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GINZBURG-LANDAU COEFFICIENT

We compute the the function αq microscopically within
mean field theory. From Eqs. (1,4) of the main text, the
mean-field free energy density is f(q,∆) = |∆|2/V −

T
∫
d2ktr log[1 + e−Hk(q,∆)/T ], where V is the attractive

interaction strength and tr denotes trace in spin space.

By expansion of free energy density f(q,∆) in terms
of ∆ we have

α = log
T

Tc
+

1

N0

∑
λ=±

∮
FSλ

dk

|vλ|

{
φ

(
Q+ λE+

2πT

)
cos2 θ

2
+ φ

(
Q+ λE−

2πT

)
sin2 θ

2

}
, (S1)

where λ = ± denote contributions from inner (λ = +)
and outer (λ = −) Fermi surfaces respectively, φ(x) =
Re
[
ψ
(

1+ix
2

)]
− ψ

(
1
2

)
, and ψ is the digamma function.

Here, vλ = ∂kξ
λ
k is the electron velocity, Q = vλ · q

is the depairing energy of finite momentum pairing,
E± = |h+| ± |h−| is the depairing energy of Zeeman
splitting for inter- (+) or intra-pocket (−) Cooper pairs
with h± = B + g 1

2q±k
, and the angle θ = 〈h+,h−〉

between h± controls the ratio between inter- or intra-
pocket Cooper pairs. Supercurrent affects q and hence
depairing energy Q, while magnetic field B together with
SOC affects depairing energies E± and angle θ.

Near Tc, the temperature dependence of αq can be
captured by the first term log(T/Tc), and we can set
T = Tc in the Fermi surface integrals. To evaluate the
integral, notice that the field is weak B � BP , one can
expand the special function

φ(x) = 2.10x2 − 2.01x4 + 2.00x6 +O(x8) (S2)

and then integrate order by order to obtain Eq. (14) of
the main text.

NONRECIPROCAL CRITICAL CURRENT AND
POLARITY-DEPENDENT CRITICAL FIELD

For αq = α+ aδq2
‖ − bδq

3
‖, we find the supercurrent is

βJ‖/e = |αq|∂‖αq = 2aαδq‖ − 3 (αb) δq2
‖ (S3)

+2a2δq3
‖ − 5(ab)δq4

‖ + 3b2δq5
‖. (S4)

Notice that to the leading order of |α| 12 , critical currents
±J±c correspond to δq‖ = ∓δqc respectively, where δqc =

√
|α|/3a. Then we have

βJ±c /e =
4|α|3/2

9a
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√
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)

+O(|α|5/2). (S5)

Since α, a, b are all functions of B and T , the equation
above determines two phase boundaries parametrized by
J , B and T as depicted in Fig. 1b of the main text. At
weak field, a can be treated as a constant, b ∝ B and α =
t(1−B2/B2

c ) with reduced temperature t = (T − Tc)/Tc
and critical field Bc ∝ |t|1/2. Then Eqs. (16-22) of the
main text can be obtained.

Especially for Rashba superconductors at weak field,
from Eq. (13) of the main text and (S5) we obtain
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where n̂ = (q − q0)/|q − q0|, and under magnetic field
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Then we obtain the skewed phase boundary(
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with zero-field critical current
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and the skewness parameter
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To include higher order contributions, the supercurrent
diode coefficient is

δ = D (x) , x =

√
|αq0
|

a3
b. (S11)

The special function is

D(x) =
J(x)− J(−x)

J(x) + J(−x)
, (S12)

where J(x) = [Q(x)− 3
2xQ(x)][−1 +Q(x)2 − xQ(x)3],
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27 < t < 1 and z is complex. Denote

t = cos θ, then z = eiθ/3 and n = 4
15 (cos θ3 + 2

3 ) is real.

Since D(x) ≈ x/
√

3 we get the leading order contribution

δ =
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3a3 b, namely
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The expansion of αq near its minimum q0 in general
can be anisotropic

αq+q0
= αq0

+ a(1 + ε)q2
x + a(1− ε)q2

y + 2aηqxqy(S14)
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3
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3
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2
y + b4q

2
xqy),

where a > 0 and ε2 + η2 < 1 for stability. The
supercurrent diode coefficient for supercurrent J =
J(cos θ, sin θ) can be worked out as
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SUPERCURRENT DIODE EFFECT NEAR FFLO
TRANSITION

When magnetic field is high, near a phase transition
where two or more local minima of αq compete, strong
supercurrent diode effect can happen. As a concrete
example, we consider the transition from BCS phase to
FF phase near the upturning point (T∗, B∗) (red star in
Fig. 3a of the main text), and adapt the following free
energy density expanded up to quartic order in q

αq = c0 + c1q
2 + c2q

4, (S16)

where c1 = c(B2
∗ − B2), and c, c2 > 0. When B < B∗,

c1 > 0 and the BCS phase with zero Cooper pair

momentum is the ground state. When B > B∗, c1 < 0
and the ground state changes to the FF phase with
Cooper pair momentum q0 ≡

√
|c1|/(2c2) ∝

√
B2 −B2

∗ .
As a result, when one lowers the temperature, the in-
plane critical field Bc(T ) exhibits an upturn across the
upturning point and hence the name.

To better understand the FFLO physics we need
quartic order Ginzburg-Landau analysis. One can
write the order parameter in Fourier form ∆(r) =∫
d2q∆qe

iq·r and the free energy then reads

F ≡
∫
d2rf(r) =

∫
d2qαq|∆q|2 +

1

2

∫
d2qd2pd2p′βqpp′∆q+p∆q−p∆∗q+p′∆∗q−p′ . (S17)

By analyzing the quartic coefficients βqpp′ and the
quadratic coefficients αq one can then distinguish FF
and LO phases [1, 2]. The quartic coefficient βqpp′ is in
general a function of momenta q,p and p′, which to the
leading order can be treated as momentum-independent

βqpp′ = βN0 if it does not change sign in the region where
we are interested. One can work out β numerically

β = − T

2N0

∑
n∈Z

∫
d2kTr[Ge(k, iωn)(iσy)Gh(k, iωn)(iσy)†]2

(S18)
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by Mastubara Green’s functions Ge = [iωn −Hk]−1 and
Gh = [iωn +H∗−k]−1 with ωn = (2n+ 1)πT .

In the absence of SOC, quartic coefficient β in Eq. (6)
of the main text accidentally vanishes at the upturning
point, making it a tricritical point where BCS (q = 0),
FF (single-q) and LO (±q) phases compete. With SOC
considered in this work, β is finite as long as SOC is
nonzero, and the supercurrent can be calculated by Eq.
(11) of the main text. In the following we assume SOC
is finite such that β 6= 0 and expansion Eq. (S16) also
applies.

As shown in Fig. S1, along a given direction, there are
five zeros of supercurrent, one at metastable BCS phase
q = 0, one at ground state FF phase q0, one at opposite
FF phase −q0 and the other two at excited states where
superconductivity vanishes αq = 0. We hence expect
four extremal points q±c ,−q±c of the supercurrent, and the
resulting maximum and minimum are critical currents
±J±c respectively.

Near the metastable BCS phase, the function αq =
α−q is fully symmetric, and there seems no diode effect.
However, around the true ground state FF phase q = q0

we have the expansion up to the nonzero third order

αq+q0
= c0 −

c21
4c2

+ 4c2
{

(q · q0)2 + (q · q0)q2
}
. (S19)

Since |q0| ∝ Re
√
B2 −B2

∗ , near the upturning point the
third order term is more important than the second order
one. Consequently, αq is highly asymmetric near q0, and
J±c can be very different.

Moreover, as we approach the upturning point, J−c →
0 if superconducting phase stays in the q > 0 branch.
In this case, the superconductor near FF transition is a
perfect diode: Supercurrent cannot pass antiparallel to
the Cooper pair momentum. To be precise, the diode
coefficient for supercurrent along direction ±n̂ is

δn̂ = (n̂ · q̂0)F (x), (S20)

where x = c(B2 −B2
∗)/
√
c0c2. The special function is

F (a) =
J1(a)− J2(a)

J1(a) + J2(a)
, (S21)

where

J1(a) = (ax− 2x3)(x4 − ax2 − 1), (S22)

J2(a) = −(ay − 2y3)(y4 − ay2 − 1) (S23)

and (A =
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Notice that F (x) = 0 for x < 0, and F (x) = 0.90x
3
2 − 1

for 0 < x � 1. As a result, when B = B∗ and T < T∗,
we have x = 0 and the FF superconductor is a perfect
diode δ = −1.

It is also possible that near the upturning point,
when injected supercurrent switches its direction,
superconducting phase changes from the q > 0 branch to
the q < 0 branch. In that case there is no supercurrent
diode effect. Similar discussions can also be found in Ref.
[3].

SUPERCURRENT DIODE EFFECT NEAR ZERO
TEMPERATURE

Near the transition between FF superconductor and
normal phase at low temperature T → 0, we have
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where ∆0 = 4πe−ψ(1/2)Tc is the pairing gap at zero
temperature and zero field. Thus in the absence of SOC,
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which can be worked out as αq = log(vFq/∆0) when
vFq > B, and in general can be written as the following
piecewise function

αq = Re

[
log

(
B +

√
B2 − v2

Fq
2

∆0
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Minimizing αq over q yields a large Cooper pair
momentum q0 = B/vF approaching 1/ξ0 as B → Bc.
In this case, due to the non-analytic dependence of q, αq

is highly skewed with respect to q0: it rises steeply as q
decreases from q0. This leads to the maximum possible
diode effect with δ = (J+

c − J−c )/(J+
c + J−c ) ∼ −1 near

Bc, taking opposite sign as the one near tricritical point.
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FIG. S1: (a) Near the FF transition, supercurrent J as a function of Cooper pair momentum q and J(−q) = −J(q). Here q0 is
the momentum of FF phase, and q±c are momenta for critical currents ±J±

c respectively in the positive branch q > 0. (b) At
T = 0, supercurrent J as a function of Cooper pair momentum q and J(−q) = −J(q). Here q0 is the momentum of FF phase,
and q±c = q±0 are momenta for critical currents ±J±

c respectively in the positive branch q > 0.
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