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Extended methods

Stimulus generation

All stimuli used in these experiments were either natural images, drawn from image
searches of Creative Commons licensed texture and object images, or were synthetically
generated through an iterative optimization procedure (“synths”). We selected 34 natural images
(22 objects and 12 textures), cropped them into squares, and downsampled the images to 256 x
256 pixels. Images were selected as “object stimuli” only if they contained exactly one object,
either animate or inanimate, that was clearly visible in the image. Images were selected as
texture stimuli if they contained repeated patterns and/or numerous objects that were similar in
appearance. Images were categorized as textures or objects by the authors prior to data
collection, and these category judgments were confirmed using a Mechanical Turk experiment
where an independent sample of 65 subjects were asked to categorize each image as either a
texture or object (mean correlation between subjects’ categorizations and our categorization was
0.924).

The image generation procedure, adapted from (1) involved three major steps: feature
extraction, spatial pooling, and image synthesis via pixel-wise optimization. In the feature
extraction stage, each natural image was passed into an Imagenet-trained VGG-19 deep
convolutional neural network (2), and the activations of 3 intermediate layers (pool1, pool2, and
pool4) were extracted (Fig. 1A). The spatial pooling stage of the standard Gatys algorithm was
done by computing the Gramian matrix, i.e. the inner product between all pairs of activation
maps, in each layer. The Gramian matrix preserves information about the incidence of individual
features as well as the co-incidence of multiple features, while discarding information about the
spatial position of those features. Finally, using gradient descent with the L-BFGS algorithmic
solver (3), we updated the pixels of a random white noise image to minimize the mean squared
error to the Gramian computed for the natural image (1, 4, 5).

This image synthesis algorithm allowed us to control the complexity of the features in the
natural image which are matched in the synthesized output. By varying which layers were
included in the loss function, we controlled the complexity of the features in the generated image.
This is based on prior research suggesting that early layers of dCNNs encode simple features,
such as orientation and spatial frequency, whereas later layers encode more complex features,
such as texture, shape, or category identity (6—10). This is an improvement over other texture
synthesis algorithms, such as the Portilla-Simoncelli algorithm (4), which includes only one level
of higher order statistics computed from the pairwise correlations of a V1-like filterbank (11). We
selected 3 different layers from the VGG19 model to include in the synthesis procedure: pool1, an
early layer (64 filters); pool2, an intermediate layer (128 filters); and pool4, a late layer (256
filters). Layers were added incrementally, so images generated in the pool1 condition include only
pool1 features, whereas images generated in the pool4 condition include features from layers
pool1, pool2, and pool4.

This image synthesis algorithm also allowed control over the spatial scale within which
the spatial arrangement of features is constrained. Whereas the original Gatys algorithm (1) pools
features across the entire image, we modified the algorithm to compute spatially weighted
Gramians, which only pooled features within pre-defined spatial pooling regions (4). We tiled the
image with equal-sized square spatial pooling regions with smooth transition boundaries defined
by a squared cosine function with 20 pixel ramping boundaries. For each unit in the model, we
calculated the overlap between its receptive field, calculated based on the kernel size and RF of
VGG19, and each spatial pooling region. We used this to compute a spatially weighted Gramian
matrix for each pooling region, wherein units are included in proportion to how much their
receptive field overlaps the spatial pooling region. By varying the size and number of spatial
pooling regions, we imposed stronger or weaker constraints on the spatial arrangement of
features. Low spatial constraint synths are ones in which the spatial arrangement of the features
can be scrambled across the entire image (which we call 1x1 as there is a single spatial pooling
region) and high spatial constraint synths are those in which the arrangement of the features are



constrained within small subregions of the image, (for example, a 4x4 set of spatial pooling
regions constrains features in subregions that are 1/16th the area of the full image).

The number of parameters that constrained each image was a function of the size of the
Gramian and the number of spatial pooling regions. The size of the Gramian for a particular layer
is equal to the square of the number of filters in each layer, so pool1 images were constrained by
4096 (642?) parameters, pool2 images were constrained by 20480 parameters (1282 + 642), and
pool4 images were constrained by 282624 parameters (5122 + 1282 + 642). To constrain spatial
arrangement of features, we computed a separate Gramian for each spatial pooling region, so the
number of spatial pooling regions was a multiplier on the number of parameters. For example, the
4x4 images contained 16x the number of parameters as the 1x1 images.

Finally, by initiating the optimization process with different random seed images, we
generated multiple different synthesis samples which differed significantly in the pixel
representation space but contained nearly identical features within each spatial pooling region.
For each natural image, we synthesized 3 samples at each of 3 layers (pool1, pool2, and pool4)
and 4 spatial constraints (1x1, 2x2, 3x3, 4x4), for a total of 36 synthesized samples per natural
image. We used the Adam optimizer (12), implemented in Tensorflow (13), and terminated the
image synthesis optimization after 10,000 iterations.

Behavioral Methods

Experimental Design — Natural-vs-synth oddity detection task

In the oddity detection experiment, observers performed a 3 alternative forced choice
judgment of the odd-one-out (14). On each trial (Fig. 2A), observers were asked to fixate
centrally on a cross for the duration of the trial, although we could not enforce fixation with eye-
tracking and did not employ a central task at fixation. After 200ms of fixation, 3 images were
presented -- 1 natural and 2 synths -- concurrently for 2 seconds. Observers were instructed to
respond within 2 seconds of stimulus onset, using a keypress, to indicate which image was most
different from the others, and on 89.04% of trials, subjects did respond within the time limit (mean
RT: 1.08s, SD=0.41s). The two synths were always generated to match the features of the
natural image and were both generated from the same layer and spatial constraint, with a
different random seed. Following the subject’s response, they were shown feedback in the form
of the fixation cross changing color for 200ms to either green, indicating a correct response, or
red, indicating an incorrect or no response. We also conducted a control experiment where no
feedback was given (Fig. S$4), to ensure that the feedback was not biasing subjects’ responses.
On each trial, we randomly selected a natural image and 2 different synthesized samples, both
with the same feature complexity and spatial constraints, to display. Images subtended
approximately 8 degrees, though there was some variability due to the screen and window size of
individual participants. Each image was centered 6 degrees away from the fixation cross. We
performed this experiment both on Amazon Mechanical Turk, where we recruited 87 subjects
who performed a total of 6165 trials, as well as in the lab, where we recruited 2 subjects to
perform a total of approximately 5000 trials each and were able to enforce fixation using an
Eyelink eyetracking system that aborted any trials where subjects’ eye-gaze deviated more than 1
degree from the fixation cross. A comparison of in-lab and online data is presented in Supp. Fig.
S3. We presented 34 different image classes in this behavioral experiment, including 22 object
image classes (Fig. 2) and 12 texture image classes (Fig. $1), where an image class is defined
as the set of images including a natural image and all corresponding feature-matched
synthesized samples.

Experimental Design — Category oddity detection task

To determine human performance at discriminating natural objects of different categories,
we recruited human observers to perform a category-level oddity detection task. Like the natural-
vs-synth oddity task, subjects were first asked to fixate centrally on a cross for 200ms and were
then presented with 3 images concurrently for 2 seconds. Two of those images contained objects
from the same category and the third image contained an object of a different category. Subjects
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were instructed to choose the odd-one-out, i.e. the image which appeared most different from the
others. Images subtended approximately 8 degrees and were centered approximately 6 degrees
away from the fixation cross. We performed this experiment on Amazon Mechanical Turk, where
we recruited 85 subjects who performed a total of 3448 trials.

Experimental Design - Pairwise dissimilarity judgment task

To determine the perceptual similarity of synths with naturals, we conducted a
dissimilarity judgment experiment with an independent set of 110 observers. On each ftrial,
observers were shown 4 images, grouped into two pairs and were asked to indicate with a
keypress which of the two pairs was more dissimilar. Images subtended 8 degrees. Each pair
was centered 8 degrees to the left and right of fixation, with 4 degrees of vertical separation
between each image. Subjects fixated for 200ms and then stimuli were presented for 2 seconds
and subjects were allowed to respond any time before the images disappeared. No feedback was
given. As with the oddity detection task, all images presented on a given trial were generated to
match the same natural image, and all synths were of the same feature complexity and spatial
constraint. However, unlike the oddity detection task, on a randomly interleaved half of all trials,
all 4 images were synths, and on the other half of the trials, 1 image was the natural image and
the other 3 were synthesized images with scrambled arrangements of features. This enabled us
to determine the perceptual similarity between the synths and the naturals as well as the
perceptual similarity between different synths. We average together all the distances between
pairs of synths to yield a single synth-synth distance. Across all trials, subjects saw 1666 unique
images: 34 image classes x (1 natural image + (4 synthesized images x 3 levels of feature
complexity x 4 levels of spatial constraint)). However, only trials from the 1x1 pool4 condition
were used for estimating perceptual distances. We collected a total of 8687 trials across 110
observers.

Estimating perceptual distances

On any given trial, the observer saw 4 images grouped into 2 pairs, (i, i,) and (i3, i,),
and was asked to report which pair was more dissimilar. We can thus represent the probability
that the observer will select the first pair (i, i,) as:

P(Dy; — D3y +€>0)
where D, , represents the perceptual distance between the first pair of images, D, , represents
the distance between the second pair of images, and € is a Gaussian-distributed random variable
with mean 0 and standard deviation o representing the combination of sensory and response
noise. Then, the probability that the observer will select the first pair is given by P(e <D, — D3_4),
which can be computed as the cumulative distribution function of €, ®(x) evaluated at D, , — D3 ,.
The probability of selecting the second pair is then given by 1 — ®(D;, — D5 ,). Over N trials, if we
observe responses 4, ..., 1y, we can compute the likelihood of observing these responses given
the pairwise distances, as

P(ry, ..., 7y|D12, D13, o, Dy_1 5, 0) = ncb(Dlm Dl3l4) X (1= (D, ;, = Dy, N

Then, we used the Nelder-Mead optlmlzatlon algorithm, as implemented in the Python scipy
library (15), to find the values of the distances and the ¢ that maximize this likelihood function.
For each of the 34 image classes (which were also presented in the oddity task), we estimated
the pairwise distances between 5 images (1 natural, 4 synth), resulting in 10 pairwise distances

((;)) to estimate for each image class, yielding a total of 341 parameters (including o) that were
estimated on 8687 trials of oddity detection behavior.

dCNN observer model

On each trial, our model extracted a feature vector from the last convolutional layer of the
dCNN for each image presented (Fig. 2B). Next, we computed the Pearson distance between the
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features of each pair of images, and for each image, calculated its dissimilarity as the mean
Pearson distance from the other two images. Finally, the model converted these dissimilarities
into choice probabilities using a Softmax transform. Thus, the probability of choosing the it" item is
given by:

ePei

e
i, e

P(c) = )
where § is the only estimated parameter, shared across all trials, image classes, and subjects,
that is fit to maximize the likelihood of the observed choices and c; is the mean distance of the it
image from the other two. The 8 parameter controls the extent to which the model maximizes the
choice probability of the most dissimilar image, where a g of 0 yields equal choice probabilities for
all images and a beta of infinity would result in a choice probability of 1 for the most dissimilar
image. We then visualized these trial-by-trial choice probabilities by computing the average
across all the trials of a single condition, to compare the behavior of the model to that of the
human subjects.

Modeling IT neurons

To assess the selectivity of neurons in inferior temporal (IT) cortex for natural feature
arrangement, we fit a model to a published dataset (16) of multielectrode array recordings
measured while macaques passively viewed images of various objects serially presented at the
center of gaze. We estimated the response of each neuron as a linear function of activations from
each layer of an Imagenet-trained deep convolutional neural network (17, 18), estimated using
partial least squares regression, a well-validated approach which yields state-of-the-art
predictions of IT neural responses (19, 20). By finding the optimal weighting of dCNN features for
best predicting each IT neuron’s response, we could then compute a prediction of how each IT
neuron would respond to novel images. Then, using this population of 168 model IT neurons, we
computed the Pearson distance between the model population’s response to each natural image
and a corresponding synthesized image as well as the Pearson distance between the model
population’s response to two different synthesized images of the same class (Fig. 5A). Using
these two distance measures, we were able to compute a normalized index of selectivity for
natural feature arrangement by the formula:

d

natural,synth — dsynthl,synthz

dnatural,synth + dsynthl,synthz

Given that our IT model explains, on average, 51.8% of the cross-validated variance in IT
neural responses to naturalistic images (18), we cannot treat this as a perfect approximation of IT
neurons, although we can use this as a reasonable proxy for IT single unit responses, to
corroborate our BOLD imaging evidence. (See Discussion for further consideration of the caveats
of this modeling approach).

Neuroimaging Methods

BOLD Imaging Data Collection

To measure neural responses to natural and synthesized images, we conducted an
experiment using blood-oxygen level dependent (BOLD) imaging (21). We recruited seven
subjects and instructed them to fixate while visual stimuli were presented over the course of two
sessions. To identify the retinotopic maps in visual cortex (22, 23), we presented subjects with
four 4-minute runs of a high-contrast sweeping bar stimulus (33), while they performed a color
discrimination task at the center of the screen to ensure fixation (24). To identify and map
category-selective regions in the ventral temporal cortex, we presented subjects with four 5-
minute runs in which stimuli drawn from 5 categories (characters, bodies, faces, places, objects)
were presented in a block design (8 images per 4 second block), while subjects performed a 1-
back working memory task (25). Finally, to compare the neural response to natural images to
their synthesized scrambled counterparts, we presented subjects with at least eight 6-minute
runs, in which images were presented for 4 seconds, with no interstimulus interval, in an event-
related design (26, 27), while subjects performed the central fixation task described above.



Images subtended 12 degrees and were presented on both the left and right sides of the screen,
centered at an eccentricity of 7 degrees. We selected 10 different image classes, consisting of 7
objects and 3 textures, and for each class, presented 1 natural image and 2 synthesized images,
generated at a spatial constraint of 1x1 and from the pool4 layer. We also matched the Fourier
magnitude spectrum and the luminance histogram of the synthesized images to their
corresponding natural image, to control for potential low-level confounds. Over the course of the
entire experiment, each image was repeated approximately 20 to 24 times.

All scans were collected on a 3 Tesla General Electric MRI scanner, using a T2*
weighted sequence with multiplex factor of 4 (13 slices at multiplex 4 = 52 slices total), voxel size
of 2.5mm, repetition time (TR) of 1.0s and echo time (TE) of 30ms. Additionally, we acquired a
whole-brain high-resolution T1-weighted 3D BRAVO sequence with 0.9mm isotropic voxels. This
anatomical image was used for segmentation and surface reconstruction, which were performed
using Freesurfer. To correct for susceptibility distortions, we acquired an additional T2* weighted
sequence with reversed phase encoding direction and used the TOPUP function from FSL (28).
We performed volume-by-volume image registration to correct for motion artefacts using standard
procedures for motion correction (29). In the second session, we acquired another T1-weighted
3D BRAVO scan with voxel size 1.2 x 1.2 x 0.9mm. Using an image-based registration algorithm
(29), we aligned this anatomical scan to the high-resolution anatomical scan so that functional
regions of interest defined from the first session could be used to analyze the second session’s
functional data.

Defining cortical areas

Using a 3-parameter population receptive field (pRF) model, we estimated the center
(x,y) and width (sigma) of the receptive field of each voxel in the occipital lobe (22). Then, we
manually drew visual area boundaries delineated by the reversal in the gradient of the polar angle
of pRFs (30). We were able to identify V1, V2, V3, and hV4 in all 7 subjects.

To identify category selective visual areas, we used the fLoc functional localizer (25), in
which images of faces, bodies, places, characters, objects, and phase-scrambles were presented
in a block design. We then used a GLM to estimate the response amplitudes to each stimulus
category and then performed a statistical contrast to identify category-selective voxels. We were
able to identify 3 face-selective clusters of voxels, in the mid-fusiform sulcus (mFus), posterior
fusiform gyrus (pFus) and inferior occipital gyrus (IOG) and 2 place-selective clusters of voxels, in
the transverse occipital sulcus (TOS) and the collateral sulcus (CoS), in each subject. We also
used an atlas-based approach to identify anatomically defined areas (31), using a surface-based
alignment to align the atlas to each subject’s individual brain. We analyzed responses in 4 visual
areas from the Glasser Atlas: lateral occipital complex (LO), for which we combined 3 smaller
subregions, LO1, LO2, and LO3; ventral visual cortex (VVC); posterior inferotemporal cortex
(PIT); and ventromedial visual area (VMV) for which we combined VMV1, VMV2, and VMV3 (31).
These areas were selected because they have been identified as regions that contain information
about visual object category.

In all analyses, we thus examined a total of 13 visual areas: 4 retinotopically defined
areas (V1, V2, V3, hV4), 5 category-selective areas defined by a functional localizer (mFus, pFus,
IOG, TOS, CoS), and 4 anatomically defined areas from the Glasser atlas (LO, VVC, PIT, VMV).

BOLD Data Analysis

We extracted trial-averaged neural responses to individual images using the GLMdenoise
Matlab package (27), which estimates noise regressors from task-irrelevant voxels and uses
those in a generalized linear model (GLM) (32). To identify the most reliable voxels in each
cortical area, we split the data into two sets, such that each set contained half of the trials in
which a particular image was presented. Then, we re-fit the GLM separately to each of the two
splits and for each voxel, computed the correlation between its responses across the two splits.
This measure of split-half correlation was used to identify the most reliable voxels, and in all
analyses, we selected the 100 most reliable voxels in each ROI.

To determine how selective each visually responsive region is for the particular spatial
arrangement of features that is found in the natural image, we computed the Pearson distance
between the cortical response to a natural image and the neural response to a synth of the same
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class (dyqrurarsynen)- We also computed the Pearson distance between the cortical response to
two different synths of the same class (dgyn¢n, synen) (Fig. 4A). Finally, we computed the average
Pearson distance between the cortical response to a synth of one class and the synths of every
other class and called this the “between-class” distance. We assessed the category selectivity of
a given cortical population by the degree to which the between-class distance exceeded the
within class distance.

Triangle plot visualization

To visualize the relative representational distances between pairs of images, we plotted
images in a triangle, where the length of the edges represents the magnitude of the
representational distance between that pair of images. The representational distances are
computed as the Pearson distance between each pair of images, for the dCNNs, cortical
responses, and the model IT responses, but are estimated using maximum likelihood estimation
for the human perceptual distances. Given the distances between 3 images, it is always possible
to create a triangle where the edges correspond to distances, as long as none of the edge
lengths exceeds the sum of the other two edge lengths. Then we rotate and translate the triangle
so that the oddity image is always placed at the origin and the non-oddity images are above the
oddity.

For the human BOLD responses, we also estimated the split-half distance as a measure
of reliability of the responess. To do so, we split all the trials for each subject into two halves and
separately estimated the responses using the GLM for each half, then estimated the Pearson
distance between the multivariate response to an image for one half compared to another half of
the data. This split half distance is visualized in the triangle plots as a gray cloud around each
image (Fig. 6D, 6l).

Readout analyses
Selectivity index

We quantified the selectivity for natural feature arrangement by the degree to which the
natural-synth distance exceeded the synth-synth distance, normalized by the sum of the natural-
synth distance and the synth-synth distance.
dnatural,synth - dsynthl,synthz

Selectivity Index =
natural,synth + dsynthl,synthz

This measure reflects the extent to which a representation differentiates the natural image, i.e.
the extent to which the natural image is more different from the synthesized images than the
synthesized images are from each other.

Image-general readout

We performed an image-general readout by fitting weights to each voxel with the
objective of maximizing the selectivity index across all image classes. We tested for
generalization by fitting the weights to maximize the selectivity index for all but one image class
and then evaluating the selectivity index on the held-out image class. Therefore, the number of
parameters was equal to 100 (number of voxels) per area.

Image-specific readout

We performed an image class-specific readout by fitting a separate set of weights to each
voxel for each image class, with the objective of maximizing the selectivity index for each image
class separately. Therefore, this approach required 1000 parameters per visual area (10 voxels x
10 images). To prevent overfitting, we estimated betas for each trial separately, then randomly
selected 90% of the trials, averaged together the betas, and fit the weights on that 90% of trials
for each image class separately. Then we evaluated the selectivity index on the held-out 10% of
trials. We selected 100 voxels for inclusion in this analysis by separately splitting up the 90% of
trials into two halves and choosing the voxels which had the highest split-half reliability in this
subset of the data. This approach therefore ensured that no part of the weight estimation could be
influenced by the held-out trials.
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Supp. Fig. S1. Human observers are less sensitive to natural feature arrangement for texture-like
images, similar to dCNN observer models and VTC voxels. (A) Performance of human observers
(purple) compared to dCNN observer models (blues) at identifying the natural image as a function
of feature complexity of synthesized images. (B) Performance of human observers (purple)
compared to dCNN observer models (blues) at identifying the natural image as a function of
constraints on spatial arrangements. (C-E) Triangular distance plots for perception (C), dCNN
observer models (D), and category-selective cortical areas (E). (F) Average triangular distance
plot across image categories, comparing category-selective cortex (magenta), dCNNs (blue),
human observers (purple).



Classification Analyses

Using a support vector machine (SVM) classifier trained to classify images as natural or
synthesized, we found corroborating evidence that cortical responses contain sufficient
information to distinguish natural from synthesized images, though not in a generalizable format.
We trained a SVM classifier with a linear kernel on cortical responses from 13 different visual
areas. When evaluated on samples from image classes within its training set, the classifier was
highly accurate in classifying the sample as natural or synthesized (Fig. S2A, blue points).
However, when evaluated on samples from image classes outside its training set, the classifier
was unable to classify the images as natural or synthesized significantly above chance level,
computed using a permutation test (Fig. S2A, magenta points). Thus, a linear classification
boundary can be found that distinguishes natural from scrambled images, but the classification
boundary varies for different image classes.

To address the possibility that information about natural feature arrangement is present in
the dCNN representation but dominated by information about unlocalized features, we trained a
support vector machine (SVM) classifier with a linear kernel to predict whether an image was
natural or synthesized. We found that when the SVM classifier was evaluated on image classes
that were not within its training set, it was unable to predict whether these images were natural or
synthesized significantly above chance (Fig. S2B, magenta points), even if the SVM was trained
exclusively on other image classes within the same category (Fig. $2C). However, when
evaluated on image classes within its training set (Fig. $S2B, blue points), the SVM classifier was
able to predict whether an image was natural or synthesized. These results suggest that the
representation of natural and synthesized images is sufficiently different that an image-specific
classification boundary can be found but not an image-general boundary.
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Supp. Fig. S2. Classification accuracy using support vector machines to classify natural vs synth.
(A) Human visual cortex natural-vs-synth classification accuracy, relative to mean of permutation
distribution. Gray shaded region represents 95% confidence interval of permutation distribution.
Blue points are classification accuracy for image classes within the training set, and pink points
are classification accuracy for image classes that were not in the training set. (B) Same as A but
using features from various VGG19 layers instead of cortical responses. (C) Within-category
decoding accuracy. We grouped 37 image classes into 7 categories and trained a SVM classifier
to predict whether an image was natural or synthesized on all image classes of the same
category except one and evaluated its performance on the held out image class of the same
category. Across 7 categories (fruits, people, animals, food, flowers, inanimate objects, and
materials), we found that classification accuracy failed to exceed chance in layers pool1, pool2,
pool3, pool4, and pool5, although classification accuracy did exceed chance level for two
categories (animals, people) in fc1 and one category (people) in fc2.
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increases from the last convolutional layer to the last fully-connected layer. (B) Representational

geometry comparing last convolutional layer to last fully connected layer.
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