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Extended methods 34 
 35 
Stimulus generation 36 
 37 

All stimuli used in these experiments were either natural images, drawn from image 38 
searches of Creative Commons licensed texture and object images, or were synthetically 39 
generated through an iterative optimization procedure (“synths”). We selected 34 natural images 40 
(22 objects and 12 textures), cropped them into squares, and downsampled the images to 256 x 41 
256 pixels. Images were selected as “object stimuli” only if they contained exactly one object, 42 
either animate or inanimate, that was clearly visible in the image. Images were selected as 43 
texture stimuli if they contained repeated patterns and/or numerous objects that were similar in 44 
appearance. Images were categorized as textures or objects by the authors prior to data 45 
collection, and these category judgments were confirmed using a Mechanical Turk experiment 46 
where an independent sample of 65 subjects were asked to categorize each image as either a 47 
texture or object (mean correlation between subjects’ categorizations and our categorization was 48 
0.924). 49 

The image generation procedure, adapted from (1) involved three major steps: feature 50 
extraction, spatial pooling, and image synthesis via pixel-wise optimization. In the feature 51 
extraction stage, each natural image was passed into an Imagenet-trained VGG-19 deep 52 
convolutional neural network (2), and the activations of 3 intermediate layers (pool1, pool2, and 53 
pool4) were extracted (Fig. 1A). The spatial pooling stage of the standard Gatys algorithm was 54 
done by computing the Gramian matrix, i.e. the inner product between all pairs of activation 55 
maps, in each layer. The Gramian matrix preserves information about the incidence of individual 56 
features as well as the co-incidence of multiple features, while discarding information about the 57 
spatial position of those features. Finally, using gradient descent with the L-BFGS algorithmic 58 
solver (3), we updated the pixels of a random white noise image to minimize the mean squared 59 
error to the Gramian computed for the natural image (1, 4, 5). 60 

This image synthesis algorithm allowed us to control the complexity of the features in the 61 
natural image which are matched in the synthesized output. By varying which layers were 62 
included in the loss function, we controlled the complexity of the features in the generated image. 63 
This is based on prior research suggesting that early layers of dCNNs encode simple features, 64 
such as orientation and spatial frequency, whereas later layers encode more complex features, 65 
such as texture, shape, or category identity (6–10). This is an improvement over other texture 66 
synthesis algorithms, such as the Portilla-Simoncelli algorithm (4), which includes only one level 67 
of higher order statistics computed from the pairwise correlations of a V1-like filterbank (11). We 68 
selected 3 different layers from the VGG19 model to include in the synthesis procedure: pool1, an 69 
early layer (64 filters); pool2, an intermediate layer (128 filters); and pool4, a late layer (256 70 
filters). Layers were added incrementally, so images generated in the pool1 condition include only 71 
pool1 features, whereas images generated in the pool4 condition include features from layers 72 
pool1, pool2, and pool4. 73 

This image synthesis algorithm also allowed control over the spatial scale within which 74 
the spatial arrangement of features is constrained. Whereas the original Gatys algorithm (1) pools 75 
features across the entire image, we modified the algorithm to compute spatially weighted 76 
Gramians, which only pooled features within pre-defined spatial pooling regions (4). We tiled the 77 
image with equal-sized square spatial pooling regions with smooth transition boundaries defined 78 
by a squared cosine function with 20 pixel ramping boundaries. For each unit in the model, we 79 
calculated the overlap between its receptive field, calculated based on the kernel size and RF of 80 
VGG19, and each spatial pooling region. We used this to compute a spatially weighted Gramian 81 
matrix for each pooling region, wherein units are included in proportion to how much their 82 
receptive field overlaps the spatial pooling region.  By varying the size and number of spatial 83 
pooling regions, we imposed stronger or weaker constraints on the spatial arrangement of 84 
features. Low spatial constraint synths are ones in which the spatial arrangement of the features 85 
can be scrambled across the entire image (which we call 1x1 as there is a single spatial pooling 86 
region) and high spatial constraint synths are those in which the arrangement of the features are 87 
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constrained within small subregions of the image, (for example, a 4x4 set of spatial pooling 88 
regions constrains features in subregions that are 1/16th the area of the full image).  89 

The number of parameters that constrained each image was a function of the size of the 90 
Gramian and the number of spatial pooling regions. The size of the Gramian for a particular layer 91 
is equal to the square of the number of filters in each layer, so pool1 images were constrained by 92 
4096 (642) parameters, pool2 images were constrained by 20480 parameters (1282 + 642), and 93 
pool4 images were constrained by 282624 parameters (5122 + 1282 + 642). To constrain spatial 94 
arrangement of features, we computed a separate Gramian for each spatial pooling region, so the 95 
number of spatial pooling regions was a multiplier on the number of parameters. For example, the 96 
4x4 images contained 16x the number of parameters as the 1x1 images. 97 

Finally, by initiating the optimization process with different random seed images, we 98 
generated multiple different synthesis samples which differed significantly in the pixel 99 
representation space but contained nearly identical features within each spatial pooling region. 100 
For each natural image, we synthesized 3 samples at each of 3 layers (pool1, pool2, and pool4) 101 
and 4 spatial constraints (1x1, 2x2, 3x3, 4x4), for a total of 36 synthesized samples per natural 102 
image. We used the Adam optimizer (12), implemented in Tensorflow (13), and terminated the 103 
image synthesis optimization after 10,000 iterations.  104 
 105 
 106 
Behavioral Methods 107 
 108 
Experimental Design – Natural-vs-synth oddity detection task 109 

In the oddity detection experiment, observers performed a 3 alternative forced choice 110 
judgment of the odd-one-out (14). On each trial (Fig. 2A), observers were asked to fixate 111 
centrally on a cross for the duration of the trial, although we could not enforce fixation with eye-112 
tracking and did not employ a central task at fixation. After 200ms of fixation, 3 images were 113 
presented -- 1 natural and 2 synths -- concurrently for 2 seconds. Observers were instructed to 114 
respond within 2 seconds of stimulus onset, using a keypress, to indicate which image was most 115 
different from the others, and on 89.04% of trials, subjects did respond within the time limit (mean 116 
RT: 1.08s, SD=0.41s). The two synths were always generated to match the features of the 117 
natural image and were both generated from the same layer and spatial constraint, with a 118 
different random seed. Following the subject’s response, they were shown feedback in the form 119 
of the fixation cross changing color for 200ms to either green, indicating a correct response, or 120 
red, indicating an incorrect or no response. We also conducted a control experiment where no 121 
feedback was given (Fig. S4), to ensure that the feedback was not biasing subjects’ responses. 122 
On each trial, we randomly selected a natural image and 2 different synthesized samples, both 123 
with the same feature complexity and spatial constraints, to display. Images subtended 124 
approximately 8 degrees, though there was some variability due to the screen and window size of 125 
individual participants. Each image was centered 6 degrees away from the fixation cross. We 126 
performed this experiment both on Amazon Mechanical Turk, where we recruited 87 subjects 127 
who performed a total of 6165 trials, as well as in the lab, where we recruited 2 subjects to 128 
perform a total of approximately 5000 trials each and were able to enforce fixation using an 129 
Eyelink eyetracking system that aborted any trials where subjects’ eye-gaze deviated more than 1 130 
degree from the fixation cross. A comparison of in-lab and online data is presented in Supp. Fig. 131 
S3. We presented 34 different image classes in this behavioral experiment, including 22 object 132 
image classes (Fig. 2) and 12 texture image classes (Fig. S1), where an image class is defined 133 
as the set of images including a natural image and all corresponding feature-matched 134 
synthesized samples. 135 
 136 
Experimental Design – Category oddity detection task 137 
 To determine human performance at discriminating natural objects of different categories, 138 
we recruited human observers to perform a category-level oddity detection task. Like the natural-139 
vs-synth oddity task, subjects were first asked to fixate centrally on a cross for 200ms and were 140 
then presented with 3 images concurrently for 2 seconds. Two of those images contained objects 141 
from the same category and the third image contained an object of a different category. Subjects 142 
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were instructed to choose the odd-one-out, i.e. the image which appeared most different from the 143 
others. Images subtended approximately 8 degrees and were centered approximately 6 degrees 144 
away from the fixation cross. We performed this experiment on Amazon Mechanical Turk, where 145 
we recruited 85 subjects who performed a total of 3448 trials. 146 
 147 
Experimental Design - Pairwise dissimilarity judgment task 148 

To determine the perceptual similarity of synths with naturals, we conducted a 149 
dissimilarity judgment experiment with an independent set of 110 observers. On each trial, 150 
observers were shown 4 images, grouped into two pairs and were asked to indicate with a 151 
keypress which of the two pairs was more dissimilar. Images subtended 8 degrees. Each pair 152 
was centered 8 degrees to the left and right of fixation, with 4 degrees of vertical separation 153 
between each image. Subjects fixated for 200ms and then stimuli were presented for 2 seconds 154 
and subjects were allowed to respond any time before the images disappeared. No feedback was 155 
given. As with the oddity detection task, all images presented on a given trial were generated to 156 
match the same natural image, and all synths were of the same feature complexity and spatial 157 
constraint. However, unlike the oddity detection task, on a randomly interleaved half of all trials, 158 
all 4 images were synths, and on the other half of the trials, 1 image was the natural image and 159 
the other 3 were synthesized images with scrambled arrangements of features. This enabled us 160 
to determine the perceptual similarity between the synths and the naturals as well as the 161 
perceptual similarity between different synths. We average together all the distances between 162 
pairs of synths to yield a single synth-synth distance. Across all trials, subjects saw 1666 unique 163 
images: 34 image classes x (1 natural image + (4 synthesized images x 3 levels of feature 164 
complexity x 4 levels of spatial constraint)). However, only trials from the 1x1 pool4 condition 165 
were used for estimating perceptual distances. We collected a total of 8687 trials across 110 166 
observers. 167 
 168 
Estimating perceptual distances 169 

On any given trial, the observer saw 4 images grouped into 2 pairs, (𝑖!, 𝑖") and (𝑖#, 𝑖$), 170 
and was asked to report which pair was more dissimilar. We can thus represent the probability 171 
that the observer will select the first pair (𝑖!, 𝑖") as: 172 

P&𝐷!," −𝐷#,$ + ϵ > 0- 173 
where 𝐷!," represents the perceptual distance between the first pair of images, 𝐷#,$ represents 174 
the distance between the second pair of images, and ϵ is a Gaussian-distributed random variable 175 
with mean 0 and standard deviation σ representing the combination of sensory and response 176 
noise. Then, the probability that the observer will select the first pair is given by 𝑃&ϵ < 𝐷!," −𝐷#,$-, 177 
which can be computed as the cumulative distribution function of ϵ, Φ(𝑥) evaluated at 𝐷!," −𝐷#,$. 178 
The probability of selecting the second pair is then given by 1 −Φ&𝐷!," −𝐷#,$-. Over 𝑁 trials, if we 179 
observe responses 𝑟!, … , 𝑟&, we can compute the likelihood of observing these responses given 180 
the pairwise distances, as  181 

𝑃&𝑟!, … , 𝑟&7𝐷!,", 𝐷!,#, … , 𝐷&'!,&, σ- =9Φ&𝐷(!,(" −𝐷(#,($-
)%

&

(*!

× (1 −Φ&𝐷(!,(" −𝐷(#,($-)
!')% 182 

Then, we used the Nelder-Mead optimization algorithm, as implemented in the Python scipy 183 
library (15), to find the values of the distances and the 𝜎 that maximize this likelihood function. 184 
For each of the 34 image classes (which were also presented in the oddity task), we estimated 185 
the pairwise distances between 5 images (1 natural, 4 synth), resulting in 10 pairwise distances 186 
(<52?) to estimate for each image class, yielding a total of 341 parameters (including σ) that were 187 
estimated on 8687 trials of oddity detection behavior. 188 
 189 
dCNN observer model 190 
 191 

On each trial, our model extracted a feature vector from the last convolutional layer of the 192 
dCNN for each image presented (Fig. 2B). Next, we computed the Pearson distance between the 193 
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features of each pair of images, and for each image, calculated its dissimilarity as the mean 194 
Pearson distance from the other two images. Finally, the model converted these dissimilarities 195 
into choice probabilities using a Softmax transform. Thus, the probability of choosing the ith item is 196 
given by:  197 

𝑃(𝑐() =
+&'%

∑ +&'(#
()!

, 198 

where β is the only estimated parameter, shared across all trials, image classes, and subjects, 199 
that is fit to maximize the likelihood of the observed choices and 𝑐( is the mean distance of the ith 200 
image from the other two. The 𝛽 parameter controls the extent to which the model maximizes the 201 
choice probability of the most dissimilar image, where a 𝛽 of 0 yields equal choice probabilities for 202 
all images and a beta of infinity would result in a choice probability of 1 for the most dissimilar 203 
image. We then visualized these trial-by-trial choice probabilities by computing the average 204 
across all the trials of a single condition, to compare the behavior of the model to that of the 205 
human subjects. 206 
 207 
Modeling IT neurons 208 

To assess the selectivity of neurons in inferior temporal (IT) cortex for natural feature 209 
arrangement, we fit a model to a published dataset (16) of multielectrode array recordings 210 
measured while macaques passively viewed images of various objects serially presented at the 211 
center of gaze. We estimated the response of each neuron as a linear function of activations from 212 
each layer of an Imagenet-trained deep convolutional neural network (17, 18), estimated using 213 
partial least squares regression, a well-validated approach which yields state-of-the-art 214 
predictions of IT neural responses (19, 20). By finding the optimal weighting of dCNN features for 215 
best predicting each IT neuron’s response, we could then compute a prediction of how each IT 216 
neuron would respond to novel images. Then, using this population of 168 model IT neurons, we 217 
computed the Pearson distance between the model population’s response to each natural image 218 
and a corresponding synthesized image as well as the Pearson distance between the model 219 
population’s response to two different synthesized images of the same class (Fig. 5A). Using 220 
these two distance measures, we were able to compute a normalized index of selectivity for 221 
natural feature arrangement by the formula:  222 

𝑑-./0).1,23-/4 − 𝑑23-/4!,23-/4"
𝑑-./0).1,23-/4 + 𝑑23-/4!,23-/4"

 223 

Given that our IT model explains, on average, 51.8% of the cross-validated variance in IT 224 
neural responses to naturalistic images (18), we cannot treat this as a perfect approximation of IT 225 
neurons, although we can use this as a reasonable proxy for IT single unit responses, to 226 
corroborate our BOLD imaging evidence. (See Discussion for further consideration of the caveats 227 
of this modeling approach). 228 
 229 
Neuroimaging Methods 230 
 231 
BOLD Imaging Data Collection 232 
 To measure neural responses to natural and synthesized images, we conducted an 233 
experiment using blood-oxygen level dependent (BOLD) imaging (21). We recruited seven 234 
subjects and instructed them to fixate while visual stimuli were presented over the course of two 235 
sessions. To identify the retinotopic maps in visual cortex (22, 23), we presented subjects with 236 
four 4-minute runs of a high-contrast sweeping bar stimulus (33), while they performed a color 237 
discrimination task at the center of the screen to ensure fixation (24). To identify and map 238 
category-selective regions in the ventral temporal cortex, we presented subjects with four 5-239 
minute runs in which stimuli drawn from 5 categories (characters, bodies, faces, places, objects) 240 
were presented in a block design (8 images per 4 second block), while subjects performed a 1-241 
back working memory task (25). Finally, to compare the neural response to natural images to 242 
their synthesized scrambled counterparts, we presented subjects with at least eight 6-minute 243 
runs, in which images were presented for 4 seconds, with no interstimulus interval, in an event-244 
related design (26, 27), while subjects performed the central fixation task described above. 245 
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Images subtended 12 degrees and were presented on both the left and right sides of the screen, 246 
centered at an eccentricity of 7 degrees. We selected 10 different image classes, consisting of 7 247 
objects and 3 textures, and for each class, presented 1 natural image and 2 synthesized images, 248 
generated at a spatial constraint of 1x1 and from the pool4 layer. We also matched the Fourier 249 
magnitude spectrum and the luminance histogram of the synthesized images to their 250 
corresponding natural image, to control for potential low-level confounds. Over the course of the 251 
entire experiment, each image was repeated approximately 20 to 24 times.  252 

All scans were collected on a 3 Tesla General Electric MRI scanner, using a T2* 253 
weighted sequence with multiplex factor of 4 (13 slices at multiplex 4 = 52 slices total), voxel size 254 
of 2.5mm, repetition time (TR) of 1.0s and echo time (TE) of 30ms. Additionally, we acquired a 255 
whole-brain high-resolution T1-weighted 3D BRAVO sequence with 0.9mm isotropic voxels. This 256 
anatomical image was used for segmentation and surface reconstruction, which were performed 257 
using Freesurfer. To correct for susceptibility distortions, we acquired an additional T2* weighted 258 
sequence with reversed phase encoding direction and used the TOPUP function from FSL (28). 259 
We performed volume-by-volume image registration to correct for motion artefacts using standard 260 
procedures for motion correction (29). In the second session, we acquired another T1-weighted 261 
3D BRAVO scan with voxel size 1.2 x 1.2 x 0.9mm. Using an image-based registration algorithm 262 
(29), we aligned this anatomical scan to the high-resolution anatomical scan so that functional 263 
regions of interest defined from the first session could be used to analyze the second session’s 264 
functional data. 265 
 266 
Defining cortical areas 267 
 Using a 3-parameter population receptive field (pRF) model, we estimated the center 268 
(x,y) and width (sigma) of the receptive field of each voxel in the occipital lobe (22). Then, we 269 
manually drew visual area boundaries delineated by the reversal in the gradient of the polar angle 270 
of pRFs (30). We were able to identify V1, V2, V3, and hV4 in all 7 subjects.  271 

To identify category selective visual areas, we used the fLoc functional localizer (25), in 272 
which images of faces, bodies, places, characters, objects, and phase-scrambles were presented 273 
in a block design. We then used a GLM to estimate the response amplitudes to each stimulus 274 
category and then performed a statistical contrast to identify category-selective voxels. We were 275 
able to identify 3 face-selective clusters of voxels, in the mid-fusiform sulcus (mFus), posterior 276 
fusiform gyrus (pFus) and inferior occipital gyrus (IOG) and 2 place-selective clusters of voxels, in 277 
the transverse occipital sulcus (TOS) and the collateral sulcus (CoS), in each subject. We also 278 
used an atlas-based approach to identify anatomically defined areas (31), using a surface-based 279 
alignment to align the atlas to each subject’s individual brain. We analyzed responses in 4 visual 280 
areas from the Glasser Atlas: lateral occipital complex (LO), for which we combined 3 smaller 281 
subregions, LO1, LO2, and LO3; ventral visual cortex (VVC); posterior inferotemporal cortex 282 
(PIT); and ventromedial visual area (VMV) for which we combined VMV1, VMV2, and VMV3 (31). 283 
These areas were selected because they have been identified as regions that contain information 284 
about visual object category. 285 

In all analyses, we thus examined a total of 13 visual areas: 4 retinotopically defined 286 
areas (V1, V2, V3, hV4), 5 category-selective areas defined by a functional localizer (mFus, pFus, 287 
IOG, TOS, CoS), and 4 anatomically defined areas from the Glasser atlas (LO, VVC, PIT, VMV). 288 
 289 
BOLD Data Analysis 290 
 We extracted trial-averaged neural responses to individual images using the GLMdenoise 291 
Matlab package (27), which estimates noise regressors from task-irrelevant voxels and uses 292 
those in a generalized linear model (GLM) (32). To identify the most reliable voxels in each 293 
cortical area, we split the data into two sets, such that each set contained half of the trials in 294 
which a particular image was presented. Then, we re-fit the GLM separately to each of the two 295 
splits and for each voxel, computed the correlation between its responses across the two splits. 296 
This measure of split-half correlation was used to identify the most reliable voxels, and in all 297 
analyses, we selected the 100 most reliable voxels in each ROI. 298 
 To determine how selective each visually responsive region is for the particular spatial 299 
arrangement of features that is found in the natural image, we computed the Pearson distance 300 
between the cortical response to a natural image and the neural response to a synth of the same 301 
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class (𝑑-./0).1,23-/4). We also computed the Pearson distance between the cortical response to 302 
two different synths of the same class (𝑑23-/4,23-/4) (Fig. 4A).  Finally, we computed the average 303 
Pearson distance between the cortical response to a synth of one class and the synths of every 304 
other class and called this the “between-class” distance. We assessed the category selectivity of 305 
a given cortical population by the degree to which the between-class distance exceeded the 306 
within class distance. 307 
 308 
Triangle plot visualization 309 
 310 
 To visualize the relative representational distances between pairs of images, we plotted 311 
images in a triangle, where the length of the edges represents the magnitude of the 312 
representational distance between that pair of images. The representational distances are 313 
computed as the Pearson distance between each pair of images, for the dCNNs, cortical 314 
responses, and the model IT responses, but are estimated using maximum likelihood estimation 315 
for the human perceptual distances. Given the distances between 3 images, it is always possible 316 
to create a triangle where the edges correspond to distances, as long as none of the edge 317 
lengths exceeds the sum of the other two edge lengths. Then we rotate and translate the triangle 318 
so that the oddity image is always placed at the origin and the non-oddity images are above the 319 
oddity. 320 
 For the human BOLD responses, we also estimated the split-half distance as a measure 321 
of reliability of the responess. To do so, we split all the trials for each subject into two halves and 322 
separately estimated the responses using the GLM for each half, then estimated the Pearson 323 
distance between the multivariate response to an image for one half compared to another half of 324 
the data. This split half distance is visualized in the triangle plots as a gray cloud around each 325 
image (Fig. 6D, 6I). 326 
 327 
Readout analyses 328 
Selectivity index 329 
 We quantified the selectivity for natural feature arrangement by the degree to which the 330 
natural-synth distance exceeded the synth-synth distance, normalized by the sum of the natural-331 
synth distance and the synth-synth distance. 332 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦	𝐼𝑛𝑑𝑒𝑥	 = 	
𝑑-./0).1,23-/4 − 𝑑23-/4!,23-/4"
𝑑-./0).1,23-/4 + 𝑑23-/4!,23-/4"

 333 
This measure reflects the extent to which a representation differentiates the natural image, i.e. 334 
the extent to which the natural image is more different from the synthesized images than the 335 
synthesized images are from each other. 336 
 337 
Image-general readout 338 
 We performed an image-general readout by fitting weights to each voxel with the 339 
objective of maximizing the selectivity index across all image classes. We tested for 340 
generalization by fitting the weights to maximize the selectivity index for all but one image class 341 
and then evaluating the selectivity index on the held-out image class. Therefore, the number of 342 
parameters was equal to 100 (number of voxels) per area.  343 
 344 
Image-specific readout 345 
 We performed an image class-specific readout by fitting a separate set of weights to each 346 
voxel for each image class, with the objective of maximizing the selectivity index for each image 347 
class separately. Therefore, this approach required 1000 parameters per visual area (10 voxels x 348 
10 images). To prevent overfitting, we estimated betas for each trial separately, then randomly 349 
selected 90% of the trials, averaged together the betas, and fit the weights on that 90% of trials 350 
for each image class separately. Then we evaluated the selectivity index on the held-out 10% of 351 
trials. We selected 100 voxels for inclusion in this analysis by separately splitting up the 90% of 352 
trials into two halves and choosing the voxels which had the highest split-half reliability in this 353 
subset of the data. This approach therefore ensured that no part of the weight estimation could be 354 
influenced by the held-out trials.  355 
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Supplementary Results 356 

 357 
Supp. Fig. S1. Human observers are less sensitive to natural feature arrangement for texture-like 358 
images, similar to dCNN observer models and VTC voxels. (A) Performance of human observers 359 
(purple) compared to dCNN observer models (blues) at identifying the natural image as a function 360 
of feature complexity of synthesized images. (B) Performance of human observers (purple) 361 
compared to dCNN observer models (blues) at identifying the natural image as a function of 362 
constraints on spatial arrangements. (C-E) Triangular distance plots for perception (C), dCNN 363 
observer models (D), and category-selective cortical areas (E). (F) Average triangular distance 364 
plot across image categories, comparing category-selective cortex (magenta), dCNNs (blue), 365 
human observers (purple). 366 
 367 
  368 
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Classification Analyses 369 
Using a support vector machine (SVM) classifier trained to classify images as natural or 370 

synthesized, we found corroborating evidence that cortical responses contain sufficient 371 
information to distinguish natural from synthesized images, though not in a generalizable format. 372 
We trained a SVM classifier with a linear kernel on cortical responses from 13 different visual 373 
areas. When evaluated on samples from image classes within its training set, the classifier was 374 
highly accurate in classifying the sample as natural or synthesized (Fig. S2A, blue points). 375 
However, when evaluated on samples from image classes outside its training set, the classifier 376 
was unable to classify the images as natural or synthesized significantly above chance level, 377 
computed using a permutation test (Fig. S2A, magenta points). Thus, a linear classification 378 
boundary can be found that distinguishes natural from scrambled images, but the classification 379 
boundary varies for different image classes.  380 

To address the possibility that information about natural feature arrangement is present in 381 
the dCNN representation but dominated by information about unlocalized features, we trained a 382 
support vector machine (SVM) classifier with a linear kernel to predict whether an image was 383 
natural or synthesized. We found that when the SVM classifier was evaluated on image classes 384 
that were not within its training set, it was unable to predict whether these images were natural or 385 
synthesized significantly above chance (Fig. S2B, magenta points), even if the SVM was trained 386 
exclusively on other image classes within the same category (Fig. S2C). However, when 387 
evaluated on image classes within its training set (Fig. S2B, blue points), the SVM classifier was 388 
able to predict whether an image was natural or synthesized. These results suggest that the 389 
representation of natural and synthesized images is sufficiently different that an image-specific 390 
classification boundary can be found but not an image-general boundary. 391 
 392 
 393 

 394 
Supp. Fig. S2. Classification accuracy using support vector machines to classify natural vs synth. 395 
(A) Human visual cortex natural-vs-synth classification accuracy, relative to mean of permutation 396 
distribution. Gray shaded region represents 95% confidence interval of permutation distribution. 397 
Blue points are classification accuracy for image classes within the training set, and pink points 398 
are classification accuracy for image classes that were not in the training set. (B) Same as A but 399 
using features from various VGG19 layers instead of cortical responses. (C) Within-category 400 
decoding accuracy. We grouped 37 image classes into 7 categories and trained a SVM classifier 401 
to predict whether an image was natural or synthesized on all image classes of the same 402 
category except one and evaluated its performance on the held out image class of the same 403 
category. Across 7 categories (fruits, people, animals, food, flowers, inanimate objects, and 404 
materials), we found that classification accuracy failed to exceed chance in layers pool1, pool2, 405 
pool3, pool4, and pool5, although classification accuracy did exceed chance level for two 406 
categories (animals, people) in fc1 and one category (people) in fc2.  407 
  408 
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 409 
Supp. Fig. S3. Replication of behavioral results using dataset collected in-lab where fixation 410 
could be enforced with eye-tracking. (A) Comparison of human and dCNN behavior as a function 411 
of feature complexity. Solid purple line represents in-lab data and dashed purple line represents 412 
online data. (B) Comparison of human and dCNN behavior as a function of spatial constraint, 413 
fixing the feature complexity at the highest level (pool4). 414 
 415 
 416 
  417 
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 418 
Supp. Fig. S4. Replication of behavioral results using dataset collected on MTurk without 419 
correct/incorrect feedback. (A) Comparison of human behavior with feedback (solid purple line), 420 
human behavior without feedback (dashed purple line), and dCNN behavior (blue lines) as a 421 
function of feature complexity. (B) Comparison of human behavior with feedback, human 422 
behavior without feedback, and dCNN behavior as a function of spatial constraint, fixing the 423 
feature complexity at the highest level (pool4). 424 
 425 
 426 
  427 
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 428 
Supp. Fig. S5. Human behavior as a function of feature complexity and spatial constraint for the 429 
pairwise dissimilarity judgment task. (A) Task design. Subjects were shown two pairs of images 430 
and asked to select the pair which was more dissimilar from each other. (B) Human behavior as a 431 
function of feature complexity. The proportion of trials where subjects chose the pair with the 432 
natural image declined as the synths had more complex visual features. (C) Human behavior as a 433 
function of spatial constraint. The proportion of trials where subjects chose the pair with the 434 
natural declined as the arrangement of features in the synths was more strongly spatially 435 
constrained. 436 
  437 
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 438 
Supp. Fig. S6. Natural image selectivity for different dCNNs, comparing last convolutional layer 439 
to last fully-connected layer. (A) In all but one dCNN, selectivity for natural feature arrangement 440 
increases from the last convolutional layer to the last fully-connected layer. (B) Representational 441 
geometry comparing last convolutional layer to last fully connected layer. 442 
  443 
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 444 
Supp. Fig. S7. All stimuli used in neuroimaging experiment: 10 image classes consisting of 1 445 
natural image and 2 synths (1x1 pool4 condition) per image class. 446 
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 447 
Supp. Fig. S8. Examples of synthesized images at different numbers of iterations in the 448 
synthesis process.  449 
 450 
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