threatened biodiversity in each county across
scenarios

The following set of figures shows the total biodiversity threat associated with food production in each county
in the United States under all combinations of diet and waste scenario, with separate figures for plants, the
sum of all animal taxa (amphibians, birds, mammals, and reptiles), and the total of plants and animals.
Biodiversity threats are shown in units of number of species threatened by eventual global extinction. Layout
of panels and other details are the same as in the goods production figures above. Figures S21-23 show the
absolute values for each scenario for each of the taxonomic groups, and Figures S24-26 the percent change
relative to the baseline value. Maps disaggregated by taxonomic group can be generated using the Shiny app.

Figure S27 shows the biodiversity threat for each of the taxonomic groups in the baseline scenario only. The
figure has a separate panel for plants, amphibians, birds, mammals, reptiles, total across the four animal
taxa, and total across both animals and plants.

Figure S21: Threats to plant biodiversity in each county by diet and waste scenario

Figure S22: Threats to animal biodiversity in each county by diet and waste scenario (totaled across the four
animal taxonomic groups)
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Figure S23: Threats to all biodiversity in each county by diet and waste scenario (totaled across all plant and
animal taxa)

Figure S24: Change relative to baseline in threats to plant biodiversity in each county by diet and waste
scenario

Figure S25: Change relative to baseline in threats to animal biodiversity in each county by diet and waste
scenario (totaled across the four animal taxonomic groups)
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Figure S26: Change relative to baseline in threats to all biodiversity in each county by diet and waste scenario
(totaled across all plant and animal taxa)

Figure S27: Biodiversity threats to each taxonomic group in each county in the baseline scenario
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Figures S28-S33. Maps showing foreign virtual biodiversity threat imports to
the United States across scenarios

The following set of figures shows the virtual biodiversity threat imports to the United States from all foreign
trading partners across all combinations of diet and waste scenarios, both as absolute values in potential
global species extinctions (Figures S28-S30) and percentage change relative to baseline (Figures S31-S33). A
separate figure is shown for imported threats to plants, animals (total across taxa), and total of plant and
animal threats. These world maps use the Robinson equal-area projection. Color scales and layout of panels
are as described above.
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Figure S28: Virtual imports of threats to plant biodiversity from all countries to the United States by diet
and waste scenario
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Figure S29: Virtual imports of threats to animal biodiversity from all countries to the United States by diet
and waste scenario
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Figure S30: Virtual imports of total threats to plant and animal biodiversity from all countries to the United
States by diet and waste scenario

37



Figure S31: Change relative to baseline in virtual imports of threats to plant biodiversity from all countries
to the United States by diet and waste scenario
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Figure S32: Change relative to baseline in virtual imports of threats to animal biodiversity from all countries
to the United States by diet and waste scenario
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Figure S33: Change relative to baseline in virtual imports of total threats to plant and animal biodiversity
from all countries to the United States by diet and waste scenario
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Appendix 3: Supplemental tables

This appendix contains supplemental tables for the manuscript “Biodiversity effects of food system sustain-
ability actions from farm to fork” by Quentin D. Read, Kelly L. Hondula, and Mary K. Muth.

Table S1. Total footprints and footprint intensities, baseline scenario

This table shows the total land and biodiversity threat footprint of food consumed in the United States
in 2012 (baseline scenario). The land footprint is disaggregated by the three land use types (annual crops,
permanent crops, and pasture) as well as origin (domestic and foreign), in units of 1000 km2. Biodiversity
footprints associated with each of these six land footprint components are shown for animals, plants, and the
total of the two, in units of potential global species extinctions. Footprints are rounded to the nearest whole
number. The biodiversity footprints are divided by the land footprints to yield footprint intensities. Cell
shading represents relative magnitude of values within each column.

Total footprint Footprint intensity
land

1000 km2
animals

extinctions
plants

extinctions
total

extinctions
animals

extinctions/1000 km2
plants

extinctions/1000 km2
total

extinctions/1000 km2

domestic origin
annual cropland 643 9 22 31 0.014 0.034 0.048
permanent cropland 96 2 11 13 0.017 0.120 0.130
pastureland 1069 17 61 78 0.016 0.057 0.073
Total 1807 28 94 122 0.016 0.059 0.073

foreign origin
annual cropland 55 2 12 14 0.040 0.220 0.260
permanent cropland 28 7 18 25 0.240 0.630 0.870
pastureland 367 8 31 40 0.023 0.085 0.110
Total 451 17 61 78 0.110 0.270 0.380

Grand Total 2258 45 155 200 0.052 0.140 0.190
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Table S2. Total land used for domestic food consumption by U.S. state across
scenarios

This table shows the total area of land consumed in each U.S. state to produce food consumed domestically
in 2012, in units of square kilometers, summed across all agricultural land use types. For each of the 50 states,
the value for the baseline scenario and the nine other counterfactual scenarios is provided (the baseline diet
and four alternative diets crossed with baseline levels of food waste and 50% food waste reduction). After
each value, the percentage change in each scenario relative to the baseline case is listed in parentheses.

No waste reduction 50% waste reduction
baseline diet USDA U.S. style USDA Mediterranean USDA vegetarian Planetary Health baseline diet USDA U.S. style USDA Mediterranean USDA vegetarian Planetary Health

Alabama 10800 (+0%) 10300 (-4.4%) 10600 (-1.6%) 5160 (-49.7%) 5510 (-47.7%) 9030 (-16.4%) 8520 (-20.9%) 8740 (-18.9%) 4220 (-58.9%) 4630 (-56.1%)
Alaska 2430 (+0%) 2480 (+2.2%) 2980 (+22.6%) 430 (-80.5%) 1170 (-51.6%) 2020 (-17.1%) 2000 (-17.6%) 2370 (-2.5%) 353 (-83.9%) 917 (-62.1%)
Arizona 76300 (+0%) 77000 (+1.1%) 92500 (+21.6%) 11200 (-84.6%) 34600 (-54.4%) 63200 (-17.1%) 62100 (-18.5%) 73600 (-3.3%) 9160 (-87.4%) 26900 (-64.5%)
Arkansas 21600 (+0%) 21200 (0%) 21500 (+1.2%) 12500 (-26.9%) 12600 (-33.3%) 18100 (-16.1%) 17700 (-16.8%) 17900 (-15.9%) 10400 (-39.5%) 10500 (-44.4%)
California 74200 (+0%) 99900 (+37.7%) 110000 (+52.5%) 77800 (+13.6%) 60500 (-13.9%) 60800 (-18.1%) 80400 (+10.4%) 87800 (+21.6%) 62100 (-9.6%) 49200 (-30.2%)
Colorado 69800 (+0%) 66500 (-4.2%) 68800 (-1%) 30600 (-48.6%) 33500 (-48.6%) 58400 (-16.2%) 55100 (-20.5%) 56900 (-18.2%) 25300 (-57.4%) 27900 (-57.2%)
Connecticut 586 (+0%) 742 (+26.9%) 764 (+30.7%) 551 (-5.2%) 437 (-25.2%) 485 (-17.3%) 606 (+3.6%) 621 (+6.1%) 447 (-23%) 358 (-38.8%)
Delaware 923 (+0%) 1120 (+20.9%) 1140 (+23.8%) 866 (-6%) 736 (-20.2%) 770 (-16.6%) 920 (-0.3%) 939 (+1.8%) 708 (-23.1%) 607 (-34.2%)
Florida 16900 (+0%) 21600 (+31.8%) 23800 (+46.7%) 15500 (+4.8%) 12100 (-21.2%) 13900 (-17.9%) 17400 (+5.8%) 19100 (+17.1%) 12300 (-17.2%) 9670 (-37.1%)
Georgia 10800 (+0%) 12300 (+14.9%) 12700 (+19.2%) 9050 (-9.4%) 8030 (-22.3%) 8920 (-17.4%) 10000 (-6.4%) 10300 (-3.2%) 7340 (-26.6%) 6760 (-34.6%)
Hawaii 2470 (+0%) 2420 (-1.8%) 2560 (+3.7%) 1120 (-52.7%) 1090 (-54.9%) 2070 (-16.6%) 1990 (-19.3%) 2090 (-15.1%) 904 (-62%) 891 (-63.3%)
Idaho 24500 (+0%) 28300 (+16.2%) 29200 (+19.6%) 19100 (-19.5%) 15700 (-35%) 20300 (-17.2%) 23200 (-4.9%) 23800 (-2.5%) 15600 (-34.4%) 13000 (-46.3%)
Illinois 41300 (+0%) 46700 (+13.2%) 47400 (+14.8%) 37000 (-10.2%) 33700 (-18.3%) 34400 (-16.6%) 38700 (-6.2%) 39200 (-5%) 30600 (-25.7%) 27900 (-32.2%)
Indiana 22100 (+0%) 24900 (+13%) 25400 (+15.4%) 19000 (-13.7%) 17500 (-20.6%) 18400 (-16.6%) 20600 (-6.4%) 21000 (-4.8%) 15700 (-28.6%) 14500 (-34.3%)
Iowa 51600 (+0%) 56900 (+10.3%) 58600 (+13.7%) 40300 (-21.4%) 38600 (-24.9%) 43100 (-16.5%) 47100 (-8.6%) 48400 (-6.2%) 33400 (-34.8%) 32000 (-37.8%)
Kansas 83300 (+0%) 86000 (+3.6%) 86900 (+4.7%) 55900 (-29.5%) 53100 (-34.2%) 70000 (-16%) 71700 (-13.6%) 72300 (-12.9%) 46500 (-41.5%) 44200 (-45.1%)
Kentucky 19100 (+0%) 18700 (-1.6%) 19000 (0%) 10400 (-42.4%) 10300 (-44%) 16000 (-16.5%) 15500 (-18.5%) 15700 (-17.4%) 8580 (-52.5%) 8650 (-53.1%)
Louisiana 11700 (+0%) 12000 (+2.5%) 12200 (+4.7%) 7460 (-30.6%) 7240 (-34.6%) 9780 (-16.6%) 9890 (-15.2%) 10100 (-13.6%) 6140 (-42.7%) 6050 (-45.2%)
Maine 2920 (+0%) 3710 (+29.7%) 3850 (+35.2%) 2710 (+0.4%) 2150 (-24.7%) 2440 (-16.5%) 3040 (+5.9%) 3140 (+9.9%) 2170 (-19.6%) 1760 (-38.5%)
Maryland 2970 (+0%) 3470 (+17.5%) 3490 (+17.9%) 2650 (-9.3%) 2230 (-24.3%) 2470 (-16.6%) 2870 (-2.9%) 2880 (-2.8%) 2180 (-25.2%) 1850 (-37.2%)
Massachusetts 697 (+0%) 973 (+40.3%) 1040 (+51.4%) 774 (+12.6%) 592 (-13.9%) 570 (-18.1%) 785 (+13.1%) 836 (+21.3%) 622 (-9.7%) 481 (-30.2%)
Michigan 15900 (+0%) 20100 (+26.8%) 20400 (+29.2%) 16500 (+4.8%) 13000 (-18%) 13200 (-17.1%) 16500 (+4.1%) 16700 (+5.6%) 13500 (-14.1%) 10700 (-32.4%)
Minnesota 41200 (+0%) 47900 (+16.4%) 48300 (+17.3%) 37500 (-8.3%) 32500 (-20.9%) 34400 (-16.6%) 39600 (-3.7%) 39900 (-3.2%) 31000 (-24.2%) 27000 (-34.3%)
Mississippi 12500 (+0%) 12900 (+3.5%) 13100 (+5.4%) 8340 (-28%) 8040 (-32.5%) 10400 (-16.7%) 10600 (-14.5%) 10800 (-13.1%) 6850 (-40.7%) 6710 (-43.6%)
Missouri 43200 (+0%) 42300 (-1.5%) 42900 (-0.2%) 24200 (-36.9%) 23800 (-40.2%) 36200 (-16.4%) 35200 (-18.2%) 35500 (-17.3%) 20000 (-47.9%) 19900 (-50.1%)
Montana 133000 (+0%) 124000 (-6.6%) 128000 (-3.2%) 51800 (-52.3%) 59900 (-51%) 112000 (-16.1%) 103000 (-22.4%) 106000 (-19.9%) 43000 (-60.4%) 49900 (-59.1%)
Nebraska 92100 (+0%) 88800 (-3.1%) 90100 (-1.7%) 48400 (-43.5%) 48800 (-44.4%) 77300 (-16.1%) 74000 (-19.3%) 74900 (-18.3%) 40100 (-53.2%) 40800 (-53.6%)
Nevada 13300 (+0%) 12000 (-9.8%) 12700 (-4.7%) 3750 (-70%) 5020 (-61.6%) 11100 (-16.4%) 9910 (-25.5%) 10400 (-21.8%) 3080 (-75.4%) 4160 (-68.1%)
New Hampshire 496 (+0%) 576 (+16.6%) 583 (+17.7%) 380 (-21.5%) 323 (-34.7%) 416 (-16.1%) 476 (-3.7%) 479 (-3.2%) 310 (-35.9%) 269 (-45.7%)
New Jersey 1310 (+0%) 1830 (+40.6%) 1940 (+49.4%) 1560 (+21%) 1190 (-8.5%) 1060 (-18.7%) 1470 (+13.2%) 1550 (+19.8%) 1260 (-2.7%) 960 (-26.2%)
New Mexico 105000 (+0%) 92200 (-11.7%) 98600 (-5.3%) 22400 (-77%) 35100 (-65.6%) 87700 (-16.2%) 76300 (-27%) 81000 (-22.3%) 18400 (-81.2%) 28700 (-71.9%)
New York 11200 (+0%) 16000 (+43.6%) 15700 (+40.5%) 14000 (+25.7%) 8650 (-22.2%) 9240 (-17.4%) 13200 (+17.8%) 12800 (+14.8%) 11500 (+3.2%) 7140 (-35.9%)
North Carolina 11400 (+0%) 12600 (+10.8%) 13000 (+14.8%) 8540 (-22.8%) 8050 (-28.2%) 9430 (-17.1%) 10300 (-9.2%) 10600 (-6.3%) 6980 (-37%) 6690 (-40.3%)
North Dakota 69000 (+0%) 73600 (+7.1%) 74900 (+8.9%) 51700 (-22.7%) 48800 (-27.9%) 57600 (-16.5%) 61100 (-11.2%) 62000 (-9.9%) 42700 (-36%) 40700 (-39.8%)
Ohio 20200 (+0%) 22900 (+13.8%) 23200 (+15%) 17200 (-12.9%) 15200 (-23.7%) 16800 (-16.8%) 18900 (-5.9%) 19100 (-5.2%) 14200 (-28%) 12600 (-36.7%)
Oklahoma 71200 (+0%) 66300 (-6.3%) 67800 (-4.2%) 30500 (-49.6%) 32300 (-50.4%) 59700 (-16.1%) 55200 (-22%) 56300 (-20.5%) 25200 (-58.3%) 27000 (-58.5%)
Oregon 35000 (+0%) 34900 (+0.5%) 36800 (+6.1%) 17100 (-46.5%) 17700 (-47.3%) 29200 (-16.7%) 28700 (-17.4%) 30200 (-13.2%) 13900 (-56.4%) 14600 (-56.6%)
Pennsylvania 11300 (+0%) 14400 (+28.6%) 14200 (+25.9%) 11500 (+4.2%) 8150 (-27.5%) 9370 (-17%) 11900 (+6%) 11600 (+3.5%) 9500 (-14.1%) 6780 (-39.7%)
Rhode Island 94.3 (+0%) 117 (+24.2%) 123 (+30.3%) 97.6 (+3.6%) 83.5 (-11.4%) 76.6 (-18.8%) 94.3 (+0%) 98.5 (+4.6%) 78.4 (-16.8%) 67.3 (-28.5%)
South Carolina 4920 (+0%) 5370 (+9.5%) 5570 (+13.6%) 3630 (-23.3%) 3440 (-28.5%) 4080 (-17%) 4400 (-10.2%) 4550 (-7.2%) 2960 (-37.3%) 2870 (-40.3%)
South Dakota 90600 (+0%) 86400 (-4.3%) 89800 (-0.5%) 40200 (-50.8%) 44900 (-48%) 75900 (-16.2%) 71700 (-20.6%) 74200 (-17.8%) 33300 (-59.2%) 37200 (-56.8%)
Tennessee 17400 (+0%) 16600 (-3.9%) 16900 (-2.3%) 8520 (-45.6%) 8550 (-47.2%) 14500 (-16.4%) 13800 (-20.2%) 14000 (-19.2%) 7020 (-55.2%) 7140 (-56%)
Texas 291000 (+0%) 264000 (-9.1%) 276000 (-4.8%) 93500 (-62.2%) 115000 (-57.7%) 244000 (-16.2%) 219000 (-24.7%) 228000 (-21.6%) 77000 (-68.8%) 95900 (-64.7%)
Utah 25800 (+0%) 25500 (-1%) 29300 (+13.6%) 6440 (-73%) 12100 (-52.8%) 21500 (-16.9%) 20800 (-19.5%) 23500 (-8.8%) 5310 (-77.8%) 9720 (-62.1%)
Vermont 1550 (+0%) 2160 (+39.7%) 2040 (+31.5%) 1800 (+18%) 1050 (-32.2%) 1290 (-16.7%) 1790 (+15.6%) 1680 (+8.6%) 1490 (-2.4%) 878 (-43.4%)
Virginia 12100 (+0%) 11800 (-1.8%) 12000 (-0.2%) 6030 (-45.4%) 5790 (-49.2%) 10100 (-16.4%) 9780 (-18.6%) 9900 (-17.6%) 4950 (-55.1%) 4830 (-57.7%)
Washington 23400 (+0%) 29500 (+27.3%) 30800 (+34.1%) 23600 (+3.7%) 18900 (-17.4%) 19400 (-17.3%) 24100 (+3.8%) 25100 (+8.8%) 19200 (-15.9%) 15600 (-31.9%)
West Virginia 4280 (+0%) 3840 (-10%) 3940 (-7.6%) 1390 (-65.7%) 1560 (-63%) 3590 (-16%) 3190 (-25.1%) 3260 (-23.5%) 1140 (-71.9%) 1290 (-69.3%)
Wisconsin 23200 (+0%) 31600 (+37%) 30300 (+31%) 27400 (+19%) 17200 (-25.6%) 19300 (-16.8%) 26200 (+13.3%) 25000 (+8.2%) 22600 (-1.7%) 14300 (-38.3%)
Wyoming 78400 (+0%) 68300 (-12.8%) 73200 (-6.5%) 15100 (-80.3%) 25700 (-66.8%) 65800 (-16.1%) 56500 (-27.9%) 60100 (-23.2%) 12500 (-83.7%) 21000 (-72.9%)
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Table S3. Total biodiversity threatened by domestic food consumption by U.S.
state across scenarios

This table shows the total biodiversity threat caused in each U.S. state by production of food consumed
domestically in 2012, in units of potential global species extinctions, summed across all agricultural land use
types and taxonomic groups threatened. For each of the 50 states, the value for the baseline scenario and
the nine other counterfactual scenarios is provided (the baseline diet and four alternative diets crossed with
baseline levels of food waste and 50% food waste reduction). After each value, the percentage change in each
scenario relative to the baseline case is listed in parentheses.

No waste reduction 50% waste reduction
baseline diet USDA U.S. style USDA Mediterranean USDA vegetarian Planetary Health baseline diet USDA U.S. style USDA Mediterranean USDA vegetarian Planetary Health

Alabama 0.522 (+0%) 0.498 (-4.3%) 0.512 (-1.4%) 0.25 (-48.4%) 0.269 (-46.7%) 0.437 (-16.4%) 0.412 (-20.9%) 0.423 (-18.8%) 0.205 (-57.9%) 0.226 (-55.2%)
Alaska 0.0243 (+0%) 0.0245 (+0.6%) 0.0295 (+21.5%) 0.00323 (-85.5%) 0.0111 (-54.4%) 0.0202 (-17%) 0.0197 (-18.9%) 0.0235 (-3.4%) 0.00265 (-88.1%) 0.0086 (-64.5%)
Arizona 6.12 (+0%) 6.27 (+2.5%) 7.54 (+23.6%) 1.03 (-81%) 2.92 (-52%) 5.07 (-17.2%) 5.04 (-17.5%) 5.99 (-1.9%) 0.844 (-84.5%) 2.28 (-62.5%)
Arkansas 0.901 (+0%) 0.863 (-2.8%) 0.876 (-1.4%) 0.467 (-33.9%) 0.484 (-38.6%) 0.756 (-16%) 0.719 (-19.1%) 0.728 (-18.1%) 0.385 (-45.3%) 0.405 (-48.8%)
California 13.2 (+0%) 19 (+46.7%) 21.2 (+65.3%) 15.4 (+24.4%) 11.7 (-7.1%) 10.8 (-18.6%) 15.2 (+17%) 16.8 (+31.1%) 12.2 (-1.5%) 9.4 (-25.4%)
Colorado 2.16 (+0%) 2.01 (-6.8%) 2.09 (-2.9%) 0.786 (-55.1%) 0.918 (-54.1%) 1.81 (-16.2%) 1.66 (-22.7%) 1.73 (-19.9%) 0.648 (-62.8%) 0.761 (-61.8%)
Connecticut 0.0119 (+0%) 0.0151 (+27.3%) 0.0155 (+31.1%) 0.0113 (-3.7%) 0.00896 (-24.2%) 0.00981 (-17.3%) 0.0123 (+3.9%) 0.0126 (+6.4%) 0.0092 (-21.8%) 0.00734 (-37.9%)
Delaware 0.00284 (+0%) 0.00347 (+22.5%) 0.00356 (+25.5%) 0.00277 (-2.2%) 0.00232 (-18.1%) 0.00236 (-16.8%) 0.00286 (+0.9%) 0.00292 (+3%) 0.00227 (-19.9%) 0.00191 (-32.5%)
Florida 3.88 (+0%) 6.04 (+61.4%) 6.88 (+86.3%) 5.29 (+52.6%) 3.95 (+11.5%) 3.14 (-19.1%) 4.8 (+27.7%) 5.44 (+46.7%) 4.18 (+20.1%) 3.14 (-11.5%)
Georgia 0.432 (+0%) 0.5 (+16.9%) 0.516 (+21.1%) 0.389 (-3.9%) 0.342 (-17.7%) 0.356 (-17.6%) 0.407 (-5%) 0.419 (-1.8%) 0.316 (-22.1%) 0.289 (-30.5%)
Hawaii 22.6 (+0%) 23.4 (+5.5%) 24.9 (+12.4%) 12.8 (-30.6%) 11.7 (-41.7%) 18.8 (-16.8%) 19.2 (-13.9%) 20.3 (-8.6%) 10.3 (-44.5%) 9.52 (-52.7%)
Idaho 5.12 (+0%) 6 (+18.1%) 6.18 (+21.8%) 3.98 (-18.9%) 3.17 (-37%) 4.24 (-17.1%) 4.92 (-3.3%) 5.05 (-0.7%) 3.24 (-34%) 2.6 (-48.5%)
Illinois 0.52 (+0%) 0.589 (+13.3%) 0.598 (+15%) 0.468 (-9.9%) 0.425 (-18.1%) 0.434 (-16.6%) 0.488 (-6%) 0.494 (-4.9%) 0.387 (-25.5%) 0.353 (-32%)
Indiana 0.231 (+0%) 0.262 (+13.3%) 0.267 (+15.6%) 0.201 (-13.1%) 0.184 (-20.2%) 0.193 (-16.6%) 0.217 (-6.2%) 0.221 (-4.6%) 0.166 (-28.1%) 0.153 (-33.9%)
Iowa 0.653 (+0%) 0.72 (+10.3%) 0.741 (+13.5%) 0.51 (-21.4%) 0.487 (-25.1%) 0.545 (-16.5%) 0.596 (-8.6%) 0.611 (-6.3%) 0.423 (-34.8%) 0.403 (-38%)
Kansas 1.1 (+0%) 1.12 (+2.3%) 1.13 (+3.5%) 0.706 (-32.1%) 0.675 (-36.2%) 0.923 (-16%) 0.935 (-14.6%) 0.943 (-13.9%) 0.586 (-43.6%) 0.562 (-46.9%)
Kentucky 0.218 (+0%) 0.21 (-3.4%) 0.215 (-1.4%) 0.109 (-47.5%) 0.111 (-47.6%) 0.182 (-16.5%) 0.174 (-20.1%) 0.177 (-18.6%) 0.0894 (-56.8%) 0.0932 (-56.1%)
Louisiana 1.5 (+0%) 1.45 (-2.6%) 1.5 (+0.3%) 0.762 (-45.8%) 0.782 (-45.9%) 1.25 (-16.5%) 1.2 (-19.4%) 1.23 (-17.3%) 0.625 (-55.4%) 0.654 (-54.8%)
Maine 0.0896 (+0%) 0.116 (+32.2%) 0.121 (+38%) 0.0868 (+4.5%) 0.0676 (-22.8%) 0.0747 (-16.6%) 0.0952 (+7.8%) 0.0984 (+12%) 0.0697 (-16.3%) 0.0554 (-37%)
Maryland 0.0321 (+0%) 0.0394 (+23%) 0.0389 (+21.2%) 0.0305 (-3.5%) 0.0228 (-28.8%) 0.0267 (-16.8%) 0.0325 (+1.6%) 0.032 (-0.2%) 0.0252 (-20.3%) 0.0189 (-41%)
Massachusetts 0.0162 (+0%) 0.023 (+43.3%) 0.0249 (+56.3%) 0.0186 (+16.8%) 0.0142 (-10.6%) 0.0132 (-18.2%) 0.0185 (+15.2%) 0.0199 (+24.9%) 0.0149 (-6.5%) 0.0115 (-27.7%)
Michigan 0.281 (+0%) 0.358 (+28%) 0.363 (+30.6%) 0.296 (+6.8%) 0.231 (-17.2%) 0.233 (-17.2%) 0.294 (+4.9%) 0.297 (+6.6%) 0.243 (-12.6%) 0.191 (-31.7%)
Minnesota 0.436 (+0%) 0.511 (+17.6%) 0.514 (+18.2%) 0.405 (-6.6%) 0.345 (-20.6%) 0.363 (-16.6%) 0.423 (-2.7%) 0.425 (-2.4%) 0.335 (-22.7%) 0.287 (-34%)
Mississippi 0.311 (+0%) 0.315 (+1.8%) 0.323 (+4.1%) 0.188 (-32.2%) 0.183 (-36.6%) 0.26 (-16.5%) 0.261 (-15.8%) 0.266 (-14.1%) 0.154 (-44.1%) 0.152 (-47.4%)
Missouri 0.924 (+0%) 0.892 (-2.8%) 0.904 (-1.5%) 0.484 (-40.1%) 0.482 (-42.9%) 0.773 (-16.3%) 0.741 (-19.3%) 0.749 (-18.4%) 0.399 (-50.6%) 0.402 (-52.4%)
Montana 8.3 (+0%) 7.5 (-9.3%) 7.9 (-4.5%) 2.5 (-65.4%) 3.28 (-58.5%) 6.95 (-16.2%) 6.21 (-24.9%) 6.51 (-21.3%) 2.06 (-71.4%) 2.72 (-65.6%)
Nebraska 1.58 (+0%) 1.48 (-5.3%) 1.5 (-4%) 0.754 (-46.9%) 0.773 (-47.5%) 1.32 (-16.1%) 1.24 (-21%) 1.25 (-20.2%) 0.625 (-56%) 0.647 (-56.1%)
Nevada 3.12 (+0%) 2.81 (-9.8%) 2.96 (-4.8%) 0.89 (-69.5%) 1.18 (-61.4%) 2.61 (-16.4%) 2.32 (-25.5%) 2.43 (-21.9%) 0.732 (-74.9%) 0.977 (-67.9%)
New Hampshire 0.0108 (+0%) 0.0126 (+17.1%) 0.0127 (+18.2%) 0.00843 (-19.9%) 0.00712 (-33.7%) 0.00902 (-16.2%) 0.0104 (-3.3%) 0.0104 (-2.8%) 0.00687 (-34.6%) 0.00592 (-44.9%)
New Jersey 0.0359 (+0%) 0.0506 (+41.9%) 0.0537 (+50.9%) 0.0438 (+23.5%) 0.0332 (-7%) 0.0292 (-18.7%) 0.0408 (+14.2%) 0.0431 (+20.9%) 0.0352 (-0.8%) 0.0268 (-25.1%)
New Mexico 5.03 (+0%) 4.38 (-12.7%) 4.65 (-7.1%) 1.05 (-77.6%) 1.62 (-66.9%) 4.21 (-16.1%) 3.63 (-27.7%) 3.83 (-23.6%) 0.863 (-81.5%) 1.33 (-72.9%)
New York 0.658 (+0%) 0.954 (+45.3%) 0.911 (+38.8%) 0.845 (+29.3%) 0.493 (-24.8%) 0.544 (-17.3%) 0.785 (+19.6%) 0.748 (+13.9%) 0.696 (+6.5%) 0.409 (-37.6%)
North Carolina 0.304 (+0%) 0.338 (+11.5%) 0.349 (+15.4%) 0.238 (-19.9%) 0.225 (-25.1%) 0.252 (-17.1%) 0.277 (-8.6%) 0.285 (-5.7%) 0.194 (-34.5%) 0.187 (-37.6%)
North Dakota 6.66 (+0%) 7.28 (+9.5%) 7.39 (+11%) 5.46 (-17.1%) 5.07 (-23.2%) 5.56 (-16.5%) 6.04 (-9.2%) 6.11 (-8.1%) 4.52 (-31.4%) 4.23 (-35.9%)
Ohio 0.187 (+0%) 0.211 (+12.5%) 0.214 (+14.2%) 0.165 (-11.2%) 0.151 (-19.3%) 0.156 (-16.7%) 0.174 (-6.9%) 0.176 (-5.7%) 0.137 (-26.6%) 0.125 (-33%)
Oklahoma 1.2 (+0%) 1.09 (-9%) 1.11 (-6.9%) 0.445 (-55.8%) 0.491 (-55.2%) 1.01 (-16.1%) 0.906 (-24.2%) 0.925 (-22.7%) 0.367 (-63.4%) 0.411 (-62.6%)
Oregon 4.45 (+0%) 4.34 (-1.9%) 4.53 (+2.4%) 2.03 (-48%) 2.12 (-49.1%) 3.72 (-16.4%) 3.59 (-18.9%) 3.73 (-15.8%) 1.66 (-57.2%) 1.75 (-57.9%)
Pennsylvania 0.278 (+0%) 0.361 (+30.3%) 0.352 (+26.9%) 0.295 (+7.4%) 0.204 (-26.5%) 0.231 (-17%) 0.297 (+7.4%) 0.289 (+4.3%) 0.243 (-11.4%) 0.17 (-38.8%)
Rhode Island 0.00229 (+0%) 0.00286 (+24.8%) 0.003 (+30.9%) 0.0024 (+4.8%) 0.00204 (-10.9%) 0.00186 (-18.8%) 0.00231 (+0.5%) 0.00241 (+5%) 0.00193 (-15.8%) 0.00165 (-28.1%)
South Carolina 0.144 (+0%) 0.16 (+11.4%) 0.166 (+15.2%) 0.115 (-18%) 0.107 (-24.4%) 0.12 (-17.1%) 0.132 (-8.7%) 0.136 (-5.9%) 0.094 (-32.9%) 0.0898 (-36.8%)
South Dakota 3.15 (+0%) 3.02 (-3.8%) 3.12 (-0.5%) 1.49 (-49.6%) 1.62 (-47%) 2.64 (-16.2%) 2.51 (-20.1%) 2.58 (-17.8%) 1.24 (-58.3%) 1.34 (-56%)
Tennessee 0.471 (+0%) 0.435 (-7.4%) 0.441 (-6.1%) 0.19 (-57.9%) 0.194 (-57.7%) 0.394 (-16.2%) 0.362 (-23.1%) 0.366 (-22.2%) 0.156 (-65.4%) 0.162 (-64.7%)
Texas 14.9 (+0%) 13.7 (-7.9%) 14.3 (-3.5%) 5.12 (-58.7%) 6.16 (-55.4%) 12.5 (-16.3%) 11.3 (-23.8%) 11.8 (-20.6%) 4.21 (-66%) 5.12 (-62.7%)
Utah 3.8 (+0%) 3.8 (+0.1%) 4.37 (+15%) 0.993 (-71.3%) 1.84 (-51.5%) 3.16 (-16.9%) 3.09 (-18.7%) 3.51 (-7.7%) 0.817 (-76.4%) 1.47 (-61%)
Vermont 0.174 (+0%) 0.251 (+45.2%) 0.234 (+35.1%) 0.218 (+26.9%) 0.12 (-31.1%) 0.144 (-16.8%) 0.208 (+20.1%) 0.194 (+11.6%) 0.181 (+5.1%) 0.0999 (-42.5%)
Virginia 0.355 (+0%) 0.34 (-3.6%) 0.344 (-2.4%) 0.166 (-48.5%) 0.161 (-51.9%) 0.297 (-16.3%) 0.282 (-20.1%) 0.285 (-19.3%) 0.137 (-57.7%) 0.135 (-59.9%)
Washington 3.71 (+0%) 4.5 (+22%) 4.62 (+25.5%) 3.56 (-2.3%) 2.94 (-19.5%) 3.09 (-16.7%) 3.71 (+0.4%) 3.8 (+3%) 2.92 (-19.9%) 2.43 (-33.4%)
West Virginia 0.077 (+0%) 0.0696 (-9.3%) 0.0715 (-6.7%) 0.0255 (-64.7%) 0.0284 (-62.3%) 0.0647 (-16%) 0.0579 (-24.6%) 0.0593 (-22.7%) 0.0209 (-71.1%) 0.0236 (-68.7%)
Wisconsin 0.301 (+0%) 0.408 (+35.8%) 0.393 (+30.7%) 0.352 (+17.5%) 0.227 (-24.5%) 0.251 (-16.9%) 0.338 (+12.2%) 0.324 (+7.8%) 0.291 (-3%) 0.188 (-37.5%)
Wyoming 1.81 (+0%) 1.59 (-11.9%) 1.71 (-5%) 0.358 (-79.3%) 0.611 (-65.6%) 1.51 (-16.2%) 1.31 (-27.2%) 1.4 (-22.1%) 0.296 (-82.9%) 0.499 (-71.9%)
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Table S4. Virtual land imported to the United States by foreign country across
scenarios

This table shows the total area of land consumed in each of the United States’ trading partners to produce
food consumed in the United States in 2012, in units of square kilometers, summed across all agricultural
land use types. Only the top 20 trading partners, sorted in descending order by the size of the biodiversity
threat they virtually exported to the United States in 2012 (baseline scenario) are listed. The remaining
countries are aggregated into the category “Other,” which accounts for less than 8% of the United States’
virtual land imports. For each of the 20 countries, the value for the baseline scenario and the nine other
counterfactual scenarios is provided (the baseline diet and four alternative diets crossed with baseline levels of
food waste and 50% food waste reduction). After each value, the percentage change in each scenario relative
to the baseline case is listed in parentheses.

No waste reduction 50% waste reduction
baseline diet USDA U.S. style USDA Mediterranean USDA vegetarian Planetary Health baseline diet USDA U.S. style USDA Mediterranean USDA vegetarian Planetary Health

Australia (AUS) 285000 (+0%) 272000 (-4.7%) 335000 (+17.5%) 1440 (-99.5%) 140000 (-50.9%) 239000 (-16.1%) 221000 (-22.5%) 268000 (-6%) 1040 (-99.6%) 111000 (-61.1%)
Mexico (MEX) 42200 (+0%) 49500 (+17.4%) 59400 (+40.9%) 17800 (-57.7%) 28100 (-33.4%) 34900 (-17.2%) 39700 (-5.8%) 47100 (+11.8%) 14000 (-66.9%) 22200 (-47.4%)
Canada (CAN) 69300 (+0%) 70700 (+2%) 82100 (+18.6%) 22500 (-67.5%) 47900 (-30.8%) 57800 (-16.5%) 57600 (-16.8%) 66100 (-4.6%) 18400 (-73.4%) 38600 (-44.2%)
Colombia (COL) 3300 (+0%) 7430 (+125.3%) 9230 (+179.8%) 7530 (+128.4%) 5420 (+64.3%) 2540 (-22.8%) 5700 (+72.9%) 7080 (+114.6%) 5790 (+75.6%) 4220 (+28.1%)
Ecuador (ECU) 2250 (+0%) 5090 (+125.9%) 6320 (+180.6%) 5170 (+129.5%) 3710 (+64.7%) 1740 (-22.9%) 3910 (+73.4%) 4850 (+115.2%) 3980 (+76.5%) 2890 (+28.4%)
Nicaragua (NIC) 5590 (+0%) 6370 (+13.9%) 7740 (+38.5%) 2020 (-63.9%) 3700 (-33.9%) 4640 (-17%) 5110 (-8.6%) 6140 (+9.7%) 1570 (-71.9%) 2930 (-47.7%)
New Zealand (NZL) 8760 (+0%) 8520 (-2.8%) 10400 (+18.4%) 388 (-95.6%) 4350 (-50.3%) 7350 (-16.1%) 6930 (-20.9%) 8310 (-5.2%) 314 (-96.4%) 3460 (-60.6%)
Costa Rica (CRI) 1140 (+0%) 2050 (+79.5%) 2500 (+119%) 1720 (+51%) 1390 (+21.9%) 906 (-20.5%) 1590 (+39.6%) 1930 (+69.7%) 1330 (+16.6%) 1090 (-4.5%)
Guatemala (GTM) 1760 (+0%) 3840 (+117.7%) 4620 (+162.1%) 3890 (+120.6%) 2680 (+52.1%) 1370 (-22.5%) 2970 (+68.2%) 3560 (+102.1%) 3010 (+70.8%) 2100 (+18.9%)
Indonesia (IDN) 1950 (+0%) 3810 (+95.6%) 4550 (+133.5%) 3730 (+91.6%) 2750 (+41.4%) 1540 (-21%) 2970 (+52.5%) 3530 (+81.5%) 2910 (+49.5%) 2180 (+12.2%)
Peru (PER) 1730 (+0%) 3480 (+101%) 3910 (+125.9%) 3510 (+103.2%) 2270 (+31.4%) 1370 (-20.6%) 2740 (+58.3%) 3060 (+76.9%) 2770 (+60.2%) 1800 (+4%)
Brazil (BRA) 6110 (+0%) 9170 (+49.9%) 11200 (+83.8%) 6140 (+0.5%) 6110 (-0.1%) 4960 (-18.9%) 7200 (+17.8%) 8770 (+43.4%) 4750 (-22.4%) 4800 (-21.4%)
Honduras (HND) 929 (+0%) 1890 (+103%) 2300 (+147.1%) 1800 (+94.2%) 1330 (+43.4%) 727 (-21.7%) 1460 (+57%) 1770 (+90.7%) 1390 (+50.1%) 1040 (+12.3%)
Côte d’Ivoire (CIV) 5150 (+0%) 11700 (+127.2%) 14600 (+182.8%) 11900 (+130.8%) 8540 (+65.7%) 3970 (-22.9%) 8970 (+74.2%) 11200 (+116.8%) 9140 (+77.4%) 6650 (+29.1%)
El Salvador (SLV) 475 (+0%) 1020 (+115.3%) 1250 (+164%) 1040 (+119.9%) 764 (+60.9%) 368 (-22.5%) 786 (+65.6%) 963 (+102.8%) 805 (+69.7%) 601 (+26.7%)
Chile (CHL) 1960 (+0%) 3110 (+58.7%) 3530 (+80%) 2340 (+19.7%) 1810 (-7.5%) 1590 (-18.6%) 2470 (+26.2%) 2780 (+41.8%) 1850 (-5.5%) 1430 (-26.8%)
Sri Lanka (LKA) 72.5 (+0%) 89 (+22.8%) 93.2 (+28.6%) 80 (+10.4%) 71.8 (-0.8%) 62.4 (-13.9%) 75.6 (+4.4%) 78.8 (+8.8%) 68.3 (-5.7%) 61.8 (-14.7%)
Uruguay (URY) 5200 (+0%) 4970 (-4.2%) 6120 (+17.9%) 70 (-98.7%) 2570 (-50.6%) 4360 (-16.1%) 4050 (-22.1%) 4900 (-5.7%) 53.9 (-99%) 2040 (-60.8%)
India (IND) 1000 (+0%) 1330 (+33.4%) 1420 (+42.4%) 1160 (+16.2%) 1040 (+4.2%) 826 (-17.4%) 1090 (+8.9%) 1160 (+15.8%) 954 (-4.7%) 869 (-13.2%)
Malaysia (MYS) 181 (+0%) 407 (+125.1%) 503 (+178.2%) 413 (+128.5%) 295 (+62.8%) 140 (-22.8%) 313 (+72.9%) 386 (+113.5%) 318 (+76%) 230 (+27%)
Other 6580 (+0%) 10400 (+71.2%) 11700 (+102.7%) 9920 (+73.8%) 8260 (+33.1%) 5340 (-18.9%) 8270 (+34.1%) 9250 (+57.2%) 7900 (+36%) 6690 (+6.9%)
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Table S5. Virtual biodiversity threats imported to the United States by foreign
country across scenarios

This table shows the total biodiversity threat caused in each of the United States’ trading partners by
production of food consumed in the United States in 2012, in units of potential global species extinctions,
summed across all agricultural land use types and taxonomic groups threatened. Only the top 20 trading
partners, sorted in descending order by the size of the biodiversity threat they virtually exported to the
United States in 2012 (baseline scenario) are listed. The remaining countries are aggregated into the category
“Other,” which accounts for less than 2% of the United States’ virtual biodiversity threat imports. For each
of the 20 countries, the value for the baseline scenario and the nine other counterfactual scenarios is provided
(the baseline diet and four alternative diets crossed with baseline levels of food waste and 50% food waste
reduction). After each value, the percentage change in each scenario relative to the baseline case is listed in
parentheses.

No waste reduction 50% waste reduction
baseline diet USDA U.S. style USDA Mediterranean USDA vegetarian Planetary Health baseline diet USDA U.S. style USDA Mediterranean USDA vegetarian Planetary Health

Australia (AUS) 42.7 (+0%) 40.7 (-4.6%) 50.2 (+17.5%) 0.262 (-99.4%) 21 (-50.8%) 35.8 (-16.1%) 33.1 (-22.4%) 40.1 (-6%) 0.194 (-99.5%) 16.7 (-61%)
Mexico (MEX) 36.9 (+0%) 50.3 (+36.4%) 59.7 (+62%) 28.7 (-21.8%) 30.4 (-17.6%) 30.2 (-18.2%) 40 (+8.5%) 47.1 (+27.7%) 22.5 (-38.8%) 24 (-35%)
Canada (CAN) 21.2 (+0%) 21.7 (+2.7%) 25.1 (+18.7%) 7.61 (-64%) 15.1 (-28.5%) 17.6 (-16.6%) 17.7 (-16.3%) 20.2 (-4.4%) 6.23 (-70.5%) 12.2 (-42.3%)
Colombia (COL) 15.7 (+0%) 35.5 (+125.8%) 44.1 (+180.7%) 36 (+129.2%) 25.9 (+64.9%) 12.1 (-22.9%) 27.2 (+73.3%) 33.8 (+115.2%) 27.7 (+76.2%) 20.2 (+28.5%)
Ecuador (ECU) 12.7 (+0%) 28.7 (+125.9%) 35.6 (+180.7%) 29.1 (+129.5%) 20.9 (+64.8%) 9.8 (-22.9%) 22 (+73.4%) 27.3 (+115.3%) 22.4 (+76.5%) 16.3 (+28.4%)
Nicaragua (NIC) 10.1 (+0%) 11.6 (+15.1%) 14.1 (+40%) 3.85 (-61.5%) 6.76 (-32.7%) 8.34 (-17.1%) 9.28 (-7.7%) 11.2 (+10.9%) 3 (-70.1%) 5.35 (-46.8%)
New Zealand (NZL) 7.83 (+0%) 7.61 (-2.7%) 9.27 (+18.5%) 0.354 (-95.5%) 3.89 (-50.3%) 6.57 (-16.1%) 6.19 (-20.9%) 7.42 (-5.2%) 0.286 (-96.3%) 3.09 (-60.5%)
Costa Rica (CRI) 5.58 (+0%) 10.7 (+91.5%) 13 (+133.7%) 9.62 (+72.4%) 7.39 (+32.5%) 4.4 (-21.1%) 8.28 (+48.5%) 10.1 (+80.6%) 7.43 (+33.1%) 5.78 (+3.7%)
Guatemala (GTM) 5.17 (+0%) 11.3 (+117.9%) 13.6 (+162.6%) 11.4 (+120.8%) 7.88 (+52.5%) 4 (-22.5%) 8.7 (+68.3%) 10.5 (+102.5%) 8.83 (+70.9%) 6.16 (+19.2%)
Indonesia (IDN) 2.54 (+0%) 4.97 (+95.9%) 5.93 (+133.8%) 4.87 (+92%) 3.58 (+41.3%) 2 (-21%) 3.87 (+52.8%) 4.61 (+81.7%) 3.8 (+49.9%) 2.84 (+12.1%)
Peru (PER) 2.51 (+0%) 5.11 (+103.7%) 5.88 (+134.3%) 5.17 (+106.1%) 3.48 (+38.5%) 1.98 (-21%) 4.01 (+59.7%) 4.59 (+82.8%) 4.06 (+61.8%) 2.75 (+9.4%)
Brazil (BRA) 1.86 (+0%) 2.69 (+44.4%) 3.29 (+77%) 1.68 (-9.7%) 1.76 (-5.4%) 1.51 (-18.6%) 2.12 (+13.7%) 2.57 (+38.3%) 1.3 (-30.2%) 1.38 (-25.6%)
Honduras (HND) 1.86 (+0%) 3.8 (+104.4%) 4.63 (+149.1%) 3.65 (+96.7%) 2.69 (+44.8%) 1.45 (-21.8%) 2.94 (+58%) 3.57 (+92.1%) 2.82 (+51.9%) 2.11 (+13.4%)
Côte d’Ivoire (CIV) 1.63 (+0%) 3.7 (+127.2%) 4.61 (+182.8%) 3.76 (+130.8%) 2.7 (+65.8%) 1.26 (-22.9%) 2.84 (+74.2%) 3.53 (+116.8%) 2.89 (+77.4%) 2.1 (+29.1%)
El Salvador (SLV) 0.906 (+0%) 1.95 (+115.4%) 2.39 (+164.1%) 1.99 (+120%) 1.46 (+61%) 0.702 (-22.5%) 1.5 (+65.7%) 1.84 (+102.9%) 1.54 (+69.7%) 1.15 (+26.7%)
Chile (CHL) 0.803 (+0%) 1.34 (+66.8%) 1.54 (+92.3%) 1.07 (+33.1%) 0.815 (+1.6%) 0.649 (-19.2%) 1.06 (+31.8%) 1.21 (+50.8%) 0.837 (+4.4%) 0.643 (-19.9%)
Sri Lanka (LKA) 0.552 (+0%) 0.677 (+22.7%) 0.709 (+28.5%) 0.608 (+10.2%) 0.546 (-1%) 0.475 (-13.8%) 0.575 (+4.3%) 0.599 (+8.7%) 0.52 (-5.8%) 0.47 (-14.7%)
Uruguay (URY) 0.585 (+0%) 0.56 (-4.2%) 0.689 (+17.9%) 0.008 (-98.6%) 0.289 (-50.6%) 0.491 (-16.1%) 0.455 (-22.1%) 0.551 (-5.7%) 0.00616 (-98.9%) 0.229 (-60.8%)
India (IND) 0.405 (+0%) 0.541 (+33.5%) 0.578 (+42.7%) 0.472 (+16.5%) 0.422 (+4.3%) 0.335 (-17.4%) 0.442 (+9.1%) 0.47 (+16%) 0.387 (-4.5%) 0.352 (-13.1%)
Malaysia (MYS) 0.343 (+0%) 0.774 (+125.4%) 0.958 (+179.1%) 0.786 (+128.9%) 0.561 (+63.6%) 0.265 (-22.8%) 0.594 (+73.1%) 0.735 (+114.2%) 0.605 (+76.2%) 0.438 (+27.6%)
Other 2.43 (+0%) 4.18 (+82.4%) 4.71 (+113.7%) 4.13 (+84.2%) 3.12 (+35.6%) 1.95 (-19.5%) 3.31 (+42.7%) 3.7 (+65.8%) 3.27 (+44.2%) 2.52 (+9.1%)
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Table S6. Virtual imports of biodiversity threats into the United States by
taxonomic group, baseline scenario

This table shows the total biodiversity threat caused in each of the United States’ trading partners by
production of food consumed in the United States in 2012, in units of potential global species extinctions, in
the baseline scenario, summed across all agricultural land use types but disaggregated by taxonomic group
threatened. Only the top 20 trading partners, sorted in descending order by the size of the biodiversity
threat they virtually exported to the United States in 2012 (baseline scenario) are listed. The remaining
countries are aggregated into the category “Other,” which accounts for less than 2% of the United States’
virtual biodiversity threat imports.

Virtual biodiversity threat export by taxonomic group
plants amphibians birds mammals reptiles animals total

Australia (AUS) 16.4000 0.7990 1.36000 0.89400 0.24700 3.3000 19.700
Mexico (MEX) 12.1000 1.8800 0.67600 0.80500 0.83300 4.2000 16.300
Canada (CAN) 9.2000 0.1530 0.26300 0.38200 0.11700 0.9150 10.100
Colombia (COL) 5.2100 1.1700 0.36100 0.19100 0.04280 1.7700 6.980
Ecuador (ECU) 4.2000 0.9380 0.32300 0.13900 0.03000 1.4300 5.630
Nicaragua (NIC) 2.8600 0.9710 0.27900 0.14900 0.04770 1.4500 4.310
New Zealand (NZL) 3.3300 0.0283 0.32100 0.00915 0.02840 0.3870 3.720
Costa Rica (CRI) 1.8400 0.4200 0.12700 0.07750 0.00611 0.6310 2.470
Guatemala (GTM) 1.5700 0.4420 0.08340 0.07900 0.06960 0.6740 2.250
Indonesia (IDN) 0.8080 0.0586 0.10200 0.11500 0.03050 0.3070 1.110
Peru (PER) 0.5910 0.2570 0.12600 0.04990 0.00965 0.4430 1.030
Brazil (BRA) 0.4750 0.1460 0.08980 0.06010 0.00722 0.3040 0.778
Honduras (HND) 0.4550 0.2040 0.04390 0.04190 0.02670 0.3160 0.771
Côte d’Ivoire (CIV) 0.2460 0.1300 0.08270 0.12500 0.04160 0.3800 0.625
El Salvador (SLV) 0.2320 0.0910 0.02200 0.02120 0.01330 0.1480 0.379
Chile (CHL) 0.2760 0.0380 0.01490 0.02460 0.00612 0.0836 0.360
Sri Lanka (LKA) 0.1910 0.0359 0.00751 0.00851 0.00438 0.0563 0.248
Uruguay (URY) 0.0767 0.0458 0.04800 0.04540 0.00452 0.1440 0.220
India (IND) 0.1410 0.0166 0.00976 0.00584 0.00892 0.0412 0.182
Malaysia (MYS) 0.1190 0.0135 0.00615 0.01050 0.00492 0.0351 0.154
Other 0.8370 0.0830 0.06610 0.07850 0.02320 0.2510 1.090
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Table S7. Foreign imports of goods and associated virtual land imports into the
United States, baseline scenario

This table contains the quantity of each type of agricultural good, by weight in tonnes, reported by FAOSTAT
that each of the United States’ trading partners exported to the United States in 2012, in the baseline scenario.
The table also lists the virtual land export in square kilometers associated with each of these goods, summed
across all land use types (e.g., for beef cattle, the sum of the virtual pastureland export and virtual cropland
export due to crops grown for cattle feed). Only the top 20 biodiversity threat exporters to the United States
are shown; the remainder are aggregated into the “Other” category (see caption of Table S3). Within each
country, goods are sorted in descending order by virtual land export. Goods with less than 1000 tonnes
exported are summed into the “Other” category. The names of each good follow FAOSTAT’s classification.

item export quantity
tonnes

virtual land export
km2

Australia (AUS)
meat, cattle 321000 205000
meat, sheep 71400 61200
meat, goat 17800 18500
milk, cattle 8530 269
chick peas 3600 26.7
meat, pig 2640 13.3
molasses 71300 8.93
nuts nes 1200 6.79
oranges 6410 3.28
tangerines, mandarins, clementines, satsumas 3630 1.59
sugar nes 4700 0.589
sugar confectionery 2280 0.286
other 3830 22.3

Mexico (MEX)
meat, cattle 168000 33400
coffee, green 59500 2250
vegetables, fresh nes 561000 662
avocados 678000 656
chillies and peppers, green 939000 516
milk, cattle 40400 463
lemons and limes 599000 413
tomatoes 1670000 385
mangoes, mangosteens, guavas 315000 309
beans, dry 23000 297
pumpkins, squash and gourds 475000 256
watermelons 697000 223
walnuts, with shell 26500 162
asparagus 141000 158
cucumbers and gherkins 690000 145
cauliflowers and broccoli 231000 138
chillies and peppers, dry 25500 135
maize 46700 129
onions, dry 374000 122
grapes 161000 120
bananas 350000 119
sugar raw centrifugal 728000 99.5
lettuce and chicory 175000 78.3
sugar refined 482000 65.9
beans, green 45100 53
chick peas 9390 52.8
fruit, fresh nes 37700 49.3
beer of barley 2550000 45.4
meat, pig 15700 43.8
cabbages and other brassicas 148000 43.5
melons, other (inc.cantaloupes) 125000 41.7
wheat 19800 38.8
oranges 55600 38.7
carrots and turnips 105000 37.4
sugar confectionery 256000 35
peas, green 17800 34.3
coconuts 17500 27.6
papayas 152000 26.7
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(continued)

item export quantity
tonnes

virtual land export
km2

strawberries 112000 24.9
olives 6440 17.6
pineapples 73200 16
molasses 102000 14
groundnuts, shelled 1920 11.5
roots and tubers nes 32600 10.8
garlic 11200 9.57
spinach 13700 8.7
eggplants (aubergines) 62900 8.63
meat, chicken 3960 7.18
sorghum 2100 5.96
oilseeds nes 5060 5.61
spices nes 4580 5.56
dates 3030 4.97
leeks, other alliaceous vegetables 7220 4.33
fructose and syrup, other 26300 3.59
tangerines, mandarins, clementines, satsumas 4070 2.8
sweet potatoes 5310 2.71
grapefruit (inc. pomelos) 3430 1.35
artichokes 1590 1.23
eggs, chicken 1320 0.321
sugar nes 1450 0.198
other 5270 83

Canada (CAN)
meat, cattle 342000 47900
wheat 2750000 8560
oats 1530000 4540
meat, pig 396000 3180
peas, dry 2e+05 802
barley 272000 760
meat, chicken 64600 511
maize 495000 494
milk, cattle 99400 448
rye 117000 402
beans, dry 79900 342
lentils 43900 296
meat, horse 1120 261
chick peas 32700 187
potatoes 504000 118
blueberries 35100 79.9
canary seed 8270 62.3
anise, badian, fennel, coriander 4250 48.6
cabbages and other brassicas 68300 31.5
chillies and peppers, green 138000 26.2
cucumbers and gherkins 139000 25.3
tomatoes 182000 24.8
cranberries 61400 23.7
carrots and turnips 89800 20.8
buckwheat 3690 19.6
triticale 5090 17.8
lettuce and chicory 39500 17.5
onions, dry 66600 15.2
pumpkins, squash and gourds 23600 11.9
apples 27000 10.1
vegetables, fresh nes 25900 9.82
sugar beet 57200 8.37
cauliflowers and broccoli 15500 8.36
beans, green 4910 7.06
eggs, chicken 8760 6.67
cherries 5090 4.62
asparagus 1470 3.36
spinach 2520 2.87
grapes 1250 1.31
other 3640 15.7

Colombia (COL)
coffee, green 297000 3040
bananas 325000 114
plantains and others 61500 70.4
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(continued)

item export quantity
tonnes

virtual land export
km2

sugar raw centrifugal 47400 5.32
sugar refined 46500 5.22
molasses 35600 3.99
lemons and limes 4380 3.15
sugar confectionery 12800 1.44
roots and tubers nes 1240 1.29
pineapples 1430 0.343
other 4380 51.8

Ecuador (ECU)
cocoa, beans 67900 1580
bananas 809000 211
plantains and others 127000 186
coffee, green 2150 147
mangoes, mangosteens, guavas 46600 79.8
roots and tubers nes 2950 10.7
pepper (piper spp.) 1030 5.12
cassava dried 1010 1.87
cauliflowers and broccoli 1160 1.5
sugar raw centrifugal 10300 1.21
pineapples 2830 0.774
other 5320 23.4

Nicaragua (NIC)
meat, cattle 46400 4620
coffee, green 63200 675
beans, dry 9940 132
milk, cattle 4730 121
sugar raw centrifugal 70300 7.62
plantains and others 11700 7.01
bananas 38900 6.3
molasses 49400 5.35
sugar nes 32900 3.56
vegetables, fresh nes 1860 1.91
sugar refined 12000 1.3
other 2540 6.59

New Zealand (NZL)
meat, cattle 206000 7350
meat, sheep 27800 1200
milk, cattle 126000 177
apples 42300 8.14
kiwi fruit 17500 5.06
beer of barley 1790 3.02
onions, shallots, green 1680 0.397
pears 1470 0.29
other 3820 18.1

Costa Rica (CRI)
meat, cattle 9580 370
coffee, green 35600 328
bananas 868000 165
pineapples 1080000 150
cassava dried 75500 50.4
melons, other (inc.cantaloupes) 60200 19
vegetables, fresh nes 24400 15.9
sugar raw centrifugal 77700 11.6
molasses 24200 3.6
chillies and peppers, green 1380 2.11
mangoes, mangosteens, guavas 1590 2.03
ginger 2280 1.97
plantains and others 1490 1.39
watermelons 5830 1.37
fruit, tropical fresh nes 1060 1.26
roots and tubers nes 1230 0.981
carrots and turnips 1310 0.383
sugar refined 1510 0.225
other 4330 14.1

Guatemala (GTM)
coffee, green 74000 864
bananas 1930000 392
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(continued)

item export quantity
tonnes

virtual land export
km2

melons, other (inc.cantaloupes) 382000 168
beans, green 21000 102
plantains and others 135000 63.7
peas, green 23600 31
sugar raw centrifugal 261000 21.6
watermelons 62700 16.1
mangoes, mangosteens, guavas 17600 13.7
beans, dry 1040 9.98
papayas 28400 9.65
cauliflowers and broccoli 14700 8.92
molasses 94300 7.82
pineapples 21500 7.73
vegetables, fresh nes 5110 6.39
fruit, fresh nes 2850 5.23
tomatoes 9980 2.64
sugar refined 29400 2.44
chillies and peppers, green 5100 2.07
lemons and limes 2480 1.16
carrots and turnips 3110 1.06
sugar non-centrifugal 8030 0.666
cabbages and other brassicas 1380 0.433
onions, dry 1220 0.41
sugar nes 4490 0.372
sugar confectionery 1820 0.151
other 2850 23.4

Indonesia (IDN)
coffee, green 66600 1240
cinnamon (cannella) 21800 267
pepper (piper spp.) 7500 153
nutmeg, mace and cardamoms 1470 75.9
sugar nes 16200 61.1
milk, cattle 2670 46.8
tea 3750 30.5
sugar confectionery 3170 12
other 3200 57.7

Peru (PER)
coffee, green 54800 750
milk, cattle 22700 433
quinoa 17400 129
asparagus 88900 76.7
avocados 58800 49.8
cocoa, beans 3340 40.9
grapes 80800 36.8
mangoes, mangosteens, guavas 44900 34.8
onions, dry 119000 29.6
chillies and peppers, dry 16400 26.9
bananas 60500 21.8
tangerines, mandarins, clementines, satsumas 45700 17.1
beer of barley 1380 16.5
blueberries 16100 15.9
beans, dry 1280 10.8
peas, green 2960 7.75
maize 1580 4.82
ginger 6900 4.49
oilseeds nes 1230 4.46
sugar raw centrifugal 47800 3.97
flour, cassava 1400 1.15
sugar refined 1010 0.0836
other 5440 13.1

Brazil (BRA)
meat, cattle 32600 3280
coffee, green 369000 2420
maize 119000 231
milk, cattle 3450 55
pepper (piper spp.) 10800 42.8
sugar raw centrifugal 212000 28.7
mangoes, mangosteens, guavas 29600 15.8
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(continued)

item export quantity
tonnes

virtual land export
km2

sugar refined 96800 13.1
meat, pig 4120 8
flour, cassava 4870 3.27
sugar confectionery 13700 1.86
starch, cassava 2420 1.62
sugar nes 11300 1.53
roots and tubers nes 1200 1.23
papayas 2950 0.689
grapes 1100 0.57
melons, other (inc.cantaloupes) 1060 0.421
molasses 2420 0.328
other 2740 8.28

Honduras (HND)
coffee, green 62000 550
bananas 594000 120
meat, cattle 1260 114
melons, other (inc.cantaloupes) 158000 35.8
beans, dry 1220 15.7
vegetables, fresh nes 19000 13.1
molasses 105000 12.7
pineapples 51400 11.3
watermelons 33500 7.88
cucumbers and gherkins 25500 6.01
chillies and peppers, green 14400 5.7
sugar raw centrifugal 26000 3.13
eggplants (aubergines) 9880 3.11
pumpkins, squash and gourds 11100 2.77
cassava dried 1860 2.19
sugar refined 13500 1.62
lemons and limes 1610 0.793
sugar nes 2130 0.256
other 4290 23.5

Côte d’Ivoire (CIV)
cocoa, beans 262000 5130
other 1200 21.1

El Salvador (SLV)
coffee, green 14600 423
molasses 160000 18.4
sugar raw centrifugal 106000 12.2
sugar refined 15300 1.76
plantains and others 2680 1.41
chillies and peppers, green 1700 0.614
other 2760 16.9

Chile (CHL)
milk, cattle 23500 450
grapes 330000 289
cranberries 61300 96.3
avocados 28000 60.1
tangerines, mandarins, clementines, satsumas 97700 54.8
oranges 67300 37.2
meat, chicken 33000 25.7
maize 23700 20.6
apples 91600 18.9
peaches and nectarines 36900 18.5
lemons and limes 36200 16
plums and sloes 23000 13.6
cherries 6960 13.6
kiwi fruit 25400 9.9
fruit, fresh nes 3860 8.57
pears 15500 4.6
meat, pig 1690 0.903
onions, dry 3210 0.667
other 4250 820

Sri Lanka (LKA)
tea 4720 32.1
cinnamon (cannella) 2070 28.7
other 1430 11.7
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(continued)

item export quantity
tonnes

virtual land export
km2

Uruguay (URY)
meat, cattle 47000 5140
milk, cattle 1590 14.9
tangerines, mandarins, clementines, satsumas 12600 7.66
oranges 2210 1.25
lemons and limes 1520 0.727
other 1560 29

India (IND)
anise, badian, fennel, coriander 15000 201
pepper (piper spp.) 9650 200
chillies and peppers, dry 25000 117
beans, dry 3890 90.5
spices nes 18500 89.8
oilseeds nes 11300 81.9
tea 14200 66.7
meat, cattle 2880 39
chick peas 2610 28.3
coffee, green 2130 28.1
maize 2710 9.71
mangoes, mangosteens, guavas 5580 6.54
ginger 1520 2.65
milk, cattle 1390 1.52
sugar raw centrifugal 6820 0.943
sugar refined 6110 0.844
molasses 1640 0.226
sugar confectionery 1020 0.141
other 5200 36.2

Malaysia (MYS)
cocoa, beans 1780 174
milk, cattle 1230 4.43
sugar confectionery 1050 0.493
other 1000 1.54

Other
cocoa, beans 75700 1690
coffee, green 72400 1220
meat, pig 115000 518
milk, cattle 229000 479
tea 77900 443
maize 235000 348
wheat 119000 341
beer of barley 122000 340
oats 103000 288
rye 126000 282
quinoa 16800 274
oilseeds nes 32400 262
beans, dry 30400 216
meat, cattle 4000 178
barley 43300 161
sorghum 53500 126
chick peas 9210 85.4
anise, badian, fennel, coriander 6270 82
sugar raw centrifugal 437000 74.3
spices nes 12700 57
ginger 55800 55.6
coconuts 25900 55.5
chillies and peppers, dry 28000 47
tangerines, mandarins, clementines, satsumas 81100 41.4
starch, cassava 88000 39.9
garlic 74300 38
dates 20800 37
peas, dry 6050 28.8
pears 64200 28
nuts nes 11200 27.6
vegetables, fresh nes 10300 22.6
lentils 2940 20.6
hops 3550 19.9
oranges 54100 15.3
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(continued)

item export quantity
tonnes

virtual land export
km2

groundnuts, shelled 2750 14.7
molasses 72100 14.2
chestnut 3390 13.4
kiwi fruit 26600 12.2
eggs, chicken 22400 8.9
mangoes, mangosteens, guavas 4330 8.81
sugar confectionery 84500 8.27
plantains and others 7690 7.38
fruit, fresh nes 6180 6.83
apples 13300 5.78
roots and tubers nes 9580 5.44
olives 3610 4.65
lemons and limes 13000 4.65
broad beans, horse beans, dry 1400 4.34
meat, chicken 6880 4.21
sugar refined 20400 3.78
onions, dry 12200 3.54
chillies and peppers, green 26000 2.85
rice, paddy 1380 2.82
sugar nes 18000 2.51
carrots and turnips 16300 2.44
onions, shallots, green 4040 1.85
grapes 1780 1.79
cassava dried 2280 1.61
papayas 8820 1.41
pineapples 5990 1.39
persimmons 2770 1.28
beans, green 1260 1.27
grapefruit (inc. pomelos) 4460 1.27
bananas 2730 1.18
sweet potatoes 1310 0.968
flour, cassava 1560 0.745
mushrooms and truffles 13500 0.662
potatoes 1750 0.539
lettuce and chicory 1940 0.518
fructose and syrup, other 2850 0.436
cabbages and other brassicas 1030 0.329
cucumbers and gherkins 3370 0.237
eggplants (aubergines) 1750 0.0811
other 13000 367
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Table S8. Data sources

The following table contains the data sources used in the manuscript, along with the names of the dataset
providers, the year the datasets represent, a description of the use of the datasets in the analysis, URLs
of the datasets and when the datasets were downloaded and last checked for online availability. The table
lists primary non-spatial data sources, spatial data sources (polygon and raster), and crosswalk tables used
to harmonize different datasets. Some crosswalk tables were downloaded from existing sources and some
were created manually by the authors for this analysis. Citations for each data source are provided in the SI
References section at the bottom of this document, numbered corresponding to the numbers in the “Citation”
column of the table.

Dataset name Dataset
provider

Data
years

Description Location
on
web

Date
down-
loaded

Date
most
recently
checked

Citation

Primary data
USEEIOv2.0-

alpha
input-output
model

U.S.
Environmental
Protection
Agency, derived
from data
provided by
U.S. Bureau of
Economic
Analysis

2012 Direct requirements
coefficients matrix and
personal consumption
expenditure vector from
input-output model

click
here

2021-
03-23

2021-03-
23

34

Census of
Agriculture

U.S.
Department of
Agriculture,
National
Agricultural
Statistics
Service

2012 Data on crop and livestock
production value and
weight, and area
harvested, by state and
county

click
here

2019-
10-24

2021-03-
30

28

County
Business
Patterns

U.S. Census
Bureau

2012 Number of establishments,
employees, and total
payroll for industries
classified by NAICS code
for each USA county

click
here

2019-
02-11

2021-03-
30

25

Statistics of
U.S. Businesses

U.S. Census
Bureau

2012 Number of establishments,
employees, payroll, and
total receipts for industries
classified by NAICS code
for each USA state

click
here

2019-
02-11

2021-03-
30

27

2015-2020
Dietary
Guidelines

U.S.
Department of
Agriculture

— Data from Appendices 3-5
of 2015-2020 Dietary
Guidelines for Americans,
manually copied and saved
to CSV (calories per day
or servings per day of each
food group on
recommended diets)

click
here

2021-
04-20

2021-04-
20

29

Planetary
Health diet

EAT Lancet
Commission

— Data copied directly from
report and saved to CSV
(calories per day of each
food group on planetary
health diet)

click
here

2020-
12-08

2021-03-
30

33

Loss-Adjusted
Food
Availability
Data Series

U.S.
Department of
Agriculture,
Economic
Research
Service

multiple Relative percentage losses
for 200 food items at
different stages of the food
supply chain, and the total
amount of each food item
available for consumption
per capita daily in the
USA, in units of calories
and servings

click
here

2020-
12-09

2021-03-
30

1

Quarterly
Food-at-home
Price Database,
version 2

U.S.
Department of
Agriculture,
Economic
Research
Service

2010 Relative prices per unit
weight for 40 food items
averaged across different
regions of the USA

click
here

2019-
03-14

2021-03-
30

30

FAOSTAT United Nations
Food and
Agriculture
Organization

2013-
2017

All data available from
FAOSTAT (global
agriculture data)

click
here

2020-
08-31

2021-03-
30

9

U.S. County
Personal
Income

Supplementary
information
from Lin et al.
2019, derived
from U.S.
Bureau of
Economic
Analysis

2012 Total personal income of
each USA county

click
here

2021-
04-19

2021-04-
19

24
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https://github.com/USEPA/useeior
https://github.com/USEPA/useeior
https://www.nass.usda.gov/Publications/AgCensus/2012/Online_Resources/Census_Data_Query_Tool/2012_cdqt_data.txt.gz
https://www.nass.usda.gov/Publications/AgCensus/2012/Online_Resources/Census_Data_Query_Tool/2012_cdqt_data.txt.gz
https://www2.census.gov/programs-surveys/cbp/datasets/2012/
https://www2.census.gov/programs-surveys/cbp/datasets/2012/
https://www.census.gov/data/datasets/2012/econ/susb/2012-susb.html
https://www.census.gov/data/datasets/2012/econ/susb/2012-susb.html
https://www.dietaryguidelines.gov/sites/default/files/2021-03/Dietary_Guidelines_for_Americans-2020-2025.pdf
https://www.dietaryguidelines.gov/sites/default/files/2021-03/Dietary_Guidelines_for_Americans-2020-2025.pdf
https://eatforum.org/content/uploads/2019/01/EAT-Lancet_Commission_Summary_Report.pdf
https://eatforum.org/content/uploads/2019/01/EAT-Lancet_Commission_Summary_Report.pdf
https://www.ers.usda.gov/data-products/food-availability-per-capita-data-system/
https://www.ers.usda.gov/data-products/food-availability-per-capita-data-system/
https://www.ers.usda.gov/data-products/quarterly-food-at-home-price-database/
https://www.ers.usda.gov/data-products/quarterly-food-at-home-price-database/
https://apps.bea.gov/iTable/iTable.cfm?reqid=70&step=1&acrdn=6
https://apps.bea.gov/iTable/iTable.cfm?reqid=70&step=1&acrdn=6


(continued)

Dataset name Dataset
provider

Data
years

Description Location
on
web

Date
down-
loaded

Date
most
recently
checked

Citation

Biodiversity
characteriza-
tion
factors

Chaudhary &
Brooks 2018,
derived from
multiple data
sources

multiple Potential species lost per
unit of land converted to
human use, across
ecoregions, taxa, and land
use types

click
here

2020-
12-07

2021-03-
30

3

Spatial data
The Nature

Conservancy
terrestrial
ecoregions

The Nature
Conservancy

2009 Polygon file with all
boundaries of terrestrial
ecoregions globally

click
here

2018-
10-15

2021-03-
29

17

United States
county
boundaries
shapefile

U.S. Census
Bureau

2014 Polygon file of the United
States county boundaries
as they existed in 2014

No
longer
avail-
able.
A
similar
file is
avail-
able
here.

2017-
11-30

— 26

Global
country
administrative
boundaries
shapefile

Natural Earth 2020 Polygon file of all country
boundaries as they existed
in 2018

click
here

2020-
09-16

2021-03-
29

15

National
Land Cover
Database 2016,
CONUS

Multresolution
Land
Characteristics
Consortium

2016 Raster at 30m resolution
of modeled land cover
classes in contiguous
United States

click
here

2019-
09-16

2021-03-
29

6

National
Land Cover
Database 2016,
Alaska

Multresolution
Land
Characteristics
Consortium

2016 Raster at 30m resolution
of modeled land cover
classes in Alaska

click
here

2021-
02-04

2021-03-
29

6

NOAA Land
Cover Dataset
2001, Hawaii

Multresolution
Land
Characteristics
Consortium

2001 Raster at 30m resolution
of modeled land cover
classes in Hawaii

click
here

2021-
02-04

2021-03-
29

14

Global
Agricultural
Lands:
Pastures v1

SEDAC
CIESIN,
Columbia
University

2000 Raster at 1km resolution
of global pastureland

click
here

2020-
09-16

2021-03-
29

20

Crop
Dominance
2010 Global 1
km

Global Food
Security
Support
Analysis Data
(GFSAD)

2010 Raster at 1km resolution
of global irrigated and
rainfed cropland

click
here

2020-
09-16

2021-03-
29

23

U.S. Census
Grids:
Summary File
1, v1

SEDAC
CIESIN,
Columbia
University

2010 Gridded product including
population totals from
2010 census at 1 km
resolution. Separate files
for contiguous USA,
Hawaii, Alaska, and
Aleutian islands

click
here

2020-
08-14

2021-03-
29

2

Crosswalks
FIPS codes

harmonization
between Census
Tiger shapefile
and county
personal
income data

None (created
manually)

— For combining map
polygons of county map to
match the income data
otherwise used to
downscale data to county
level

— — — —

Weight in
pounds per
bushel of grain
and oilseed
crops

Rayglen — For converting grain and
oilseed production value to
weight, to disaggregate
grain from oilseed
production values

click
here

2019-
12-06

2021-06-
01

21

Price per
bushel or
hundredweight
of grain and
oilseed crops in
2014-2016

U.S.
Department of
Agriculture,
Economic
Research
Service

2014-
2016

For converting grain and
oilseed production value to
weight, to disaggregate
grain from oilseed
production values

click
here

2019-
12-06

2021-06-
01

32

FAOSTAT
category
hierarchical
structure

United Nations
Food and
Agriculture
Organization

— Identifies which FAOSTAT
codes represent
aggregations of individual
items. Aggregates are
removed from analysis.

click
here

2020-
11-17

2021-06-
01

9

NAICS codes
to BEA codes

U.S. EPA
USEEIO model
(useeior
package)

2012 Harmonizes NAICS2012
codes (used in NASS
Census of Agriculture,
SUSB, and CBP datasets)
with BEA codes (used in
input-output tables).
Typically many-to-one
NAICS-BEA mapping

click
here

2021-
03-23

2021-03-
23

34
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http://dx.doi.org/10.1021/acs.est.7b05570
http://dx.doi.org/10.1021/acs.est.7b05570
http://maps.tnc.org/gis_data.html
http://maps.tnc.org/gis_data.html
https://www2.census.gov/geo/tiger/TIGER2014/COUNTY/
https://www2.census.gov/geo/tiger/TIGER2014/COUNTY/
https://www2.census.gov/geo/tiger/TIGER2014/COUNTY/
https://www.naturalearthdata.com/downloads/50m-cultural-vectors/
https://www.naturalearthdata.com/downloads/50m-cultural-vectors/
https://www.mrlc.gov/data
https://www.mrlc.gov/data
https://www.mrlc.gov/data/nlcd-2016-land-cover-alaska
https://www.mrlc.gov/data/nlcd-2016-land-cover-alaska
https://www.mrlc.gov/data/nlcd-2001-land-cover-hawaii-0
https://www.mrlc.gov/data/nlcd-2001-land-cover-hawaii-0
https://sedac.ciesin.columbia.edu/data/set/aglands-pastures-2000/data-download
https://sedac.ciesin.columbia.edu/data/set/aglands-pastures-2000/data-download
https://www.usgs.gov/centers/wgsc/science/global-food-security-support-analysis-data-30-m-gfsad?qt-science_center_objects=4#qt-science_center_objects
https://www.usgs.gov/centers/wgsc/science/global-food-security-support-analysis-data-30-m-gfsad?qt-science_center_objects=4#qt-science_center_objects
https://sedac.ciesin.columbia.edu/data/set/usgrid-summary-file1-2010/data-download
https://sedac.ciesin.columbia.edu/data/set/usgrid-summary-file1-2010/data-download
https://www.rayglen.com/crop-bushel-weights/
https://www.rayglen.com/crop-bushel-weights/
https://www.nass.usda.gov/Publications/Todays_Reports/reports/cpvl0217.pdf
https://www.nass.usda.gov/Publications/Todays_Reports/reports/cpvl0217.pdf
http://www.fao.org/faostat/en/#data/BC/metadata
http://www.fao.org/faostat/en/#data/BC/metadata
https://github.com/USEPA/useeior
https://github.com/USEPA/useeior
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Dataset name Dataset
provider

Data
years

Description Location
on
web

Date
down-
loaded

Date
most
recently
checked

Citation

LAFA food
categories to
Lancet and
USDA dietary
guidelines food
groups

None (created
manually)

— Maps LAFA foods to
dietary guideline food
groups for Lancet and
USDA diets so that waste
and diet scenarios can be
combined. Typically
many-to-one LAFA-diet
mapping

— — — —

FAOSTAT
commodity
codes in trade
dataset to
FAOSTAT
commodity
codes in
production
dataset

None (created
manually)

— Harmonizes the FAOSTAT
codes in the crop and
livestock production data
by country with the codes
in the international trade
data, used to determine
the proportion of each
product exported to the
United States

— — — —

FAOSTAT
commodity
codes to FAO
food balance
sheet
commodity
codes

None (created
manually)

— Harmonizes the FAOSTAT
codes in the crop and
livestock production data
by country with the food
balance sheet commodity
codes, used to determine
the proportion of each crop
that is used for feed that
feeds livestock exported to
the United States

— — — —

QFAHPD
food categories
to LAFA food
categories

None (created
manually)

— Harmonizes QFAHPD food
categories with LAFA food
categories, used to convert
loss rates by weight to loss
rates by monetary value.
Typically one-to-many
mapping QFAHPD to
LAFA.

— — — —

LAFA food
categories to
QFAHPD food
categories to
BEA codes

None (created
manually)

— Harmonizes LAFA to
QFAHPD to BEA codes,
used to convert loss rates
by weight to monetary
value. Typically
one-to-many mapping for
QFAHPD-LAFA and
QFAHPD-BEA.

— — — —

LAFA
category
hierarchical
structure

None (created
manually)

— Identifies which LAFA
food groups represent
aggregations of individual
items. Aggregates are
removed from analysis.

— — — —

BEA codes
to LAFA food
categories

None (created
manually)

— Harmonizes BEA codes to
LAFA food categories.
Typically one-to-many
mapping BEA-LAFA. Used
to convert scenario
consumption factors for
LAFA categories to BEA
codes.

— — — —
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Table S9: Primary agricultural commodity and processed food commodity codes

The following table contains the commodity names and six-character codes from the U.S. Bureau of Economic
Analysis input-output tables used in our analysis. Thirty-seven commodities are shown, including both
primary agricultural goods (codes beginning with 1) and processed foods (codes beginning with 3).

Commodity code Commodity description

primary agricultural goods
1111A0 Fresh soybeans, canola, flaxseeds, and other oilseeds
1111B0 Fresh wheat, corn, rice, and other grains
111200 Fresh vegetables, melons, and potatoes
111300 Fresh fruits and tree nuts
111400 Greenhouse crops, mushrooms, nurseries, and flowers
111900 Tobacco, cotton, sugarcane, peanuts, sugar beets, herbs and spices, and other crops
112120 Dairies
1121A0 Cattle ranches and feedlots
112300 Poultry farms
112A00 Animal farms and aquaculture ponds (except cattle and poultry)
114000 Wild-caught fish and game

processed foods
311210 Flours and malts
311221 Corn products
311224 Vegetable oils and by-products
311225 Refined vegetable, olive, and seed oils
311230 Breakfast cereals
311300 Sugar, candy, and chocolate
311410 Frozen food
311420 Fruit and vegetable preservation
311513 Cheese
311514 Dry, condensed, and evaporated dairy
31151A Fluid milk and butter
311520 Ice cream and frozen desserts
311615 Packaged poultry
31161A Packaged meat (except poultry)
311700 Seafood
311810 Bread and other baked goods
3118A0 Cookies, crackers, pastas, and tortillas
311910 Snack foods
311940 Seasonings and dressings
311990 All other foods
311930 Flavored drink concentrates
312110 Soft drinks, bottled water, and ice
311920 Coffee and tea
312120 Breweries and beer
312130 Wineries and wine
312140 Distilleries and spirits
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Appendix 4: Comparison of land footprint estimates with previous
study

Summary

This appendix is a supplement to the manuscript “Biodiversity effects of food system sustainability actions
from farm to fork” by Quentin D. Read, Kelly L. Hondula, and Mary K. Muth.

In this appendix, which contains R code and results, we compare the land footprint estimates generated by
our own models with the estimates generated by Laroche et al. (2020). We describe how we harmonized
our results with theirs and present a figure and table comparing the results. Overall, we found that our
study estimated higher land footprints than Laroche and colleagues’. In both studies, the relative differences
between diets are qualitatively very similar. However, Laroche et al. estimated the reduction in land footprint,
especially foreign-sourced, due to diet shifts to be much greater than we did.

Harmonization

Laroche et al. provide estimates of the per capita land footprint of the average American diet and of several
other diets. They provide totals for domestic and imported (outsourced in their terminology) land footprint,
and they further disaggregate the foreign land footprint into cropland and grassland. These estimates are
given in Table 3 of their manuscript.

We assumed that their term grassland corresponds to our definition of pastureland, and that their term
cropland corresponds to the total of our annual cropland and permanent cropland categories.

In the following code, we load the data and then sum up our estimates by origin and land type, renaming
them to use the same terminology as Laroche et al. (foreign becomes outsourced and pasture becomes
grassland, and cropland is the sum of annual and permanent). We also divide our estimate by the 2012
USA population to make it a per capita estimate matching Laroche et al., and convert our units from square
kilometers to square meters.
library(data.table)
library(ggplot2)
library(dplyr)
library(purrr)
library(kableExtra)
library(scales)

load(file.path(final_output_path, 'all_app_data.RData'))

laroche_landuse <- fread(file.path(raw_data_path, 'biodiversity/laroche2020_table3.csv'))

# Sum up the land footprint by origin x land type
landflow_cols <- c('flow_inbound_total', 'flow_inbound_foreign')
our_landuse <- county_land_flow_sums[, lapply(.SD, sum),

by = .(scenario_diet, scenario_waste, land_type),
.SDcols = landflow_cols]

setnames(our_landuse, old = landflow_cols, new = c('total', 'outsourced'))

# 2012 USA population from https://www.multpl.com/united-states-population/table/by-year
pop2012 <- 314e6
our_landuse_long <-

melt(our_landuse, variable.name = 'origin', value.name = 'total_footprint')
our_landuse_long[, per_capita_footprint := total_footprint / pop2012 * 1e6 ]
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# Sum up annual and permanent cropland. Rename pasture to grassland
our_landuse_long[, land_type := ifelse(land_type %in% c('annual','permanent'),

'cropland', 'grassland')]
our_landuse_sums <- our_landuse_long[scenario_waste == 'baseline',

.(per_capita_footprint = sum(per_capita_footprint)),
by = .(scenario_diet, land_type, origin)]

# Add additional grand totals
total_outsourced <- our_landuse_sums[,

.(per_capita_footprint = sum(per_capita_footprint)),
by = .(scenario_diet, origin)]

total_outsourced[, land_type := 'total']
our_landuse_sums <- rbindlist(list(our_landuse_sums, total_outsourced), use.names = TRUE)
our_landuse_sums[, source := 'this study']
setnames(our_landuse_sums, old = 'scenario_diet', new = 'diet')

Next, we harmonize the Laroche et al. estimates with ours. First, we sum cropland used for food and cropland
used for feed, which aren’t differentiated in our final estimates.
laroche_landuse[, origin := ifelse(`Land type` == 'total', 'total', 'outsourced')]
laroche_landuse[, land_type := map_chr(strsplit(`Land type`, ' '), 1)]
setnames(laroche_landuse,

old = c('Diet','Per capita footprint'),
new = c('diet', 'per_capita_footprint'))

laroche_landuse_sums <-
laroche_landuse[,

.(per_capita_footprint = sum(per_capita_footprint)),
by = .(diet, land_type, origin)]

laroche_landuse_sums[, source := 'Laroche et al.']

comparison_dat <- rbind(our_landuse_sums, laroche_landuse_sums)

Next, we matched the names of diets across the two studies. Laroche et al. investigated some diets that we
didn’t consider, and used different names. We matched their AAD (Average American diet) with our baseline
diet, and their EAT diet with our planetaryhealth diet. Those should be identical. Their lacto-ovo
vegetarian diet should correspond closely with our vegetarian (USDA healthy vegetarian) diet, so we
matched those up for comparison purposes.
comparison_dat[diet == 'AAD', diet := 'baseline']
comparison_dat[diet == 'lacto-ovo vegetarian', diet := 'vegetarian']
comparison_dat[diet == 'EAT', diet := 'planetaryhealth']

Results

Figure S34. Total land footprints from the present study and Laroche et al. 2020

The figure below shows that our estimates are uniformly higher due to differing methodology and potentially
different definitions of system boundaries. For example, our total land footprint in the baseline case is 39%
higher than Laroche and colleagues’ estimate. However, the relative differences between diets are similar
between studies. Importantly, the total land footprint (including both domestic and outsourced) decreases
relative to baseline for the vegetarian and Planetary Health diets, as do the outsourced total and outsourced
grassland footprints. However, the outsourced cropland footprints increase relative to baseline, with the
vegetarian diet increasing more than the Planetary Health diet. Note that the individual panels have different
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y-axis limits.
p <- ggplot(comparison_dat[diet %in% c('baseline','vegetarian','planetaryhealth') &

(origin == 'outsourced' | land_type == 'total')],
aes(x = diet, y = per_capita_footprint, group = source, fill = source)) +

geom_col(position = 'dodge') +
facet_wrap(land_type ~ origin, scales = 'free_y') +
scale_y_continuous(expand = expansion(mult = c(0, 0.02)),

name = 'Per capita land footprint (m2/cap/y)') +
theme_bw() +
theme(legend.position = 'bottom',

strip.background = element_blank(),
panel.grid = element_blank()) +

scale_fill_manual(values = c(viridis::viridis(7, alpha = 0.7)[c(3,6)]))

Figure S34: Comparison between our land footprint estimates and those of Laroche and colleagues

Table S10. Relative differences between our estimates and those of Laroche et al.

The relative column in the table below indicates the percent difference between the land footprint estimate of
Laroche et al. and the corresponding estimate from the present study (differences between pairs of bars in
the figure). For example a value of 129% indicates that our estimate is 129% higher, or 2.29 times as high, as
the estimate from Laroche et al. All are positive indicating that our estimates are uniformly higher.

In particular, the pastureland (grassland) footprints for foreign imports are fairly different across the two
studies, with our estimate over twice as high for the baseline case, and a full seven times higher for the
Planetary Health diet. Thus, in general our study concludes that U.S. diets have a higher land footprint than
the Laroche et al. (2020) study concludes, and that a higher share of it is imported. Relative to Laroche and
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colleagues, we found that less of a decline in land footprint would occur if an individual switched from the
average American diet to the vegetarian or Planetary Health diets. Therefore Laroche and colleagues assume
a greater reduction in environmental impact due to diet shifts than we do.
comparison_wide <-

dcast(comparison_dat[diet %in% c('baseline','vegetarian','planetaryhealth')],
diet + land_type + origin ~ source, value.var = 'per_capita_footprint')

comparison_wide[, relative := round((`this study`/`Laroche et al.` - 1), 2)]

Table S10. Relative differences between our estimates and those of Laroche and colleagues.

Diet Land use type Origin Relative difference

baseline cropland total —
baseline cropland outsourced 40%
baseline grassland total —
baseline grassland outsourced 129%
baseline total total 39%

baseline total outsourced 105%
vegetarian cropland total —
vegetarian cropland outsourced 13%
vegetarian grassland total —
vegetarian grassland outsourced 12%

vegetarian total total 35%
vegetarian total outsourced 13%
planetaryhealth cropland total —
planetaryhealth cropland outsourced 32%
planetaryhealth grassland total —

planetaryhealth grassland outsourced 611%
planetaryhealth total total 44%
planetaryhealth total outsourced 188%
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