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Supplementary text 

Hospitalization data  

Hospital data are obtained from the SI-VIC database, the national inpatient surveillance system 

used during the pandemic. The database was implemented in March 2020 and is maintained by 

the ANS (Agence du Numérique en Santé). It provides real time data on the COVID-19 patients 

hospitalized in French public and private hospitals. Data are sent daily to Santé Publique France, 

the French national public health agency. All cases are either biologically confirmed or present 

with a computed tomographic image highly suggestive of SARS-CoV-2 infection. We restrict our 

analyses to patients newly hospitalized in ICU (“Hospitalisation réanimatoire: réanimation, soins 

intensifs et unité de surveillance continue”) and general ward beds (“Hospitalisation 

conventionnelle”). We exclude patients hospitalized in psychiatric care (“Hospitalisation 

psychiatrique”), long-term care and rehabilitation care (“Soins de suite et réadaptation”) and 

emergency care patients (“Soins aux urgences”). We consider events (hospitalizations, transfers 

or discharges) by date of occurrence and correct observed data for reporting delays (1). 

 

Smoothing 

Hospital data follow a weekly pattern, with less admissions during weekends compared to 

weekdays, and can be noisy at the regional level. Therefore, in the absence of smoothing or with 

simple smoothing techniques, forecasts can be biased depending on the day of the week at which 

the analysis is performed. In order to remove day-to-day variation and obtain a smooth signal at 

each date T not depending on future data points (mimicking the real-time case), we adopt a 2-

step approach using state-of-the-art statistical methods and using data only up to date T:  

1 – Removal of the day-of-the-week pattern of the data up to current time T. We assume 

that the logged incidence 𝑦(𝑡) can be written as 𝑦(𝑡) = 𝑚(𝑡) + 𝑤(𝑑(𝑡)) + 𝜖(𝑡), where m(t) is a 

smooth temporal trend, d(t) is the day of the week at date t and w(d) is the day of the week effect 

and 𝜖(𝑡) is noise. We estimate �̂�(𝑑) by fitting a local polynomial regression using the standard 

biweight kernel with bandwidth h=8 days (corresponding to the number of time points below and 

above used in the smoothing) over the previous 8 weeks of data before date T - not using future 

data. Local polynomial regression is a state-of-the-art kernel smoother, less biased than simple 

rolling average because it uses an (optimal) biweight kernel rather than the rectangle kernel and 

less biased than the classical Nadaraya-Watson estimator even close to the boundaries of the 

https://paperpile.com/c/0jffZV/kCui
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interval of estimation. This regression leads to a trend estimate 𝑚𝑟(𝑡) from the raw data that we 

compute over an interval in the past [T - 8 weeks +h, T - h], excluding the last h days. We then 

compute the day-of-the-week effect �̂�(𝑑) by averaging 𝑦𝑑(𝑡) = 𝑦(𝑡)  − 𝑚𝑟(𝑡) for each day 𝑑 of 

the week. Finally, we output a new series where the day-of-the-week effect has been removed up 

to time T as �̂�𝑤(𝑡)  =  𝑦(𝑡) − �̂�𝑑(𝑡).   

2 – Smoothing incidence up to time T accounting for real time. The second step allows 

obtaining a signal that is fit for real time analysis. Indeed, even if local polynomial smoothing is 

nearly unbiased close to the boundaries of estimation, this comes with increased variance: this 

means that the estimated trend in the last few days of observation can be misleading. Several 

approaches are possible to overcome this limitation: automatic kernel curtailing or selecting 

smoothing according to the least revision principle. Proietti et al. described a framework for 

implementing the least revision principle using low-order reproducing kernels (2). In this approach, 

the smoothing kernels are tailored to minimize the error between the smooth value predicted in 

real-time, when data is available only up to time T,  and the value that will be obtained as a final 

estimate once data is present up to time T+h. The method introduces a little bias to reduce the 

variance of the estimate. As described in Proietti and al, we assume that �̂�𝑤(𝑡)  =  𝑚𝑤(𝑡) + 𝜖𝑤(𝑡) 

where 𝑚𝑤(𝑡) is a smooth trend estimate and 𝜖𝑤(𝑡) is noise. The smooth trend is estimated using 

the linear/quadratic approach of Proietti, whereby a local polynomial of degree 2 is fit on the whole 

range of the data and is approximated by a local polynomial of degree 1 on the interval [T-h, T] 

for computation of the real-time smooth estimate of the trend. This last approximation introduces 

bias and reduces variance, leading to a “least revision” estimate. Confidence intervals are 

computed by bootstrap. 

We compare this two-step algorithm with a simple smoothing spline (Fig. S14). The time-series 

smoothed by a smoothing spline (panel A) is very sensitive to the weekly pattern: the values are 

systematically under-estimated when the last data point is a Sunday, and over-estimated when 

the last data point is a Friday. The advantage of our approach (panel B) is that it is insensitive to 

the day of the week, and more generally, less sensitive to noise. This comes with one drawback: 

in the case of a sudden change of trajectory, as it occurred at the beginning of November, it can 

take a few days before the smoothed time-series catches the right trajectory. This loss in reactivity 

(detecting changes as early as possible) is balanced by the gain in stability (avoiding false 

alarms). 

https://paperpile.com/c/0jffZV/hWSK
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We also compare the predictions of the MLR model (taken as an example) using our smoothing 

algorithm to the predictions made on data smoothed by a centered 7-day moving average (MA). 

The MA method leads to the loss of the last three data points but is often used to remove weekly 

patterns in a time-series, due to its simplicity. We show that the RMSE of the predictions over the 

training period is lower with the smoothing algorithm compared to the moving average (Figures 

S15 and S16). We also show that, with our smoothing algorithm, the RMSE is stable throughout 

the week, while it varies with the day of the week when using a moving average (Figures S15 and 

S16). 

 

Description of individual models 

We evaluate 12 individual models to forecast hospital admissions. The first three models directly 

predict the number of hospital admissions, while the others predict the growth rate, from which 

hospital admissions are then derived using an exponential growth model. 

Baseline 

The baseline model assumes that the number of hospital admissions stays at its current value 

indefinitely into the future, with uncertainty levels given by a discretised truncated normal 

distribution with lower bound 0 and a standard deviation given by past one-day ahead deviations 

from the value of the metric (3). 

ARIMA1: Autoregressive integrated moving average model  

We fit a simple ARIMA model of hospital admissions, where the parameters are estimated at each 

time step using the auto.arima function of the R package forecast, independently for each region. 

GAM1: Generalized additive model 

We fit a GAM model of hospital admissions, with a single smooth term for time, using the R 

package mgcv. The model is calibrated independently for each region.  

Const: Exponential growth models with constant growth rate 

We estimate the exponential growth rate r by fitting a Poisson regression model of the smoothed 

hospital admissions over a fixed time window. We test windows of 2 (“Const2”) and 7 (“Const7”) 

https://paperpile.com/c/0jffZV/quQ0
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days. We project hospital admissions by assuming the growth rate will stay constant in the 

future: 

 

 

PL: Exponential growth model with piecewise linear growth rate 

We consider an extension of the previous model for which the growth rate varies over time:  

 

and where  is a continuous piecewise linear function: 

 

Here, the  are the instants when the slope changes and K is the number of segments. 

MLR: Multiple linear regression model 

We fit a multiple linear regression model of the growth rate r, with covariates selected by forward 

stepwise selection (see below). The model is fitted on all regions together. The covariates are 

introduced in the model as lagged variables with lag : 

  

The best lag  for each covariate is estimated at each time step using Pearson correlation 

coefficient between the growth rate and the covariate.  

The growth rate is then predicted for all prediction horizons by assuming that all covariates will 

stay constant in the future (equal to their last observed values). We then derive forecasts of  

hospital admissions recursively: 
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GAM2: Generalized additive model 

We fit a GAM model of the growth rate r, using the same approach as multiple linear regression, 

except that the lagged covariates are introduced in the model as smoothed functions  (to relax 

the linearity assumption): 

 

We use the R package mgcv. 

ARIMA2: Multiple linear regression model with ARIMA error 

We  fit a multiple linear regression model of the growth rate with k lagged covariates and an 

ARIMA error, to account for autocorrelation in the data: 

 

where  is an ARIMA process. The model is fitted on each region separately due to the ARIMA 

structure. We use the R package forecast. We select covariates and derive forecasts of hospital 

admissions using the same approach as for linear regression.  

ARDL: Autoregressive distributed lag model 

In a distributed lag model, the effect of a covariate on the dependent variable can be distributed 

over time rather than occur all at once. We use three lags for each covariate. These lags are 

defined for each prediction horizon, so that we only use the observed values of the covariates, 

without making any assumption about their future values. For instance, to predict the growth rate 

five days ahead, we use lags 5, 6 and 7, which correspond to the last three observed values of 

the covariates. We estimate the lag weights (coefficients of the regression) for each prediction 

horizon. Therefore, the weights associated to a covariate can be large at short horizons and small 

at long horizons, or vice versa. We also include lagged values of the growth rate of hospital 

admissions (autoregressive model). For any prediction horizon h, the growth rate at t+h is: 
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We fit all the regions together, and use the same covariate selection procedure as for other 

models. 

RF: Random forests  

Regression trees approaches consist in recursively partitioning the data using binary splits and to 

build a set of decision rules on the predictors. RF combine decision trees with bagging - bootstrap 

aggregation of multiple trees run in parallel. We use RF for regression of the growth rate of 

hospital admissions at time t+h using the covariates at time t. The R package randomForest is 

used. In practice we use h =10 days for mobility and climate predictors, and h = 4 or h = 7 days 

for epidemiological predictors, and the minimum size of the nodes is set to 1,000 to reduce 

overfitting. Importance of variables is assessed with the increase in node impurity, computed as 

the total decrease in residual sum of squares obtained after each splitting on the variable and 

averaged over all trees. The dependency between the growth rate and a covariate is visualized 

using partial dependence plots, where we determine the marginal effect of the covariate while 

setting the other covariates to their median value.  

BRT: Boosted regression trees 

BRT combine decision trees with boosting. Unlike RF, trees are added sequentially and not in 

parallel. At each step, the tree that best reduces a loss function is added. We use the R package 

gbm and choose the default parameters offered by the package: fits are made on 100 trees; a 

Gaussian loss function is used; interaction depth =1; the shrinkage (learning rate) is set to 0.1. 

We use the same lags as in the RF model. Relative importance of the covariates is a measure of 

how each variable contributes to reducing the loss function. Similarly to the RF, we visualize the 

dependency between the growth rate and the covariates using partial dependence plots. 

 

Description of predictors 

We include in individual models a set of predictors, chosen for their availability in near real-time 

and their potential to help to anticipate the trajectory of hospital admissions. Three types of 

predictors are considered over the training period: 9 epidemiological predictors describing the 

dynamics of the epidemics, 6 mobility predictors and 4 meteorological predictors. All predictors 

are available at the region and day levels. Most of them follow a strong weekly pattern. Data are 

smoothed using the methodology used for hospitalization data, in order to remove the weekly 
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pattern and reduce edge effects (see “Smoothing” above). In addition, over the test period, we 

also include vaccine coverage and the proportion of variants of concern (VOC) (Figure S9) as 

these two covariates can significantly affect the dynamic of hospitalizations from March 2021. 

Epidemiological predictors 

In addition to the growth rate of hospitalizations, we include predictors on confirmed cases, given 

that cases are expected to be reported a few days before hospitalizations. Case data are obtained 

from the SIDEP database (Système d’Information de Dépistage Populationnel - Information 

system for population-based testing), the national surveillance system describing RT-PCR and 

antigenic tests results for SARS-CoV-2 arising from private and public French laboratories. 

Anonymized data are transmitted daily to Santé publique France through a secured platform. Test 

results are reported by date of nasopharyngeal swab and include patient information such as age, 

delay since symptoms onset and postal code of the home address. This surveillance system was 

implemented from May 13th 2020 and became stable in June 2020. 

We explore 8 potential predictors (Fig. S2): 

- the number of positive tests, and their growth rate 

- the number of positive tests, in people aged >70 years, and their growth rate 

- the proportion of positive tests among all tests, and their growth rate 

- the proportion of positive tests among tests in symptomatic people, and their growth rate. 

The exponential growth rate is computed using a 2-day rolling window, and the resulting time 

series is smoothed using local polynomial regression. Due to reporting delays, case data can be 

used up to 2 days before the date of analysis. 

Mobility predictors 

Mobility data are obtained from Google (https://www.google.com/covid19/mobility/). Google 

mobility data describe how visitors to (or time spent in) categorized places change compared to 

a baseline (the 5‑ week period Jan 3 – Feb 6, 2020). The 6 categorized places are: residential 

(time spent at home), workplaces, grocery and pharmacy, retail and recreation, parks, and transit 

stations (Fig. S3). Reports are updated every other day and contain data up to 2 days prior to the 

day the dataset is generated. They are uploaded 2 days after the day the dataset is generated. 

Therefore, the maximum delay for data availability is 5 days.  

 

https://www.google.com/covid19/mobility/
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Meteorological predictors 

Climate data are obtained from Météo France/PREDICT Services, and include temperature, 

absolute humidity and relative humidity, for each weather station in France (N=63) (Fig. S4). We 

also include the IPTCC index (Index PREDICT de transmissivité climatique de la COVID-19), an 

index characterizing favorable climatic conditions for the transmission of COVID-19 (4). We take 

the median of the four variables in each region. In linear models, IPTCC is also tested in its 

logarithmic form. 

Vaccine coverage 

Vaccine coverage data are obtained from the VAC-SI database, the national information system 

developed by the French Health Insurance to monitor the deployment of the vaccine campaign.  

Daily data are made publicly available by Santé publique France 

(https://www.data.gouv.fr/fr/datasets/donnees-relatives-aux-personnes-vaccinees-contre-la-

covid-19-1/). We use the proportion of the population completely vaccinated (i.e. people who 

received 2 doses in a 2-dose vaccination scheme or 1 dose in a 1-dose scheme) (Fig. S9). 

Proportion of variants of concern (VOC) 

We obtain data on the proportion of variants of concern (VOC) detected in nasopharyngeal 

samples, to capture the progressive replacement of the historical strain by more transmissible 

variants. We use the SIDEP (Système d’Information de Dépistage Populationnel - Information 

system for population-based testing) database, the national surveillance system describing RT-

PCR and antigen tests results for SARS-CoV-2 arising from all private and public French 

laboratories. Anonymized data are transmitted daily to Santé Publique France through a secured 

platform. Test results are reported by date of nasopharyngeal swab and include patient 

information such as postal code of the home address. Aggregated data are made publicly 

available by Santé publique France (https://www.data.gouv.fr/fr/datasets /donnees-de-

laboratoires-pour-le-depistage-indicateurs-sur-les-variants/). VOC were identified among positive 

PCR or antigen test results, using RT-PCR screening kits. The main VOC circulating during the 

study period was Alpha variant, followed by Beta and Gamma variants. Data are available from 

February 15, 2021 to June 9, 2021. In order to impute the proportion of VOC before and after 

these dates, we fit a logistic regression model, assuming that the proportion of VOC was zero 

before December 15, 2020 (Fig. S9).  

https://paperpile.com/c/0jffZV/Sm1W
https://www.data.gouv.fr/fr/datasets/donnees-relatives-aux-personnes-vaccinees-contre-la-covid-19-1/
https://www.data.gouv.fr/fr/datasets/donnees-relatives-aux-personnes-vaccinees-contre-la-covid-19-1/
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Forward selection of predictors 

In order to select the best predictors to include in individual models, we use a forward stepwise 

selection method (5), using data from the training period only. We first include all covariates 

(N=19) in univariate models and run each univariate model over the training period, using a rolling 

forecasting origin approach (cross-validation): for each day t of the training period, we make 

forecasts for the period t-1 up to day t+14, using only past data up to day t-2 as a training set, and 

computing evaluation metrics using the smoothed observed data in t-1 to t+14. For each 

univariate model, we compute the RMSE of predictions at t+7 and t+14 and we retain the covariate 

that minimizes the RMSE. We then include the remaining covariates one by one, until no 

additional covariate can decrease the cross-validated RMSE by more than 1. We also consider 

two alternative models starting from the second or the third best covariate in univariate analysis. 

In the end, we retain the model with the lowest RMSE among the three multivariate models. 

 

  

https://paperpile.com/c/0jffZV/DCR1
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Supplementary figures  

 

Fig. S1: Time-series of hospital admissions, Intensive Care Unit (ICU) admissions, general 

ward beds and ICU beds in metropolitan France. The two periods highlighted in blue indicate 

the training period (September 7th 2020 to March 6th 2021) and the test period (March 7th 2021 

to July 6th 2021).  The raw series are shown in grey and the smoothed series in black. 



 

12 

 

Fig. S2: Epidemiological predictors (see also Supplementary text). 
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Fig. S3: Mobility predictors (see also Supplementary text). 
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Fig. S4: Meteorological predictors (see also Supplementary text). 
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Fig. S5: Trajectories of hospital admissions predicted by the 12 individual models in 

metropolitan France over the training period. The black line is the eventually observed data 

(smoothed), and the colored lines are trajectories predicted on day t, for prediction horizons t-1 

up to t+14. The training period runs from September 7th 2020 to March 6th 2021. We exclude the 

forecasts made between October 20th and November 4th (i.e. up to 6 days into the lockdown 

starting on October 30th) for hospitalizations occuring after November 3rd, as the models were 

not designed to anticipate the impact of a lockdown before its implementation. The excluded 

forecasts are shown with transparent lines and a grey shaded area. 
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Fig. S6: Model ranking by region over the training period. Models are ranked according to the 

RMSE over all prediction horizons. Reg. Ave. = regional average (RMSE computed over all 

regions except metropolitan France).  
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Fig. S7: Model fits for the growth rate of hospital admissions, at the national (metropolitan 

France) and regional levels, for the GAM2, the MLR, the BRT and the RF models. Each panel 

shows the observed growth rate (black line) and the predicted growth rates (colored lines) when 

retrospectively fitting each model from June 3rd 2020 to March 6th 2021, on all regions together. 

Abbreviations for regions: Auvergne-Rhône-Alpes (ARA), Bourgogne-Franche-Comté (BFC), Bretagne 

(BRE), Centre-Val de Loire (CVL), Grand Est (GES), Hauts-de-France (HDF), Île-de-France (IDF), 

Normandie (NOR), Nouvelle-Aquitaine (NAQ), Occitanie (OCC), Pays de la Loire (PDL), Provence-Alpes-

Côte d’Azur (PAC). 
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Fig. S8: Importance of predictors, estimated by retrospectively fitting the models from 

June 3rd 2020 to March 6th 2021. For the BRT model, relative importance is a measure of how 

each predictor contributes to reducing the loss function (all contributions sum to 100%). For the 

MLR and the GAM2 models, relative importance is a measure of how each predictor contributes 

to the total explained variance (all contributions sum to 100%). For the RF model, predictor 

importance is assessed with the increase in node impurity, computed as the total decrease in 

residual sum of squares obtained after each splitting on the variable and averaged over all trees 

(importance measures do not sum to 100%). 
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Fig. S9: Additional predictors used for the test period. (A) Vaccine coverage (complete 

vaccination scheme). (B) Proportion of variants of concern (VOC). The points represent the 

available data and the line represents the fit of the logistic model (see Supplementary text). 
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Fig. S10: Effects of mobility (blue), epidemiological (green), meteorological (red), 

proportion of VOC (orange) and vaccine coverage (purple) predictors on the growth rate 

of hospital admissions, for the GAM2, the RF, the BRT and the MLR models, by 

retrospectively fitting the models over two time periods: from June 3rd 2020 to March 6th 

2021 (solid lines) or from June 3rd 2020 to July 7th 2021 (dashed lines). Abbreviations: GR 

= growth rate. Predictors are described in Supplementary text. 
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Fig. S11: Comparison of the performance of the individual and ensemble models over the 

test period at the national and regional levels, by prediction horizon, for hospital 

admissions. A. Root mean squared error (RMSE) in metropolitan France. B. RMSE by region. 

C. Mean weighted interval score (WIS) in metropolitan France. D. WIS by region.  
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Fig. S12: Model ranking by week. Models are ranked according to the RMSE over all prediction 

horizons and all regions.  

  



 

23 

 

Fig. S13: Root mean squared error (RMSE) of the ensemble model for the four targets 

(hospital admissions, ICU admissions and bed occupancy in general ward (GW) and ICU) 

over the test period. A. RMSE of the ensemble model in metropolitan France. B. RMSE of the 

ensemble model at the regional level.  
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Fig. S14: Comparison of smoothing methods. (A) Smoothing spline. (B) Our two-step 

algorithm. The grey line shows the raw data of hospital admissions in metropolitan France from 

September 2020 to January 2021.The colored lines are time-series smoothed in real time (i.e. 

knowing only the past values), with different colors indicating the day of the last data point. 
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Fig. S15: Comparison of RMSE for hospital admissions over the training period, at the 

national and regional level, for the multiple linear regression (MLR) model, according to 

the smoothing method (LPR = local polynomial regression, MA = 7-day moving average). 

A. RMSE by prediction horizon in metropolitan France. B. RMSE by prediction horizon at the 

regional level. C. RMSE according to the day of the week at which the predictions were made, in 

metropolitan France. D. RMSE according to the day of the week at which the predictions were 

made, at the regional level. Here, we computed the RMSE of the LPR method against the LPR 

smoothed time series, and we computed the RMSE of the MA method against the MA smoothed 

time series. 
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Fig. S16: Comparison of RMSE for hospital admissions over the training period, at the 

national and regional level, for the multiple linear regression (MLR) model, according to 

the smoothing method (LPR = local polynomial regression, MA = 7-day moving average), 

using MA smoothed series as “truth”. A. RMSE by prediction horizon in metropolitan France. 

B. RMSE by prediction horizon at the regional level. C. RMSE according to the day of the week 

at which the predictions were made, in metropolitan France. D. RMSE according to the day of the 

week at which the predictions were made, at the regional level. This figure differs from Figure S15 

as RMSE of both methods was computed against the same times series (the MA smoothed 

series), showing that the conclusions of the comparison do not depend on the time series used 

as “truth”.   
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Fig. S17: Comparison of models with all types of predictors (solid lines) vs models with 

epidemiological predictors only (denoted “_epi”, dashed lines), over the test period. In 

general, the models with all types of predictors perform better than the models with 

epidemiological predictors only. 
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Fig. S18: Comparison of retrospective forecasts with real-time forecasts over the test 

period (March 7th 2021 to July 6th 2021). (A) RMSE for the ensemble forecasts of hospital 

admissions in metropolitan France. (B) RMSE for the ensemble forecasts of hospital admissions 

at the regional level. (C) MAPE for the ensemble forecast of the four targets in metropolitan 

France. (D) MAPE for the ensemble forecasts of the four targets at the regional level. Real-time 

forecasts were produced approximately every week to support public health decision-making. The 

models used to produce the real-time forecasts relied on an ensemble approach similar to the 

one presented in the retrospective study but they differed slightly (e.g. different set of predictors) 

and evolved over time.  
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Supplementary tables  
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Table S1: Best predictors selected for each individual model using the forward stepwise 

selection procedure over the training period. The six models were included in the ensemble 

model. 

Model Dependent 

variable 

Are lagged 

values of the 

dependent 

variable 

used as 

covariate? 

Epidemiological 

predictors 

Mobility 

predictors 

Meteoro- 

logical 

predictors 

ARDL Growth rate 

of hospital 

admissions 

Yes Growth rate of the 

number of positive 

tests 

Growth rate of the 

proportion of positive 

tests among tests in 

symptomatic people 

Residential  Temperature 

MLR Growth rate 

of hospital 

admissions 

No Growth rate of the 

number of positive 

tests 

Growth rate of the 

proportion of positive 

tests  

Residential   

GAM Growth rate 

of hospital 

admissions 

No  Residential and 

transit stations  

Absolute 

humidity 

ARIMA2 Growth rate 

of hospital 

admissions 

No   Transit stations 

and residential  

  

BRT Growth rate 

of hospital 

admissions 

No Growth rate of the 

number of positive 

tests 

Transit stations  

and residential 

 

RF Growth rate 

of hospital 

admissions 

No Growth rate of the 

number of positive 

tests  

 

Transit stations  

and residential 
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Table S2: 95% prediction interval coverage of the ensemble model, at the national and 

regional level, for 7- and 14-day ahead forecasts, over the test period.  

Level Target 7-day ahead 14-day ahead 

National Hospital admissions 0.76 0.69 

  ICU admissions 0.96 0.81 

  General wards beds 0.90 0.84 

  ICU beds 0.79 0.83 

Regional Hospital admissions 0.89 0.80 

  ICU admissions 0.95 0.91 

  General wards beds 0.90 0.90 

  ICU beds 0.93 0.96 
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