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Model derivation 
 
Survival, extinction, and growth of populations are inherently stochastic (1). At its core, the problem 

of modeling the growth of the accumulation of embryos from ctenophores is a stochastic population 45 
dynamics problem. Existing time series methods to fit biologically sound stochastic growth models allow 
the estimation of quantities related to growth rates, the average time until any given event (first passage 
times, for instance), and the chances of different events of interest. Of particular interest in this case is a 
process-based estimation of the time-varying probability that within a given window of time, the number of 
embryos will grow by any given amount under different experimental settings.  50 

 
Conservation biology (2), wildlife management (3, 4) and evolutionary microbial population 

dynamics (5) are only a few of the research areas in ecology and evolution that have long benefited from 
the application of stochastic population growth models. In conservation biology for instance, the so-called 
Population Viability Analyses (PVA) were changed dramatically by the contribution of papers like Dennis 55 
et al.’s 1991 (1) estimation of growth and extinction parameters. Their key contribution was illustrating 
how fundamental results and concepts from stochastic processes could be adequately used to better 
understand and predict population dynamics processes.  

  
To model the early reproduction process in ctenophores, we originally used a “stochastic birth 60 

process” (6), which is a well-known continuous time and discrete states Markov Process (7) used in 
various population dynamics contexts (7–10), notably to model pathogens’ reproduction (11). One key 
property of such processes is that the total (cumulative) number of births can only increase or remain the 
same over time, but not decrease. The stochasticity in this general model is called “demographic 
stochasticity” (1, 12) and represents chance variation due to individual heterogeneities in birth rates. This 65 
type of process variability is particularly relevant at low numbers (1).  

 
Let !(#) be the number of accumulated embryos at time t. We denote the initial number of embryos 

!(0), as '. Heuristically, the birth process can be described as a process where embryos are being born 
one at a time, at random time points since the beginning of each trial. Births occur at a rate λ!(#) and at 70 
random time intervals. One of the key characteristics of this stochastic process that makes it suitable to 
model the observed accumulation of births is that it is not necessary to record the exact moment at which 
every single event occurs. Inference can still be done when observations are made at unequal sampling 
intervals. The only data needed to fit different models for the birth rate are the number of embryos alive 
observed at different time points. We note in passing that here we use the convention that random 75 
variables are written with capital letters and realized values as lowercase letters. Hence, )(#) denotes the 
observed number of embryos at time # and thus, one realization of the random variable !(#).  

 
Let *!(#) denote the probability of observing )(#) births at time # or +,-!(#) = )(#)/. Using standard 

stochastic process results one may arrive at an analytical expression for *!(#) as a function of the birth 80 
rate λ!(#) (7). The utility of our modeling approach lies in the fact that we were able to translate different 
hypotheses/models regarding the factors modulating the birth rate into specific mathematical functions for 
λ!(#). Thus, we explicitly stated how λ!(#) is modulated by the categorical and quantitative variables of 
interest. The resulting expression for *!(#) under each biological hypothesis serves as the direct link that 
connected the observations with the proposed probabilistic model via the likelihood function. 85 



 
The birth process for the problem at hand was indeed formulated so that it embodies a suite of 

plausible biological hypotheses regarding the unfolding of the reproduction process, and in particular, the 
dependency of its intensity on a handful of biological factors of interest. These factors included the 
density of coetaneous individuals in the experimental container, the temperature, and the type of food 90 
given to the ctenophores. Details about this formulation are given in the “Parameter Estimation” section 
below. 

 
  The general birth process formulation applied to our case assumes that there exists an arbitrarily 

small amount of time Δ# during which at most one new birth occurs with probability λ!(Δ#) and that the 95 
probability that no birth occurs is 1 − λ!(#). This model also assumes that the probability of any other 
event is negligible, i.e., that only birth of cases can be observed. Accordingly, the probability that starting 
at time #, after waiting a small amount of time Δ# the observed number of births is ) is:  

 
*!(# + Δ#)  =  (Δ#)λ!"#*!"#(#)  +  (1 − (Δ#)λ!)*!(#). (Eq. 1) 100 
 
The first term in the right-hand side (RHS) of Eq. 1 is the probability that the cumulative number of 

births at time # was ) − 1 and a birth occurred with probability λ!(Δ#). The second term is the probability 
that at time # the number of cumulative births was already ) and that within that small time window Δ# no 
birth occurred. 105 

 
As Δ#	 → 	0, Equation 1 tends to the following system of Ordinary Differential Equations (ODEs): 
 

8*!(#)
8# = λ!"#*!"#(#) − λ!*$(#), 

 110 
Where ) = ',' + 1,' + 2,… Letting λ! = λ, a positive constant, the above system of equations can 

be readily solved (7) to yield the probability of observing )(#) births at time # *!(#) in the form of a 
Poisson random variable, i.e.: 

 

*!(#) =
e"%$(λ#)!($)

)(#)!  115 
 
Thus, under this stochastic process, the total number of births occurring during a time period τ is 

Poisson distributed with parameters λτ and the waiting time until the first event or between any two 
events follows the exponential distribution with parameter λ. 

Therefore, the Poisson distribution and the exponential distribution are tightly linked under this 120 
model: assuming one implies assuming the other. However, the initial motivation for this analysis using 
stochastic processes was the observation that counts of new births appear clumped over time. As well, 
the counts of new births over time are characterized by an excess of 0’s. Hence, neither the assumption 
of Poisson distributed counts nor of exponentially distributed inter-event times seemed appropriate. 

 125 
In survival analyses applied to econometrics and engineering, when exponentially distributed inter-

event times are not appropriate due to temporal clumping of events, Pareto distributions are used instead. 
As it turns out, a special case of this distribution, known as the Lomax distribution (13) arises naturally in 
our context by incorporating the birth rate as a random effect and formulating our stochastic model as a 
hierarchical time-series model. Accordingly, if we model individual variation in birth rates using a Gamma 130 
distribution with parameters α and ? and integrate the Poisson probability of observing )(#) births at time 
# *!(#) over this probability model we get that 

 

*!(#) = +(!(τ)  =  ))  =  -!()"# ! /  @ +
,(+A

)
@ -
-(.A

!
.   (Eq. 2) 

 135 
Hence, the number of new births in a time interval of size τ is Negative Binomially distributed with 

parameters + = +
,(+, B =

,
+(, and overdispersion parameter ?. Under this model, the waiting time C 



between birth events is no longer exponentially distributed. Noting that, starting at time 0, the event “no 
birth was recorded during the time interval τ = 	D − 0” is equivalent to the event “the waiting time C until 
the next birth is greater than D ”, the cumulative distribution function (cdf) of C is readily found to be 140 

 
E(τ) = +(C ≤ τ) = 1 − +(!(τ) = 0) = 1 − @ +

,(+A
)
.    (Eq. 3) 

 
Differentiating the cdf in Eq. 3 with respect to τ we immediately obtain the probability density 

function (pdf) for the waiting time between births in our hierarchical model: 145 
 

G/(τ)  =
01(,)
0, = @ +

,(+A
)
@ )
,(+A.    (Eq. 4) 

 
This equation is recognized as the pdf of the Lomax distribution (13), which is a special case of a 

Pareto distribution. 150 
 
The salient feature of any stochastic birth model is that one or multiple forms of biological variability 

or heterogeneity can be acknowledged. Consequently, the population projections of these models will 
deviate at random (but according to the type of biological heterogeneity considered) from the usual 
deterministic and smooth projections obtained from differential or difference equation models (See Fig. 155 
S1 A). A hypothetical single growth trajectory of the cumulative number of offspring produced in given 
experiment is shown in Fig. S1 A. In stochastic processes terminology, this sample trajectory is usually 
called a “single realization” of the stochastic growth process. Visualizing multiple independent realizations 
of the stochastic model of population growth starting from the same initial conditions (See Fig. S1 B.) is 
important because it helps convey the fundamental property of these models: the population size at any 160 
point in time obeys a probability law shaped by the birth rate λ!(#). Put in another way, the population 
size at any time can be modeled with a time-dependent random variable. Hence, unlike deterministic 
models which give an exact point projection of what the population size of interest will be at any point in 
time, these models specify the probabilities that the population size at time # will be of any given size. 
This probability law is at the center of our Parameter Estimation approach as it provides the link between 165 
the data and the models tested. 

 

 
 



Figure S1. A. A single projection/trajectory of a stochastic birth model showing the cumulative 170 
number of births is usually referred to as a “single realization” of the stochastic process. Multiple 
realizations of the process, depicted in B, lead to a general description of the process in terms of means 
and variances of the cumulative number of births over time. With our experiments, we aimed at inferring 
the properties of the mean of the process over time and under different experimental conditions. C. 
Visualization of real individuals’ embryo production over time, overlaid with measured parental body size 175 
data at each step. Additional data contained in Supplemental Data File S6 can be used with the provided 
R code to visualize other individuals’ trajectories. 

 
 
Parameter estimation 180 
 
With the modification incorporating individual heterogeneity, our stochastic birth process is strictly no 

longer a Markov process. Rather, this type of modification belongs to a class of models known as a 
“Semi-Markov Processes” (SMP’s, (14)). Although the waiting time is no longer exponentially distributed, 
the embedded discrete-time chain counting the cumulative number of births retains the Markov property. 185 
This fact is crucial for writing the likelihood function which connects the different hypotheses we tested 
with the observations. We call this general hierarchical stochastic model the semi-Markov Birth Process 
(SMBP). 

 
Critically for our model-fitting approach, our hierarchical model formulation admits an explicit 190 

expression for the mean number of random birth events occurring in any given time interval D:  
 

E[!(τ)] = )2
3 = ?τ #+ .    (Eq. 5) 

 
Hypothesized drivers of mean number of births in a time interval were subsequently modeled using 195 

a traditional regression format using this expression. Our approach, akin to Generalized Linear Models 
(GLMs, (15)), allowed us to write the mean of the stochastic process (Eq. 5) as a function of continuous 
covariates (like temperature) or other experimental treatments or factors (See “Parameter Estimation” 
section below). As stated in the main text, traditional GLM approaches should not be used here because 
they erroneously ignore the biological time dependency in the counts, and therefore may result in 200 
excessive Type I errors in hypothesis testing as well as severe model choice errors using information 
criteria (16). 

Accordingly, each experimental time series for a single culture was modeled as a single realization 
of our stochastic process model and treated as an independent replicate. Therefore, an entire time series 
(usually of about 7 days) was treated as a single experimental unit observation. The mean for each 205 
replicate is given by Eq. 5 but modified to account for the particular experimental conditions of each 
replicated time series. To model the mean of the stochastic process (Eq. 5) as function of hypothesized 
drivers/covariates we proceeded as follows:  

 
The basic data unit consists of a recorded pair of numbers for every day for one experimental 210 

setting. These two numbers are the day, #4 and the new number of embryos )4 produced between the 
previous day (#4"#) and the current day (#4). Starting with )5 = 0 and #5 = 0 the data for a basic 
experimental time series unit is denoted as: 

 
()5, #5), ()#, ##), ()6, #6), … , -)7 , #7/, 215 

 
where J is the total number of counts done after day 0. Because the SMBP evolves by increments 

(jumps) during each time interval τ4   =  #4 − #4"#, and since the probability distribution of the jump is 
negative binomial, the likelihood function for a single time series is equal to a product of J negative 
binomial expressions evaluated at the observations. Care must be taken, however, in the 220 
parameterization of that probability distribution for every jump, as it depends on the size of the time 
increment τ and on the value of the parameter α. Critically, it is through the parameter α that we phrase 
different hypotheses regarding the drivers of the mean size of the increments. We phrase these 
hypotheses as follows: First, define θ = #

+. Then, we arranged the observed values of the covariates in 



matrix format by computing the design matrix (17) according to the particular model tested using R’s 225 
function “model.matrix()”. This function is at the core of the off-the-shelf GLM programs in R. For example, 
if the model to be fitted states that the jump increments every day only depend on the number of parental 
types (a continuous variable) using standard “formula” notation in R code, the design matrix would be 
given by 

 230 

L = M

1 N##
1 N6#
⋮ ⋮
1 N7#

P, 

 
where N##, … , N7# are the values of the number of parental types present every day from 1 to J. The 

second sub-index (always a 1 in this example) is used to enumerate/name the covariate of interest. In this 
case, we are simply naming the number of parental types as the first (and only) covariates. For this 235 
example, we would connect the jump model parameters τ and θ with the hypothesis that the mean jump 
size depends on the number of parental types through the log-link regression function  

 
 log U  = LV,    (E. 6) 

 240 
where V = (β5, β#)8 is a vector containing the unknown parameters to be estimated (here the bold-

face notation is used to denote vectors). The hypothesis of no effect of the number of parental types 
would then dictate that the slope parameter β#would be equal to 0. Effectively then, we make the 
parameter X a function of the covariates, whatever these may be. Categorical variables can be readily 
accommodated using standard dummy variable notation for design matrices, all while making sure the 245 
model is not overparameterized (17). What changes from model to model is the form and dimension of 
the design matrix and the number of parameters to be estimated but the general log-link function (Eq. 6) 
remains unchanged. We designed and wrote our own code for Maximum Likelihood (ML) parameter 
estimation, keeping standard R GLM notation for ease of use, and uploaded the code to GitHub 
(https://github.com/jmponciano/ctenophores) that can be used for any SMBP. An example of the data 250 
analysis is provided in the program “ExampleCtenophores.R”. The output of the function gives the model 
parameter estimates, the optimized negative log likelihood value and the Bayesian Information Criterion 
(BIC) model score. Confidence intervals for the mean growth in the number of embryos as a function of 
time were computed using parametric bootstrap.  

 255 
Written as such, this new hierarchical model is one of the few hierarchical models that does not 

necessitate an MCMC numerical integration machinery as an analytical solution is readily obtained for the 
likelihood function. Then, a simple numerical optimization routine is enough to maximize this likelihood. 
Since hierarchical models first were used in Ecology, Bayesian methods were increasingly being applied 
for statistical inference for these models as these methods bypass difficult integration problems to obtain 260 
the likelihood function (18). Soon, hierarchical models were taken as synonyms of Bayesian statistics, a 
point of view that has long shown to be erroneous (e.g., (19)). Lele et al (2007) (20) first presented a 
technique that uses the numerical integration benefits of Bayesian statistics to compute Maximum 
Likelihood estimates for hierarchical models. However, the model presented here is like one of the most 
popular hierarchical (also called state-space models in ecology) used in population dynamics, the 265 
Gompertz State Space model (4) in that no numerical integration is needed to compute the likelihood 
function, as it can be derived analytically. Therefore, there is no need of MCMC approaches. Besides the 
GLM model inadequacy (due to temporal dependencies) mentioned in the main text, we add that we did 
not use a Bayesian mixed-model GLM approach because statistical research spanning more than a 
decade and a half and recently reviewed (21, 22) has shown that Bayesian inference for stochastic, 270 
hierarchical models (or state-space models) can be unreliable due to parameter identifiability issues and 
non-transformation invariance of (uninformative) priors among other things (see (4, 18, 19, 23–29) for 
original papers) . 

 
 275 
Nonparametric Bootstrap and Model Selection 



The problem of how to measure support for the different tested models of the drivers of embryos 
production is at the core of our statistical methodology relying on Evidential Statistics (30–32). The main 
goal of the evidential statistics paradigm (16, 25, 28, 32–34) is to quantify the strength of the evidence in 
the data for a reference model relative to another model. This quantification is done through an evidence 280 
function, which is a statistic for comparing two models (35). The salient property of evidence functions is 
that their associated probabilities of making a wrong model choice approach 0 as sample size increases. 
These probabilities, which are analogous to Type I and II errors in the classical Neyman-Pearson 
Hypothesis Testing (NPHT) framework are pre-data error rates and measure the probability of obtaining 
“weak misleading evidence” and the probability of obtaining strong misleading evidence. Here, making 285 
the wrong model choice refers to deeming as best a model that is not the closest to the true generating 
process model and “misleading evidence” corresponds to obtaining observations that either weakly or 
strongly support a wrong model, i.e., not the model that is closest to the data-generating process.   
 
The main reason for choosing this statistical paradigm is that, unlike the classic NPHT and Bayesian 290 
approaches it provides solid guidelines to assess inferential errors when none of the statistical models at 
hand are a perfect representation of the data-generating process (26), that is, when all the models tested 
are imperfect mathematical “misspecifications” of the data-generating process as it is the case here. 
Indeed, the NP framework for instance depends critically on either the Null or the Alternative hypothesis 
being a statistical model that perfectly represents the data generating mechanism, fixes one of the error 295 
probabilities (alpha) and thus problematically assesses the evidence against the null hypothesis with 
alpha constant regardless of sample size and remains silent with respect to the evidence for the null 
hypothesis. The asymmetry of the error structure has often led to difficulties in interpretation of 
hypotheses tests. On one side, the decision to pick the alternative model over the null hypothesis is not 
controversial as it has some intuitively desirable statistical properties: for example, the probability to reject 300 
the null hypothesis given that the alternative is true converges to 0 as sample size increases (28). On the 
other side however, the probability of wrongly choosing the alternative when the null is true remains stuck 
at the chosen level α regardless of how large a sample size is collected (16, 28). Matters get only more 
complicated when it is considered that the original Neyman-Pearson theorem (36) assumes that the data 
was generated under one of the two models but provides no guidance whatsoever in the event of model 305 
misspecification, a scenario commonly encountered in science (16). The fact that in scientific practice 
model comparison rarely stops at two models complicates even further the interpretation of experimental 
results using the NPHT. An overconfidence in model selection procedures also results in Bayesian 
Statistics when the model misspecification is ignored (37). 
 310 
The evidential approach, on the other hand, proposes instead to fix cutoff values for the evidence 
statistic, not the error probabilities. Under this concept of evidence, the value of a statistic like the 
likelihood ratio is evidence, not an error rate that is pre-set. Then, the evidential error probabilities 
mentioned above can be made to converge to 0 as sample size grows large. Finally, under this evidential 
statistics approach, the conclusion structure of say, a comparison between two models H1 and H2 has a 315 
trichotomy of outcomes: i) strong evidence for H1, ii) weak or inconclusive evidence and iii) strong 
evidence for H2. 
 
Some, but not all, information criteria commonly used for model selection are evidence functions. That is, 
not all information criteria have a vanishingly small probability of making the wrong model choice as 320 
sample size gets large. An Information Criterion is an estimator of the sample size scaled difference of 
divergences between the generating mechanism and the competing models. One such estimator is the 
ΔYZ[, or difference in the Bayesian Information Criterion (38). As a note, we mention that this criterion is 
one of a series of criteria that all have frequentist derivations (39) so to avoid Bayesian implications, in 
other papers we refer to it as the “Schwartz Information Criterion”, or SIC. In keeping with the most 325 
common naming convention for this statistic, we call it here “the BIC”. Suppose we are comparing two 
models, 1 and 2. Then, if YZ[# is the BIC for model 1 and YZ[6 is the BIC score for model two and 
ΔYZ[6# = YZ[6 − YZ[# > 0 then that means that model 1 has the lowest score and hence, it is the model 
that is closest to the unknown, true generating mechanism. Repeating the same calculation between all 
possible pairs of models yields the best model as that one with the overall lowest BIC score. Because 330 
these statistics depend on sample space probabilities and hence on the sample at hand, there exists a 
non-negligible probability that this comparison procedure leads to the wrong model choice, i.e., not the 



model that is closest to the generating mechanism. For the BIC, the probability of such mistake becomes, 
however, smaller as sample size gets larger (16).  

 335 
Information criteria are all functions of the log-likelihood maximized under the model being fitted plus 

a penalty term. For example, Akaike’s Information Criterion (AIC, (40)) is computed as -2 times the log 
likelihood plus twice the number of parameters in the model being tested and is an estimate of the 
expected, scaled divergence between the generating process and the approximating model at hand. 
Unlike the AIC, besides considering the number of estimated parameters, the BIC is scaled by the sample 340 
size. As a result, as sample size increases, the error in deeming a model as “best” using the BIC statistics 
becomes vanishingly small. This desirable property, called “Information consistency” (16, 25, 28) is 
lacking in the AIC (16). Inconsistent criteria, such as the AIC, tend to overfit at all sample sizes.  Hence, 
the AIC as a model selection tool is insufficient because it is not information consistent. Furthermore, the 
mistakes done in model selection using AIC get worse specially when, as it is the case here, none of the 345 
models tested is a perfect specification of the true, underlying generating process (that is, all models are 
“mis-specified”) (16). To be fair, the same is true for model selection under mis-specification using 
Bayesian Statistics (37) as we mention above.  

 
Although all paradigms of statistical science (NPHT, Bayesian statistics, Evidential Statistics) have 350 

flaws (reviewed in (27)), the Evidential Statistics paradigm (16, 25, 27, 28, 30, 35, 41) possesses better, 
desirable characteristics for the quantification of uncertainty (see (27)) and ultimately, for the design of 
inferential statements about the models’ proximity to the true, generating process. 

 
Here, we used the approach proposed and exemplified by Taper et al (2021) (28) to attach an 355 

uncertainty measure to the model selection results via non-parametric bootstrap. As Cox (1958) (42) put 
it, any statement about a model form or about a model parameter, that is, any inferential statement 
becomes a statistical inferential statement only when an uncertainty measure is attached to it (27, 28). 
Taper et al (2021) (28) develop a non-parametric bootstrap approach to evaluate the support of a model 
that relies in the following idea extensively used also in other areas of statistical inference in biology like 360 
phylogenetics: if we were to obtain datasets after datasets of the same experiments, how often would one 
obtain evidence for one or the other inferential statement? Applied to our case, the question becomes: if 
we were to sample with replacement via non-parametric bootstrap the observed data sets for every set of 
experiments, how often would the model originally chosen as best would be deemed to be best? And 
what is, on average, the strength of the evidence of that model over the second-best model and so on?    365 

 
The first question was answered by doing a non-parametric bootstrap resampling of each 

experimental data set to obtain a bootstrap replicate of the same structure as the original data set. Then, 
for each bootstrap replicate we fitted the best five models (6 in some cases) according to the original data 
set model fitting and inference and kept track of the BIC-based rank of all the models. After repeating this 370 
process 100 times we could compute the percentage of time that the original best model was again 
chosen as the best model. That percentage granted our model choice a degree of support akin to nodal 
support measures in phylogenetic inference (24), which we present in with each figure in the main text, 
and list comprehensively in Supplemental File Data S1. The second question above regarding the 
average strength of evidence relates to the following problem: when one does model selection and one 375 
model is deemed best because its information criterion score is smaller, how small is small enough before 
it is decided that one model is effectively better than the other? That question, partially answered in (25) 
and nicely illustrated in (34), Box 3 can be briefly summarized as follows: 

 
Applied scientists have provided guidelines to evaluate the strength of evidence using differences in 380 

information criteria. Burnham and Anderson (2002) (43) for instance, famously suggested using the 
cutoffs 0 > Δ]Z[49 = ]Z[4 − ]Z[9 > 2, 4 < Δ]Z[49 < 7 and Δ]Z[49 > 10 to deem the support for model 
a	over model b as “essentially none”, “considerably less” and “substantial”. Different discretizations of the 
intervals of support have been suggested (44). These discretizations are to certain extent arbitrary and 
vague and thus result in the same types of confusions stemming from arbitrary critical alpha levels under 385 
NPHT. Following Royall (2000) (31) who proposed to fix cutoff values for the evidence statistic, not the 
error probabilities, Jerde et al. (28) design a system where every cutoff point in the scale of the strength 
of evidence corresponds to the likelihood of one model being better than the other by twice the amount, 



four times the amount, eight times, sixteen times, thirty-two times and so forth. These cutoffs correspond 
respectively to approximately 1.4 points of difference in the BIC, 3 points, 4 points, 5.5 points, 7 points. 390 
Then, if a model is 32 times more likely than the other, the evidence for that model is deemed strong, 16 
times moderate, 8 times marginal, 4 times weak and two times very weak.   

 
Therefore, by computing the average strength of the support for the first model (i.e., average size of 

the difference between the best model and the next best model) in our bootstrap replicates, we provided 395 
an extra level of nuance to the uncertainty measure (percent support for the best model) that we devised. 
Thus, to each model deemed as best in our results we attached three measures: the observed ΔYZ[ 
between the best model and the next best model, its percent support via non-parametric bootstrap and 
the average ΔYZ[ between that model and the next best model and between the second-best model and 
the third-best model over all non-parametric bootstrap runs.  400 

 
  
 

  



Supplemental display items 405 
 

Table S1.  
 

species small-size 
spawning 
(mm) 

large-size 
spawning 
(mm) 

mean 
embryos per 
day  

max clutch 
size 

individuals 
examined 
(N) 

reference 
(main text 
citation #) 

M. ovum 0.75-1.6 
(0.6-1.3) 

ND 0.5 2 23 Jaspers et 
al. 2012 
(45) 

M. leidyi 1.5-2.8  
(1.2-2.2) 

~35 2.9 21 26 (7 whole) Martindale, 
1987 (46) 

P. bachei 1.1-2.7  
(0.9-2.2) 

9.1 2.9 40 6-7 each Hirota, 
1972; Baker 
and Reeve, 
1987 (47, 
48) 

P. globosa 1-2.6  
(0.8-2.1) 

8 9* 42 28 Wang et al. 
2020 (49) 

 
Size at onset and fecundity of “larval” spawning previously reported in ctenophores. The fourth column 410 
lists mean fecundity, the fifth column lists maximum clutch size during the period of small-size spawning, 
and the sixth column lists the number of spawning individuals that were observed. Parenthetical numbers 
for small-size spawning uses 0.8 conversion factor from body length, used in the cited work, to body width 
used in this manuscript, rounded to the nearest 0.1 mm. 
 415 
  



Table S2.  
 ISO-1800 (high 

DHA) 
NANNO-3600 (high EPA) RGcomplete (high DHA 

and EPA) 
protein 44% 58.6% 55.7% 
carbohydrate 25% 20% 19% 
lipid 19% 14.5% 19.5% 
DHA (mg/g dry wt) 11.2 0.3 41.9 
EPA (mg/g dry wt) 1.8 28.7 18.1 
ARA (mg/g dry wt) 0.4 2.7 2.1 

 
Approximate nutritional content of each feed used in the prey rotifer diet experiments, as reported by 
supplier labeling. 420 

 
 
 
 
 425 
 

  



Table S3. Confidence intervals for best-supported models for each data set (column 1). 
 

experiment variable(s) model beta_k (SE) beta_0 (SE) beta_1 (SE) beta_2 (SE) beta_3 (SE) beta_4 (SE) 
embryos: 
size 

day model5 0.2030078 
(0.2703520) 

1.0568879 
(0.6208427) 

0.3221804 
(0.1203708) 

   

cydippids: 
size 

day 
 

model5 0.1494056 
(0.4130690) 

-0.4035272 
(0.8919687) 

0.4096800 
(0.1499842) 

   

embryos: 
temperature 

number + 
temperature 

model1.2 1.066666 
(0.36136462) 

-2.16306112 
(1.79162612) 

0.08242668 
(0.04780375) 

0.17022280 
(0.06267349) 

  

cydippids: 
temperature 

number + 
temperature 

model1.2 0.9443697 
(0.37823491) 

-3.60815982 
(1.95915579) 

0.07441569 
(0.05069297) 

0.21651703 
(0.06820714) 

  

embryos: 
density1 

bio rep + 
number 

model1.3 0.5240834 
(0.3224816) 

-1.2850684 
(0.8146496) 

3.1660914 
(0.7616562) 

1.3318275 
(0.8138532) 

0.5708982 
(0.8583342) 

0.1568974 
(0.1117714) 

cydippids: 
density1 

bio rep + 
number 

model5 0.2775632 
(0.4960618) 

0.7331545 
(0.9043939) 

-3.6813343 
(1.3136280) 

-3.4322243 
(1.2102000) 

0.3990200 
(0.2199577) 

 

embryos: 
feed2 

bio rep + 
number + 
DHA 

model12 0.6779661 
(0.40666905) 

3.43807047 
(3.65792882) 

-1.60657827 
(0.79180671) 

-0.01970894 
(0.22105712) 

0.04672436 
(0.01968718) 

 

cydippids: 
feed2 

bio rep + 
DHA 

model12 0.5356867 
(0.50657108) 

1.65550682 
(0.76961512) 

-1.70752863 
(0.77664501) 

0.07196409 
(0.02466868) 

  

embryos: 
density2 

bio rep + 
number 

model5 0.5732126 
(0.24281054) 

-1.25969425 
(0.67444368) 

1.33588121 
(1.09882301) 

2.65789800 
(0.60752062) 

0.29732809 
(1.12146461) 

0.88846527 
(0.62702242) 

(continued)   beta_5 (SE) beta_6 (SE) beta_7 (SE) beta_8 (SE) beta_9 (SE)  
   0.85068654 

(1.10604344) 
0.85068654 
(0.68217098) 

-0.06230228 
(0.68217098) 

3.32315493 
(1.03586591) 

0.27702925 
(0.04982021) 

 

cydippids: 
density2 

bio rep + 
number 

model5 0.5497029 
(0.3355522) 

-2.1554548 
(2.2402377) 

0.5052674 
(1.3848481) 

2.3552265 
(1.9090575) 

-0.6675430 
(1.3916894) 

-1.3250314 
(2.0772470) 

(continued)   beta_5 (SE) beta_6 (SE) beta_7 (SE) beta_8 (SE) beta_9 (SE)  
   0.1326285 

(1.3583131) 
-0.8455202 
(1.7846930) 

3.5486164 
(1.8186160) 

0.3416078 
(0.1131649) 

  



Data S1. (separate file) 
BIC summary table for all analyses “BICsummary.xls”. 

Data S2. (separate file) 
Raw data for size experiment “dissogeny_size_singletons.csv”. Individual cydippids were 
measured and cultured individually in 50 ml cultures as described in Methods. Measurements 
were repeated daily.  

Data S3. (separate file) 
Raw data for temperature experiment “temp_fecundity_revised.csv”. Groups of cydippids were 
cultured at two temperatures as described in Methods.  

Data S4. (separate file) 
Raw data for density experiment “dissogeny_density_1.csv”. Groups of 1, 2, 4, or 8 parental 
cydippids were kept in 50 ml cultures as described in Methods. 

Data S5. (separate file) 
Raw data for nutritional experiment “feed2.csv”. Groups of cydippids were fed one of four diets as 
described in Methods. 
 
Data S6. (separate file) 
Raw data for selected individuals that grow from ≤2 to ≥4 mm “single-Ml-spawn-growth_v3.csv”. 
This data set duplicates some data entries from data set S2 (individual and replicate identifiers 
are preserved in the data) as well as some additional individuals fed more heavily to promote 
rapid growth. Three of the latter individuals are shown in Supplemental Figure S1C, and our R 
code can be used to visualize any of these individuals’ growth vs. reproduction. 
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