Supplementary Figure 1. miRs are differentially expressed during CD8 T cell differentiation in acute and chronic infection.

C57/BL6 mice were infected with either LCMV Armstrong ("acute") or LCMV clone 13 ("chronic"). At d8 and at d30 p.i. LCMV D^b gp-33 specific CD8 T cells were purified from spleens and their miR profile was examined using Affymetrix microRNA 2.0 array. As a control, CD8 T cells from naïve mice were purified ("T_N").

(A) Mean expression level and STDV for all the differentially expressed miRs (DEM; FDR<0.05) between T_N , T_{EFF} and T_{MEM} .

(*D*) Mean expression level and STDV f(*B* - *C*) Venn diagrams showing the differentially expressed miRs (DEM; FDR<0.05) between T_N , T_{EFF} and T_{MEM} (*B*) and between T_N , T_{EE} and T_{EX} (*C*). Red represents upregulation in the first group of the pairwise comparison; blue represents downregulation in the first group of the pairwise comparison.

or all the differentially expressed miRs (DEM; FDR<0.05) between T_N , T_{EE} and T_{EX} .

(*E*) Venn diagram showing DEM (FDR<0.05) between T_{EFF} vs T_{EE} and T_{MEM} vs T_{EX} . Red represents upregulation in the first group of the pairwise comparison.

(F) MiR-29a expression levels and fold-cahnges in T_N , T_{EFF} , T_{MEM} , T_{EE} and T_{EX} .

Supplementary Figure 2. Key transcriptional pathways are implicated in miR differential regulation between acute and chronic infection.

(A-C) C57/BL6 mice were infected with LCMV Armstrong or clone 13. At d8 and at d30 p.i. LCMV D^b gp-33 specific CD8 T cells were purified from spleens and their miR profile was examined as in Figure 1. (*A*) A network of miRs and their predicted targets that were DE between acute and chronic infection at d8 p.i. was constructed using the filtered miR-mRNA target list from Figure 2*B*. (*B*) Intracellular staining for Eomes in CD44+ CD8 T cells from splenocytes of mice infected with LCMV Armstrong (grey filled histogram) or LCMV clone 13 (black open histogram) at d30 p.i. (*C*) Upstream regulators of DEM and target DEG from the filtered miR-mRNA target list from Figure 2*B* at d8 and at d30 p.i. (*D*) P14 cells were transduced with control (empty) RV or miR-29a RV. Transduction efficiency was measured by fow cytometry at 24 hrs post transduction. Mean % of VEX+ cells out of total P14 \pm SEM is shown (top black: control RV; bottom red: miR-29a OE RV). (*E*) CD45.1+ P14 CD8 T cells were transduced with either control-VEX RV (ctrl) or miR-29a OE RV (miR) and adoptively transferred to CD45.2+ recipient mice that were infected with LCMV clone 13 at 24 hrs earlier. Frequency and phenotype of donor VEX+ P14 cells in spleens at d8 p.i. is shown.

(*F*-*G*) CD45.1+ P14 CD8 T cells were transduced with either scrambled-GFP RV or miR-29a OE-GFP RV (miR) and adoptively transferred to CD45.2+ recipient mice that were infected with LCMV clone 13 at 24 hrs earlier. At d30 p.i. the phenotype of the transferred and transduced cells was analyzed by flow cytometry. (*F*) FACS plots are gated on total P14 CD45.1+ cells. (*G*) FACS plots are gated on GFP+ P14 cells. Each data point represents an individual mouse. *P* values calculated with Mann-Whitney test.

Supplementary Figure 3. The miR-29a effects on T_{EX} differentiation are intrinsic to CD8 T cells and result in a T_{MEM} -like transcriptional profile.

(*A-B*) CD45.1+ P14 CD8 T cells were transduced with either control-VEX RV (ctrl) or miR-29a OE-VEX RV (miR) and adoptively transferred to CD45.2+ recipient mice that were infected with LCMV clone 13 at 24 hrs earlier. (*A*) Viral loads for LCMV were analyzed in the serum at d30 p.i. using plaque assay. (*B*) Expression of surface markers was analyzed on non-transduced (VEX negative) P14 cells at d30 p.i. in spleens.

(*C*) 10⁶ CD8 T cells purified from splenocytes from CD45.2+ miR-29ab1^{fl/fl} CD4 Cre⁺ ("miR-29a ko") and littermate control wild-type (wt) mice were transferred to wild-type CD45.1 recipient mice that were infected with LCMV clone 13 at 24 hrs later. Donor wt or ko CD8 T cells were analyzed at d13 p.i. FACS plots are gated on donor CD45.2+ cells. Each data point represents an individual mouse.

(*D*) CD8 T cells were purified from spleens of WT mice and transduced with empty RV or miR-29a-OE RV (both expressing VEX as a reporter) and with a 3'UTR sensor GFP reporter RV (33) containing either *Gadph* 3'UTR or *Eomes* 3'UTR. 24h later, GFP expression was analyzed by flow cytometry. FACS plots are gated on VEX+ CD8 T cells.

(*E*) miR-29a-OE VEX+ P14 and control VEX+ P14 cells were sorted from spleens at d30 p.i. and quantitative RT-PCR was performed.

(*F-I*) RNASeq was performed using control or miR-29a-OE VEX+ P14 from d30 p.i. with LCMV clone 13 (as described in Figure 3). (*F*) GSEA for a geneset of predicted miR-29a targets (from MSigDB). (G) Leading edge genes significantly enriched in control vs miR-29a OE cells (from Fig. S3*E*). (*H*) GSEA for a geneset of T_{EFF} vs T_{MEM} (from MSigDB). (*I*) GSEA for a geneset of genes upregulated upon miR-155-OE (from Stelekati et al., 2018). Table shows leading edge genes significantly enriched in control vs miR-29a OE cells.

Supplementary Figure 4. Fos and Tox OE antagonize the effects of miR-29 OE and miR-29a OE enhances CD8 T cell responses during acute infection

(*A*) CD45.1+ P14 CD8 T cells were transduced with miR-29a-GFP RV and empty-VEX RV or Jun-VEX RV (OE Jun) or Fos-VEX RV (OE Fos) or Tox-VEX RV (OE Tox). P14 cells transduced with empty-GFP RV and empty-VEX RV served as negative control. 5 x 10⁴ cells were adoptively transferred to CD45.2+ recipient mice that were infected with LCMV clone 13 at 24 hrs earlier. P14 cells transduced with both RV were identified as VEX+ GFP+ cells and analyzed at d14 p.i. FACS plots are gated on transferred CD45.1+ P14 cells. Histograms showing the phenotype of cells are gated on VEX+ GFP+ P14 cells. Each data point represents an individual mouse. Statistical significance was calculated using Kruskal-Wallis test with Dunn's multiple comparison post-test.

(*B-D*) CD45.1+ P14 CD8 T cells were transduced with either control-VEX RV (ctrl) or miR-29a OE-VEX RV (miR) and adoptively transferred to CD45.2+ recipient mice that were infected with LCMV Armstrong at 24 hrs earlier. (*B*) Expansion of transferred P14 cells at d35 p.i. in spleens. (*C*) Surface expression of CD127 and KLRG1 on VEX+ P14 cells (*D*) Cytokine production by VEX+ P14 cells after ex vivo 5hr re-stimulation with gp-33 peptide.

Supplementary Table 1. Differentially expressed transcripts with FDR<0.05 between ctrl and miR-29a-OE CD8 T cells.

P14 cells were transduced with miR-29-OE or control RV and adoptively transferred into congenically marked recipient mice as described in Fig. 3A. At d30 p.i., miR-29-OE and control VEX+ P14 cells were sorted by FACS and RNASeq was performed. Table shows transcripts differentially expressed between miR-29-OE and control VEX+ P14 cells with FDR<0.05.

Supplementary Table 2. Pathway analysis reveals a role for miR-29a in regulating ribosomal pathways.

RNASeq analysis was performed in miR-29-OE and control P14 CD8 T cells exposed to clone 13 infection for 30 d, as described in Fig. 3. GSEA was performed using the database MSigDB. Table shows pathways from the GO Molecular Functions database enriched with FDR<0.05.

Supplementary Table 3. miR-29a abrogates the response to antigen signaling and inflammation.

RNASeq analysis was performed in miR-29-OE and control P14 CD8 T cells exposed to clone 13 infection for 30 d, as described in Fig. 3. GSEA was performed using the database MSigDB. Table shows pathways from the Hallmark database enriched in control vs miR-29-OE P14 CD8 T cells (with FDR<0.05).

Supplementary Table 4. GSEA analysis implicates major transcription factors regulation by miR-29a.

RNASeq analysis was performed in miR-29-OE and control P14 CD8 T cells exposed to clone 13 infection for 30 d, as described in Fig. 3. GSEA was performed using the database MSigDB. Table shows pathways from the PID database enriched in control vs miR-29-OE P14 CD8 T cells (with FDR<0.05).

•

Α

D

	TI	N	TEFF		TMEM	
microRNA	mean	STDV	mean	STDV	mean	STDV
mmu-let-7b	10.84	0.50	6.87	0.54	10.29	0.10
mmu-let-7c	10.88	0.54	7.51	0.55	10.63	0.11
mmu-miR-130b	3.76	0.94	6.01	0.89	4.70	1.16
mmu-miR-139-5p	5.89	0.80	3.11	0.75	7.11	0.32
mmu-miR-140-star	6.24	0.71	4.82	1.31	7.51	0.28
mmu-miR-146a	3.79	1.16	8.77	1.06	10.26	0.72
mmu-miR-155	5.56	0.75	8.03	0.70	8.59	0.80
mmu-miR-181a	7.79	0.58	3.68	0.36	4.23	1.24
mmu-miR-182	2.51	0.69	7.54	0.83	5.39	1.78
mmu-miR-183	2.11	0.58	5.38	1.06	2.84	1.03
mmu-miR-21	2.44	0.63	5.38	2.25	6.00	1.91
mmu-miR-2137	4.34	1.41	7.89	1.18	7.13	0.53
mmu-miR-221	3.42	0.67	4.91	1.47	5.95	0.87
mmu-miR-222	2.87	0.57	4.79	1.25	4.75	1.37
mmu-miR-26a	9.43	0.31	7.16	1.15	10.18	0.57
mmu-miR-27b	4.54	0.72	6.58	1.43	6.78	1.39
mmu-miR-29a	6.84	0.36	5.46	1.71	8.97	0.75
mmu-miR-31	2.64	0.63	6.69	0.85	7.59	0.65
mmu-miR-320	5.98	0.72	3.50	0.74	5.44	0.39
mmu-miR-342-3p	9.84	0.26	6.90	0.41	9.47	0.31
mmu-miR-342-5p	6.79	0.45	3.08	0.30	4.62	1.04
mmu-miR-378	6.85	0.49	4.19	1.09	7.27	0.44

T_{MEM} vs T_{EFF}

	1	N	IEE		IEX	
	mean	STDV	mean	STDV	mean	STDV
mmu-let-7a	9.81	0.49	7.45	0.41	9.10	0.97
mmu-let-7b	10.84	0.50	6.07	0.20	8.40	0.74
mmu-let-7c	10.88	0.54	6.23	0.32	8.85	0.71
mmu-let-7e	4.40	1.34	2.31	0.40	2.23	1.91
mmu-let-7f	6.49	0.52	3.61	0.61	5.04	2.38
mmu-let-7g	7.23	0.44	4.35	0.59	6.50	1.55
mmu-miR-106a	5.46	0.47	6.09	0.80	3.45	2.33
mmu-miR-139-5p	5.89	0.80	2.32	0.36	3.34	2.44
mmu-miR-140-star	6.24	0.71	3.51	0.48	4.09	2.81
mmu-miR-146a	3.79	1.16	7.39	0.88	8.41	0.99
mmu-miR-150-star	5.04	1.18	3.04	0.62	2.85	2.05
mmu-miR-150	11.82	0.30	9.12	0.37	11.16	0.79
mmu-miR-155	5.56	0.75	8.77	0.70	9.81	0.63
mmu-miR-17-star	4.25	1.29	2.84	0.34	1.90	1.38
mmu-miR-17	6.60	0.20	7.01	0.96	4.45	2.16
mmu-miR-181a	7.79	0.58	4.06	0.58	2.01	1.38
mmu-miR-181b	4.41	0.99	3.27	0.57	1.58	1.21
mmu-miR-182	2.51	0.69	5.03	1.24	3.56	2.51
mmu-miR-1949	4.27	0.81	3.87	0.54	2.09	1.35
mmu-miR-20a	5.52	0.40	5.60	0.86	3.76	2.42
mmu-miR-20b	5.40	0.51	5.23	0.97	3.18	2.40
mmu-miR-21	2.44	0.63	3.32	0.59	6.37	2.14
mmu-miR-222	2.87	0.57	5.07	0.58	2.86	2.24
mmu-miR-26a	9.43	0.31	5.48	0.90	8.28	1.03
mmu-miR-29a	6.84	0.36	3.08	0.58	4.64	3.19
mmu-miR-30d	4.64	0.77	2.92	0.89	2.50	2.22
mmu-miR-31	2.64	0.63	4.56	0.69	2.20	1.71
mmu-miR-320	5.98	0.72	3.64	0.67	2.95	2.04
mmu-miR-342-3p	9.84	0.26	6.36	0.75	6.01	2.39
mmu-miR-342-5p	6.79	0.45	3.18	0.97	2.25	1.50
mmu-miR-361	6.56	0.43	3.86	0.57	3.91	2.59
mmu-miR-378	6.85	0.49	3.22	0.08	3.36	2.74
mmu-miR-423-5p	3.90	1.22	3.14	1.02	1.80	1.17
mmu-miR-425	4.88	0.97	4.61	0.61	2.96	2.31
mmu-miR-652	6.35	0.72	4.96	0.97	3.80	2.73
mmu-miR-669c	3.93	1.54	2.40	0.54	1.62	1.18
mmu-miR-674	4.49	0.31	3.36	0.75	1.94	1.46
mmu-miR-744	4.34	1.04	4.31	0.60	2.05	1.32
mmu-miR-92a	9.90	0.54	8.31	0.38	7.98	0.84

 $T_{\text{EE}} \, vs \, T_{\text{EX}}$

Figure S4

Table S1. Differentially expressed transcripts with FDR<0.05 between</th>

ctrl and miR-29a-OE CD8 T cells.

	•	IB	F 1 1 O 1 (((50.0
	Gene	טו	Fold Change (log2	p-value	FDR
niR-29-OE ttrol	Mir29a	ENSMUSG0000065610.1	1.668854047	2.24E-10	5.54E-07
	Tcf7	ENSMUSG0000000782.15	0.837606356	2.77E-07	0.00029363
	ll7r	ENSMUSG0000003882.4	1.036851526	7.02E-07	0.00057874
	Gm1070	ENSMUSG0000073018.5	1.134797738	3.87E-06	0.00239011
	Slamf6	ENSMUSG00000015314.10	0.689871863	6.12E-06	0.00349178
	ltab1	ENSMUSG0000025809.15	0.683290415	5.94E-06	0.00349178
	Tnfrsf26	ENSMUSG0000045362.8	0.920397853	6 72E-06	0.00369158
<u> </u>	Guov1a3	ENSMUSC0000033910 13	1.026657351	0.52E-06	0.00504384
d in Is c	Cd9b1	ENSMUSC0000053044 8	0.620611547	1.62E.05	0.00304304
	Cubb I	ENSMUSC00000033044.8	0.009011347	F 26E 05	0.00733018
su te	Cariz	ENSMUSG00000032373.15	0.990193713	5.26E-05	0.0199964
	Rcn3	ENSMUSG00000019539.11	0.905058776	0.00010431	0.03293237
ul Vē	SIc17a9	ENSMUSG0000023393.15	0.745775601	0.00010346	0.03293237
Di	Smyd1	ENSMUSG00000055027.17	0.782633627	0.00011533	0.03565184
J.C.	Mypopos	ENSMUSG0000086533.2	0.747019306	0.00013306	0.03956858
ď	Thy1	ENSMUSG0000032011.5	0.545338348	0.00013334	0.03956858
<u> </u>	Nt5e	ENSMUSG0000032420.8	0.772793702	0.00018291	0.05001543
	ll18r1	ENSMUSG0000026070.15	0.617887008	0.00018539	0.05001543
	Hspa1b	ENSMUSG00000090877.3	-3.836339875	5.92E-58	8.78E-54
	Hspa1a	ENSMUSG00000091971.3	-3.612186398	3.60E-47	2.67E-43
	Hsph1	ENSMUSG0000029657 15	-2 022076315	2 84E-18	1 40F-14
	HenQ0aa1	ENSMUSC0000021270 13	_1 170705347	6.21E-18	2 30E-14
	Dogib1	ENSMUSC00000021270.13	1 677051352	9.92E 15	2.50E-14
	Dhab		-1.077931332	0.03E-13	2.02E-11
	RIDD	ENSMUSG00000054364.5	-1.32/1/2421	2.91E-10	0.17E-07
	Dnaja1	ENSMUSG0000028410.13	-1.24/43132	3.52E-10	6.53E-07
	Ubc	ENSMUSG0000008348.9	-0.8749174	7.37E-10	1.21E-06
	Jun	ENSMUSG0000052684.4	-1.24247249	1.64E-09	2.44E-06
	Csf1	ENSMUSG00000014599.10	-1.360611353	4.24E-09	5.72E-06
2	Gm26532	ENSMUSG0000097296.1	-1.363372744	5.34E-09	6.61E-06
J	Gm37352	ENSMUSG00000103593.1	-0.996462023	2.37E-07	0.00027027
ō	Rgs1	ENSMUSG0000026358.13	-1.10662335	3.05E-07	0.00030129
C	Tox	ENSMUSG00000041272.11	-0.788926088	3.32E-07	0.00030769
S	Vcam1	ENSMUSG00000027962.14	-0.912440861	5.49E-07	0.00047892
รเ	Slc40a1	ENSMUSG0000025993 10	-0 897654665	1 45E-06	0.00113368
<u> </u>	Gm26802	ENSMUSG0000097266 1	-1 242648356	2.69E-06	0.00199341
>	Itrad	ENSMUSG0000070369 13	-0.908780518	3.48E-06	0.00139011
ш	Foe	ENSMUSC0000021250.13	-1.08225231	3.77E-06	0.00230011
Ò	103 laku4 80	ENSMUSC0000021230.13	1 225085602	3.655.06	0.00230011
6	IGKV4-00	ENSMUSG00000076340.3	-1.225065092	3.03E-00	0.00239011
5	GZITIK	ENSMUSG00000042385.14	-0.737611022	1.14E-05	0.00584089
R	Gm8696	ENSMUSG00000092557.1	-1.075828644	1.37E-05	0.00675953
3	Hspa8	ENSMUSG00000015656.17	-0.557022286	1.53E-05	0.00733176
2	Klf6	ENSMUSG0000000078.6	-0.834988394	1.58E-05	0.00733176
. =	Gla	ENSMUSG0000031266.6	-1.008648449	1.86E-05	0.00810067
p	Ccl3	ENSMUSG0000000982.5	-1.022573671	3.67E-05	0.01555889
te	Klf4	ENSMUSG0000003032.8	-0.942095263	4.25E-05	0.01752651
	Morf4I2	ENSMUSG0000031422.16	-0.64176507	4.59E-05	0.01792211
n	Rasgef1b	ENSMUSG0000089809.9	-1.041056627	4.59E-05	0.01792211
ě	Entpd1	ENSMUSG00000048120.16	-0.696113773	5.66E-05	0.02098333
JL J	Gem	ENSMUSG0000028214.13	-0.970158208	7.06E-05	0.02493458
Dowr	Imna	ENSMUSG0000028063 15	-1 037806404	7 03E-05	0 02493458
	Zfand2a	ENSMUSG0000053581 13	-0.988401993	7.83E-05	0.02701972
	Hena5	ENSMUSG0000026864 13	-0 6017439	9.47E-05	0.02101012
	Hmov1	ENSMUSC00000020804.13	0 700299106	9.47L-05	0.03195240
			-0.790300100	9.902-05	0.03203235
			-0.964276445	0.00014919	0.04340507
	ваg3		-0.717392403	0.00017735	0.0496501
	Selenon	ENSMUSG0000050989.9	-0.747482099	0.00017515	0.0496501
	Anxa3	ENSMUSG0000029484.12	-0.979858736	0.00019157	0.05075884
	Mrc1	ENSMUSG00000026712.3	-0.766719089	0.00019599	0.05101822
	Prdm1	ENSMUSG0000038151.13	-0.658486597	0.0002103	0.05373589
	Hdc	ENSMUSG0000027360.5	-0.974183547	0.00021367	0.05373589
	Ccl4	ENSMUSG00000018930.3	-0.919504465	0.00021933	0.05424026

Table S2. Pathway analysis reveals a role for miR-29a in regulating ribosomal pathways.

	Pathway	NES	p-value	FDR q-val
	GO_HEPARIN_BINDING	1.9998995	0	9.87E-04
	GO GLYCOSAMINOGLYCAN BINDING	1.9728819	0	0.001476214
	GO VIRUS RECEPTOR ACTIVITY	1.9051809	0	0.005832384
	GO CARGO RECEPTOR ACTIVITY	1.8843999	0	0.008010143
	GO PROTEIN PHOSPHATASE 1 BINDING	1.8753409	0	0.006787285
	GO CHEMOKINE RECEPTOR BINDING	1.8591025	0	0.007598455
	GO CHEMOKINE ACTIVITY	1.853316	0	0.007057953
	GO ANTIGEN BINDING	1.8529849	0	0.006295385
	GO_ANKYRIN_BINDING	1.8371035	0	0.007966366
	GO_PROTEIN_SERINE_THREONINE_KINASE_INHIBITOR_ACTIVITY	1.833835	0	0.007461031
Ö	GO_INTEGRIN_BINDING	1.7880956	0	0.01530952
6	GO SULFUR COMPOUND BINDING	1.7853351	0	0.015010715
Ņ.	GO MHC PROTEIN COMPLEX BINDING	1.7828696	0.001298701	0.014225458
Ä	GO CCR CHEMOKINE RECEPTOR BINDING	1.7790247	0	0.014453033
Ξ	GO G PROTEIN COUPLED CHEMOATTRACTANT RECEPTOR ACTIVITY	1.7742513	0	0.014843537
S	GO_LIPOPOLYSACCHARIDE_BINDING	1.7636839	0.002604167	0.016581804
l versu	GO_TRANSCRIPTIONAL_ACTIVATOR_ACTIVITY_RNA_POLYMERASE_II_ TRANSCRIPTION_REGULATORY_REGION_SEQUENCE_SPECIFIC_BINDING	1.7485485	0	0.019711105
6	GO_CELL_ADHESION_MOLECULE_BINDING	1.7133139	0	0.034570206
<u>t</u>	GO_SIGNALING_PATTERN_RECOGNITION_RECEPTOR_ACTIVITY	1.6940093	0.002663116	0.04318708
ō	GO_COLLAGEN_BINDING	1.6919171	0.001128668	0.04209192
u u	GO_TRANSCRIPTION_FACTOR_ACTIVITY_RNA_POLYMERASE_II_CORE_			
	PROMOTER_PROXIMAL_REGION_SEQUENCE_SPECIFIC_BINDING	1.6858249	0	0.04437762
Jec	GO_TRANSCRIPTIONAL_REPRESSOR_ACTIVITY_RNA_POLYMERASE_II_	1 6950046	0	0.042944445
5	CORE_PROMOTER_PROXIMAL_REGION_SEQUENCE_SPECIFIC_BINDING	1.0852040	0 000604467	0.042844445
Ŀ		1.0837938	0.002604167	0.041654456
ш		1.0812908	0	0.041535128
		1.6802255	0.00249066	0.040379133
		1.6797727	0.003963012	0.03901474
		1.6770134	0.002392344	0.03928865
		1.6709392	0	0.041314952
		1.6684775	0	0.041325763
	GO_TRANSCRIPTIONAL_ACTIVATOR_ACTIVITY_RNA_POLYMERASE_II_	4 0000054	0	0 0 40 40 5 70
	CORE_PROMOTER_PROXIMAL_REGION_SEQUENCE_SPECIFIC_BINDING	1.6628654	0	0.04340573
	GO_IRANSMEMBRANE_RECEPTOR_PROTEIN_KINASE_ACTIVITY	1.6586456	0.002207506	0.044135597
		1 6294452	0.002921656	0.054071095
		-2 64858	0.003821656	0.054071985
4		-2 228179	0	0 002554956
lik	GO TRANSFERASE ACTIVITY TRANSFERRING ONE CARBON GROUPS	-2.220175	0	0.002004000
r sl		2.1000000		0.00020212
<u>3</u> II.		-2.118749	Λ	0.003431993
ed .	GO N METHYI TRANSFERASE ACTIVITY	-1.9876801	0	0.013086284
ξú 2	GO INTRAMOLECULAR TRANSFERASE ACTIVITY	-1.9746794	0	0.014042074
iž Q Ž	GO TRNA BINDING	-1.9109718	0	0.021631014
с 3 <u>п</u>	GO_RNA_METHYLTRANSFERASE_ACTIVITY	-1.8186724	0	0.046576265

Table S3. miR-29a abrogates the response to antigen signaling and inflammation.

	Pathway	NES	p-value	FDR q-val
	HALLMARK_TNFA_SIGNALING_VIA_NFKB	2.2810934	0	0
	HALLMARK_INFLAMMATORY_RESPONSE	2.0561085	0	0
	HALLMARK_COAGULATION	1.9774284	0	0
	HALLMARK_ANGIOGENESIS	1.933186	0	2.55E-04
	HALLMARK_G2M_CHECKPOINT	1.8838992	0	2.04E-04
	HALLMARK_HEME_METABOLISM	1.8640239	0	1.70E-04
ō	HALLMARK_APOPTOSIS	1.859348	0	1.46E-04
6	HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION	1.8552928	0	1.28E-04
Ň	HALLMARK_COMPLEMENT	1.8386849	0	1.13E-04
liR	HALLMARK_HYPOXIA	1.8294535	0	1.02E-04
5	HALLMARK_IL6_JAK_STAT3_SIGNALING	1.8015174	0	2.75E-04
S	HALLMARK_E2F_TARGETS	1.7769446	0	3.35E-04
ns	HALLMARK_UV_RESPONSE_UP	1.7716143	0	3.09E-04
ů Ú	HALLMARK_KRAS_SIGNALING_UP	1.7480567	0	3.59E-04
Š	HALLMARK_TGF_BETA_SIGNALING	1.6921066	0	0.001133623
0	HALLMARK_CHOLESTEROL_HOMEOSTASIS	1.6551964	0.003267974	0.001880865
Ţ	HALLMARK_IL2_STAT5_SIGNALING	1.6289208	0	0.002657183
LO LO	HALLMARK_UV_RESPONSE_DN	1.6220567	0	0.002565117
ŏ	HALLMARK_P53_PATHWAY	1.6194744	0	0.00258922
2.	HALLMARK_MITOTIC_SPINDLE	1.6024842	0	0.002860379
5	HALLMARK_APICAL_SURFACE	1.588868	0.007083825	0.003196554
je	HALLMARK_ESTROGEN_RESPONSE_LATE	1.5846844	0	0.003459575
5	HALLMARK_INTERFERON_GAMMA_RESPONSE	1.5592397	0	0.004677468
Ξ.	HALLMARK_ESTROGEN_RESPONSE_EARLY	1.5591127	0	0.004482574
En	HALLMARK_ALLOGRAFT_REJECTION	1.5342426	0	0.006175945
	HALLMARK_APICAL_JUNCTION	1.5327951	0	0.00605468
	HALLMARK_MYOGENESIS	1.5304984	0	0.006056665
	HALLMARK_MTORC1_SIGNALING	1.482623	0	0.010572976
	HALLMARK_GLYCOLYSIS	1.4380513	0.002026343	0.017641183
	HALLMARK_PEROXISOME	1.43582	0.013948498	0.017618116
	HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY	1.3476757	0.06849315	0.048815593

Table S4. GSEA analysis implicates major transcription factors regulation by miR-29a.

	Pathway	NES	p-value	FDR q-val
	PID_AP1_PATHWAY	2.2547114	0	0
	PID_CMYB_PATHWAY	2.1555052	0	0
	PID_FRA_PATHWAY	2.004249	0	3.54E-04
	PID_ATF2_PATHWAY	1.9475356	0	2.66E-04
	PID_NFAT_TFPATHWAY	1.908189	0	0.001312842
	PID_GMCSF_PATHWAY	1.8937105	0	0.001637884
	PID_FGF_PATHWAY	1.8743266	0	0.001875016
	PID_UPA_UPAR_PATHWAY	1.8653686	0	0.002060084
	PID_INTEGRIN3_PATHWAY	1.8543769	0	0.001831186
	PID_AURORA_B_PATHWAY	1.852264	0	0.001755662
Щ	PID_IL23_PATHWAY	1.8099326	0	0.004490031
Ģ	PID_INTEGRIN1_PATHWAY	1.8022411	0	0.004670415
ō.	PID_FOXM1_PATHWAY	1.7934716	0.001180638	0.004564447
Ϋ́Υ	PID_INTEGRIN_A9B1_PATHWAY	1.7898757	0.001215067	0.004473784
i i i i i i i i i i i i i i i i i i i	PID_LYSOPHOSPHOLIPID_PATHWAY	1.7629633	0	0.0069737
Ξ	PID_AVB3_OPN_PATHWAY	1.7628356	0.001177856	0.006537844
S	PID_AURORA_A_PATHWAY	1.7592673	0.003558719	0.006416565
ns	PID_NCADHERIN_PATHWAY	1.7560147	0.00118624	0.006548575
Ü	PID_PLK1_PATHWAY	1.7433734	0.001137656	0.007844676
Š	PID_AVB3_INTEGRIN_PATHWAY	1.7406168	0	0.007780236
0	PID_TCR_CALCIUM_PATHWAY	1.7356753	0.002409639	0.008512248
Ę	PID_INTEGRIN2_PATHWAY	1.6987184	0.007556675	0.013878844
5	PID_INTEGRIN_A4B1_PATHWAY	1.6825811	0.003525264	0.017312404
ŏ	PID_S1P_S1P2_PATHWAY	1.6801293	0.002567394	0.016961047
<u> </u>	PID_FCER1_PATHWAY	1.669008	0.001091703	0.018622821
σ	PID_NECTIN_PATHWAY	1.647273	0.006031363	0.025575753
ē	PID_AJDISS_2PATHWAY	1.6435955	0.002325581	0.025613196
Ċ	PID_HIF1_TFPATHWAY	1.6431552	0.003278689	0.024815701
ï	PID_SYNDECAN_1_PATHWAY	1.6359407	0.002344666	0.026237834
ш	PID_BCR_5PATHWAY	1.6193848	0.002176279	0.03135541
	PID_PTP1B_PATHWAY	1.6159371	0.005780347	0.031833865
	PID_AR_TF_PATHWAY	1.6091808	0.005586592	0.0335987
		1.596056	0.00820633	0.03783006
	PID_E2F_PATHWAY	1.5849514	0.002190581	0.04188783
	PID_REG_GR_PATHWAY	1.582815	0	0.041841634
	PID_TOLL_ENDOGENOUS_PATHWAY	1.5810785	0.008728179	0.04174853
		1.5708923	0.012127894	0.04646383
		1.5676435	0.007168459	0.047392823
		1.566764	0.001068376	0.04660435
	PID_RAC1_PATHWAY	1.5647382	0.006711409	0.046271548
	PID_IL4_2PATHWAY	1.5534688	0.011866235	0.05104758