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Supplementary Information Text 
 
 

Materials and Methods 

 

Recording procedure and signal acquisition.  

All experiments were carried out with approval from the local authorities and in 

compliance with the German Law for the Protection of Animals in experimental research 

and the European Community Guidelines for the Care and Use of Laboratory Animals. 

Male Sprague-Dawley rats (350 - 450 g) were used (specific pathogen free, Charles River 

Laboratories, Sulzfeld, Germany). They were pair housed. Experiments were carried out 

during the active period of the rats, which were housed on a light cycle of 08:00 to 20:00 

darkness. A sub-set of the data were collected from rats used in a prior study (1). 

Neuronal recordings were made under urethane anesthesia, a widely used model for 

studying cortical state transitions evoked by LC stimulation (2, 3). To date, recordings of 

many LC single units simultaneously in any awake organism with multi-electrode probes 

has been an intractable problem due to brainstem movement associated with body 

movement, thus necessitating the use of anesthesia to investigate the relationship between 

LC ensemble activity and cortical state.  

Rats were anesthetized using an intra-peritoneal (i.p.) injection of urethane at a dose of 1.5 

g/kg body weight (Sigma-Aldrich, U2500). Surgical procedures were as described in prior 

work (1). Electrodes targeted the LC and the prelimbic division of the medial prefrontal 

cortex. The coordinates for LC were 4.0 mm posterior from lambda, 1.2 mm lateral from 

lambda, and approximately 6.0 mm ventral from the brain surface (implanted at a 15 deg 

posterior angle). The coordinates for the cortex were 3.0 mm anterior and 0.8 mm lateral 
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from bregma and 3.0 mm ventral from the brain surface. The LC electrode was targeted 

based on standard electrophysiological criteria (1). Briefly, we inserted a 32-electrode array 

and monitored the neural activity on all 32 channels during insertion. We advanced the 

array ventrally until the biphasic response (i.e., excitation, followed by auto-inhibition and 

lateral inhibition) to noxious foot shock (5.0 mA biphasic square pulse, 0.5 msec duration) 

occurred clearly on all 32 channels. If the biphasic response was not observed on all 

channels, then the penetration was not the LC and was not included in the study. According 

to this criterion, we found that it was possible to have all electrodes (spanning 275 um in 

dorso-ventral axis) within the LC core, which spans 500 um dorso-ventrally. Our array was 

therefore advanced to the interior of the LC and could not span the entire extent of the LC. 

In addition to biphasic response to noxious stimuli, LC single units were characterized by 

a wide spike waveform, low firing rate, and long inter-spike intervals. At the end of the 

recording, we administered clonidine (0.05 mg/kg) i.p. (Sigma-Aldrich, product 

identification: C7897) to confirm cessation of noradrenergic neuron spiking across the 

entire recording array. We also verified LC targeting in most experiments using 

histological examination of coronal sections (50 um thick) that were stained for Cresyl 

violet or a DAB and horse radish peroxidase reaction with hydrogen peroxide to visualize 

an antibody against tyrosine hydroxylase, as shown in prior work (1).  

The LC was recorded using a multi-channel silicon probe (NeuroNexus, Model: A1x32-

Poly3-10mm-25s-177-A32). The impedance of the electrodes was ~1.0 to 2.0 MOhm. 

Cortical local field potentials were recorded using a single tungsten electrode with an 

impedance of 200 – 800 kOhm (FHC). A chlorided silver wire inserted into the neck muscle 

was used as a ground. Electrodes were connected to a pre-amplifier (in-house constructed) 

via low noise cables. Analog signals were amplified (by 2000 for LC and 500 for cortex) 

and filtered (8 kHz low pass, DC high pass) using an Alpha-Omega multi-channel 

processor (Alpha-Omega, Model: MPC Plus). Signals were then digitized at 24 kHz using 

a data acquisition device (CED, Model: Power1401mkII). 

NMF decomposition of population spike trains into coactive ensembles.  
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We used non-negative matrix factorization (NMF) (4) to decompose a matrix of the spike 

counts of all simultaneously recorded single units across time intervals. NMF linearly 

decomposes the matrix of the spike counts of the population of single units at each time 

interval as a sum across a set of non-negative basis functions (modules) using non-negative 

coefficients (4–6). The non-negativity constraint is useful for obtaining sparse 

representations and it is particular suitable for decomposing population spike count at 

different time intervals, which are always non-negative. Previous work has shown that the 

NMF of population spike trains provides a robust decomposition whose basis functions can 

be biologically interpreted as a set of the firing patterns of the single units that are coactive 

(i.e., an ensemble) and the coefficients quantify the relative strength of recruitment of each 

ensemble firing pattern at any given time (5). 

We employed an NMF decomposition that we have previously termed “space only NMF” 

because it decomposes the population firing patterns across single units at each time 

interval (5): 

R = WH + residuals 

R ∈ ℤ+
𝑇 × 𝑁 is the data matrix containing the spike counts of each of N single units binned 

into T time bins (with 𝑡 being the index of each time bin). H ∈ ℝ+
𝐾 × 𝑁  is the matrix 

containing the basis function, which has K spatial modules. Each module captures a 

different pattern of coactivity of the single units and can, therefore, be used to identify 

which neurons are active together and thus form ensembles. W ∈ ℝ+
𝑇 × 𝐾is the matrix 

containing the activation coefficients that describe the strength of recruitment of each 

module (and thus of each ensemble of coactive neurons) at each time interval. The residuals 

express the error in the reconstruction of the original population spike train matrix. We 

computed the decomposition using the multiplicative update rule to minimize the 

Frobenius norm between the original and the reconstructed data (4). Note that the use of 

the Frobenius norm assumes that the residuals have a Gaussian white noise structure.  

One free parameter of the analysis is the temporal resolution of the time binning, T. We 

binned spike counts at T = 100 ms. The time resolution was selected based on our 
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previous work reporting that pairs of LC single units are predominantly synchronized on a 

timescale of approximately 100 ms or less (1). We also used ranges of ΔT from very small 

values (a few ms) up to large values (a few seconds) and found that very small (<= 20 

ms) and very large (> 1 s) bin sizes artificially identify either many modules each 

containing only one single active unit or one large ensemble containing all single units, 

respectively.   

The second free parameter of the NMF analysis is the number of different modules,K, 

which were chosen for computing the decomposition. Following established procedures 

(5, 6), we chose K for each rat by computing the amount of the variance explained by the 

decomposition when varying K  from its minimum possible value (one) to its maximum 

possible value (the number of simultaneously recorded single units). An elbow in this plot 

indicates a point of diminishing returns for including more modules. We thus chose the 

number of modules as the smallest K in the elbow region of this curve for which the 

decomposition reconstructed at least 60% of the variance of the original spike train data. 

Given that the NMF decomposition may have local maxima in the variance explained (or 

equivalently local minima in error reconstruction), after selecting K , we repeated the 

decomposition five times using this K and used randomly chosen initialization conditions 

on each repetition. The selected K  was used if all solutions had a high degree of stability 

across these five random initializations. Stability was assessed by checking the 

repeatability of clustering in comparison to randomly assigning single units to ensembles. 

The degree of stability was computed as follows. We hard clustered the data to assign each 

single unit to one and only one ensemble by dividing each column of H by its maximum 

and removing the values below 1. From these data we then measured the stability across 

the five decompositions using the Rand Index (7). We compared the average of the Rand 

index for each animal with 100 repetitions of the five random clustering. The average Rand 

Index was always greater than the top 5% of the distribution of mean Rand Indices resulting 

from random clustering. Therefore, NMF decomposition produced meaningful and 

repeatable ensembles. Among those random initializations, the final decomposition 

reported in the analyses was chosen as the one leading to the maximum variance explained. 
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The modules detected by NMF provide a pattern of coactivation of different single units 

and the activation coefficients measure the strength of recruitment of each module at any 

given time. From these data, we used a threshold-crossing of the coefficients to define 

when ensembles were active and which single units were active in the ensemble. In order 

to perform the thresholding, we first normalized the columns of H to the minimum and 

maximum and then set a threshold based on the distribution of coefficients. Single units 

within a module were defined as an ensemble of coactive single units if their corresponding 

element of H crossed the initial big peak of the histogram of the distribution of coefficient 

values for that rat (which usually corresponded to 95th percentile). Coefficients below this 

value were set to zero and values above the threshold were set to one. In the resulting binary 

version of the matrix, H, a value of 1 represented spatial modules corresponding to a single 

unit belonging to an ensemble. 

The columns of the W matrix correspond to a set of activation coefficients representing the 

strength of recruitment of each module at any given time interval. We thresholded these 

continuous values into binary values using the same method explained above for the spatial 

modules. The binary version of the matrix, W, was used to determine whether an ensemble 

is active or not in each time bin.   

The evaluation of physical clustering of ensembles according to location on the recording 

array.  

To assess whether single units within an ensemble tended to cluster on the recording array, 

we measured the pairwise distance between the units within each ensemble. The location 

of each unit was assigned to the electrodes on which the maximal waveform was recorded. 

Euclidian pairwise distances of the units inside each ensemble were calculated. 

Spike train simulation 

We compared the NMF algorithm with previous work that used graph-theoretic community 

detection of subsets of co-active neurons from the time-averaged correlations between LC 

cell-pairs (1), we generated three different sets of spike trains. Each set of spike trains had 

unique ensemble dynamics as a ground-truth. Spike trains were generated using Poisson 
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Process, with time varying rate every 100 ms. The baseline rate was randomly sampled 

from a Gaussian distribution with a mean of 1 and standard deviation of 0.1. For the periods 

of co-activation, the rate was increased by a signal to noise ratio sampled from a Gaussian 

with a mean of 1.5 and standard deviation of 0.1. After the generation of the spike trains, 

we binned and counted the spikes every 100 ms. This matrix was fed to NMF for extraction 

of spatial and temporal modules. Pairwise spike count correlation was calculated using 

Pearson correlation on the spike count matrix. A graph was made on the correlation matrix 

with each unit as a node and the links with the nodes was drawn only for significant 

correlations. The significance of the correlation was assessed by comparing to 1,000 

surrogate correlations generated by shuffling spike counts randomly in time. The graph 

was then used as an input for the Louvain community detection as described in prior work 

(1). 

The assignment of single unit types in the ensembles.  

Single unit type was defined by waveform duration, as in prior work (1). We determined if 

single units of the same type were more likely than chance to belong to an ensemble by 

computing the exact probability of having ensembles of the same single unit type under the 

null hypothesis of random assignment. These probabilities were computed by the means of 

repetition of random sampling (assembling) without replacement. The number of units in 

the sample was fixed to the number of single units in the ensemble. The number of 

repetitions for each rat was the number of ensembles that were empirically found by NMF 

to consist of only one type of single unit. 

Calculation of cross-correlograms between pairs of ensembles.  

Interactions between pairs of ensembles were measured using cross-correlograms between 

their time-dependent activation coefficients. Cross-correlograms were calculated in a 

window of 2000 ms with a bin size of 100 ms. The cross-correlograms were compared to 

1,000 surrogate cross-correlograms by jittering the activation times uniformly between 

±1000 ms. Significant excitatory interactions were those that had cross-correlogram bins 
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which crossed the upper 1% of pairwise coincidental activations observed in the surrogate 

data. 

A synchrony index was used to measure the degree of synchrony between the ensemble 

pairs that show significant zero-lag cross-correlogram peak. We calculated the synchrony 

index by dividing the number of co-activations of the two ensembles by the sum of total 

number of activations of each of the ensembles.  

LC ensemble activation-aligned averaged LFP spectrogram and BLP modulations. 

For each detected ensemble activation event, we used for spectral analysis data comprising 

400 ms before the beginning of ensemble activation, 100 ms of ensemble activation, and 

400 ms after the end of ensemble activation. This window was chosen because it is the 

largest one, according to our data (Figure 2C, Figure 4B), for which it is unlikely that 

multiple ensembles were co-active during this window. Spectrograms were computed 

using the multitaper method with 3 tapers and time bandwidth product of 5 in a 200 ms 

window shifted in 10 ms steps. The spectral resolution obtained this way was ~4 Hz. The 

200 ms sliding window size allows extracting from the analysis window an estimation of 

spectrograms in windows whose center falls between 300 ms before to 400 ms after 

ensemble activation onset, which were thus used as ranges for spectrogram plotting in 

Figure 6 and Figure S3. Band-limited power (BLP) was computed by filtering the LFP 

backward and forward to avoid phase shifts (filtfilt function, MATLAB) using a 3rd order 

Butterworth filter, then taking the absolute value of the Hilbert transform of the filtered 

signal, and finally smoothing them with a 200 ms Gaussian window (the value of the 

smoothing was chosen to match the size of the sliding time window used for spectrograms). 

For consistency, we plotted BLP and spectrograms using the same peri-event activation 

window ranges.  

For each ensemble, we first averaged BLPs and spectrograms across all events. To compare 

spectrograms and BLPs across ensembles, we normalized them to a spectral modulation 

index defined by the ratio between the difference and sum of the spectral value at each time 

point and frequency bin and its time-average in the frequency bin over the entire peri-event 

window. This quantity at each time point and frequency bins can take values between -1 
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and 1 and quantifies the relative changes of power around the time-averaged power in each 

frequency bin in the main text.  Spectra were clustered using a k-means algorithm.   

To illustrate the significance of BLP modulations of individual ensembles, in Figure 5B 

we compared the scatter plot of BLP modulations of real data against those that were 

obtained by computing BLPs aligned to randomly shuffled ensembles activation times 

(keeping the number of activations the same as in the real data but shuffling their times 

randomly). We found (Figure 5B) that shuffled times modulations were smaller than those 

obtained with real ensemble activation times.  

Spectrogram clustering.  

The set of ensemble activation-triggered spectral modulations were clustered to 

recapitulate the main trends observed within the diversity of LC ensemble activation-

triggered cortical spectrograms. The clustering was performed using the k-means algorithm 

(9). The k-means algorithm requires specifying a choice for the number of possible clusters 

and for the mathematical function used to compute the distance between the different 

spectrograms. We tried various definitions of distance functions (Pearson Correlation, 

Euclidean distance, cosine, and cityblock), and we chose Pearson correlation as distance 

function because it gave higher averaged silhouette values (10), which suggests cleaner 

clustering. Clustering was done on the spectrogram modulation values and not on those 

thresholded for significance.  We clustered the spectral modulation into k=4 clusters. This 

number of clusters was selected because it corresponded to the elbow point (defined as the 

first point in which the error drops below 5%) of the curve quantifying the normalized 

clustering error (error divided by the maximum error) as a function of the selected number 

of clusters.  The error in the k-means clustering was computed as sum of the distances of 

each data point to their respective cluster centroid. We assessed the significance of the 

clustered spectral modulations at each time and frequency shown in Figure 6A by pooling 

the spectral modulations of all ensembles in each cluster and comparing the median of the 

population at each point against zero using a two-tailed Wilcoxon signed rank test. The p-

values were corrected for multiple comparisons using Benjamini’s & Hochberg’s method 

for false discovery rate at q = 0.05 (11). 
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The above analysis was done taking for clustering all spectral modulations obtained in 

correspondence of a detected activation of one or more ensembles. We performed a further 

control analyses in which we clustered only the subset of the spectral modulations during 

coactivation of ensemble-pairs. The clustering procedure for this control analysis was 

identical to the one reported above but selected a number of clusters (corresponding to the 

elbow point of the error curve) equal to 2 clusters.  
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Supplemental Information 

 

Fig. S1. Data underlying the choice of the optimal number of modules (K) in each rat. 

Each panel depicts the percentage of explained variance versus the number of the modules 

for each rat. Solid green lines show the number of selected modules based on the criteria 

of first elbow after at least 60% of variance is explained. The dotted red lines show the 

amount of the explained variance at the selected number of modules. 
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Fig. S2. Spike rates of units inside and outside LC ensembles around the time of 

spontaneous LC ensemble activation.  Average PETHs over all the ensembles (N = 146). 

The zero time on the x-axis is the ensemble active time. Line and shaded area report the 

mean and SEM across ensembles, respectively.  
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Fig. S3. Ensemble auto-correlogram peaks. (A) The histogram plots the auto-

correlogram (time binning of 100 ms) of the activation time course of an example ensemble 

(#3 from rat 1091). Significant peaks were defined as those that had auto-correlogram 

values above the 99th percentile (upper dashed orange line) of the surrogate distributions 

of correlogram values computed by randomly jittering ensemble activation times. The solid 

blue line shows the average of the surrogate correlograms. (B) Histogram of the number of 

significant auto-correlogram peaks as a function of time lag. 117 out of 146 ensembles had 

a significant peak. 
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Fig. S4. Examples of cortical LFP power spectrograms aligned to spontaneous 

activations of individual LC ensembles. Examples from 12 different ensembles illustrate 

the diverse cortical states which occur around the time of ensemble activation. The 

examples are shown in 4 columns, with each column reporting spectrograms that were 

assigned respectively to the clusters A, B, C, and D shown in the Figure 6 in the Main Text. 
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Fig. S5. The result of analyses supporting the determination of the best criteria for 

spectral clustering. (A) The normalized error (error divided by the maximum error) of the 

k-means clustering of the ensemble activation-aligned spectra versus the number of 

clusters. Four different distance measures were assessed and each is plotted in a different 

color. (B) Each panel shows the result of the silhouette analyses on the chosen number of 

clusters for four different distance measures. The optimal distance was selected based on 

both the uniformity in each cluster (the width of the bar plots) and the average silhouette 

value (the dashed red line). 
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