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Supplementary Fig. 1. Dynamic change of chromatin status during HPC
differentiation.

Number of peaks identified in ATAC-seq, H3K4me3 and H3K27me3 ChIP-seq,
respectively. hPSC, human pluripotent stem cell. VME, vascular mesoderm cell. EPC,

endothelial progenitor cell. HPC, hematopoietic progenitor cell. Source data are

provided as a Source Data file.
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Supplementary Fig. 2. Temporal chromatin accessibilities during HPC
differentiation.

Heatmap showing ATAC-seq peaks in hPSC, VME, EPC and HPC clustered by Mfuzz.
hPSC, human pluripotent stem cell. VME, vascular mesoderm cell. EPC, endothelial

progenitor cell. HPC, hematopoietic progenitor cell.
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Supplementary Fig. 3. Dynamics of stable bivalent domains during hPSC-HPC
differentiation.

a. Genomic annotation of four chromatin states in each stage during differentiation,
each column corresponds to one of chromatin states identified in Fig.3a. b. The number
of bivalent domains in hPSC, VME, EPC, and HPC. c. The percentage of bivalent
domain change between successive cell states. d-f. The H3K4me3 (left), H3K27me3
(middle) signal intensity and their associated gene expression(right) of stable bivalent

marked regions during the hPSC differentiation into VME (d, n =2,655), VME to EPC



(e, n=2,607) and EPC to HPC (f, n = 2,573), and the signal density was calculated as
H3K4me3 and H3K27me3 ChIP-seq RPKM. g. GO terms of stable bivalent domain
associated genes from EPC to HPC. p values, Fisher’s Exact test. h. UCSC genome
browser snapshots showing H3K4me3 and H3K27me3 modification profiles of the
selected genes. The putative promoters are shaded. The normalized RNA-seq FPKM
for each gene at different time points are shown on the left. The view scale of the
genome browser is adjusted according to the global data range. hPSC, human
pluripotent stem cell. VME, vascular mesoderm cell. EPC, endothelial progenitor cell.

HPC, hematopoietic progenitor cell. Source data are provided as a Source Data file.
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Supplementary Fig. 4. ScRNA-seq and scATAC-seq analysis revealed
subpopulations of ECs and early HPCs.

a. The expression profiles of selected key genes representing each cell cluster. b.
Statistically over-represented GO and biological process terms enriched in the DEGs
of each cell type. p values, Fisher’s Exact test. c. The scatter plots showing the
expression and distribution of SOX17, CDHS, RUNX1, CD44 and CD34. d. Ligand-
receptor analysis of Epi, Mes, AEC TI, AEC TII, pre-HPC TI, pre-HPC TII, and HE
clusters. Epi, epithelial cell. Mes, mesoderm cell. EC, endothelial cell. HPC,
hematopoietic progenitor cell. HE, hemogenic endothelium. AEC, arterial endothelial
cell. AEC TI, AEC-type 1. AEC TII, AEC-type II. pre-HPC TI, pre-HPC type 1. pre-

HPC TII, pre-HPC type II. Source data are provided as a Source Data file.
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Supplementary Fig. 5. Epigenetic profiling identified potential regulators driving
hematopoietic specification.

UpSetR diagram visualizing intersections between TF motifs enriched in category II
and category III ATAC-peaks as indicated in Fig. 2g and activated bivalent genes. The
red lines indicate TFs with binding motifs enriched in corresponding categories, which

are also activated bivalent genes. Source data are provided as a Source Data file.
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Supplementary Fig. 6. JUNB deficiency severely impaired the generation of HECs
and HPCs.

a, b. JUNB KO are verified by Sanger sequencing (a) and western blot (b). Images of
immunoblotting are representative of three independent experiments. c. Normal
karyotype of JUNB KO cell lines used in this study. d. Expression of OCT4, NANOG,
and SOX2 in WT and JUNB KO cell lines. n = 3 independent experiments. Data are
presented as mean values + SD. p values, two-tailed unpaired Student’s t test. e, Flow
cytometric sorting strategy for the characterization of HPC population. f-i. Flow
cytometric gating scheme and quantification of VME (KDR™) population on day3 (f, n
= 3 independent experiments), CD34" population (g, n = 3 independent experiments),
CD31" population (h, n = 3 independent experiments) and CD144" population (i, n =3
independent experiments) on day6 in WT and JUNB KO cells in WT and JUNB KO
group, respectively. Data are presented as mean values + SD. p values, two-tailed
unpaired Student’s t test. VME, vascular mesoderm cell. EPC, endothelial progenitor

cell. Source data are provided as a Source Data file.
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Supplementary Fig. 7. JUNB functions in HEC and HPC specification.

a. Top GO terms of downregulated genes in JUNB KO CD34" EPCs. The dot color
shows the enrichment from Fisher's Exact p value. b. Flow cytometric sorting strategy
for the characterization of HEC population. ¢. Venn plot showing number of ATAC-seq
peaks in WT and JUNB KO HECs, respectively. d. Metaplot showing the levels of
ATAC-seq signals at JUNB dependent sites in WT and JUNB KO HECs. e. Plot



showing TF motif enrichment from JUNB dependent peaks. The dot size shows the
enrichment from Fisher's Exact p value. f. Immunoblotting for JUNB in JUNB KO cell
lines and rescue cell lines. Images are representative of three independent experiments.
g. Schematic illustrating the JUNB inducible expression constructs and the induction
time window. h, i. Bar plots showing the percentage of HEC (CD34" CD73-CD184") (n
= 3 independent experiments) and HPC (CD34" CD43") (n = 3 independent
experiments) on differentiation day 6 (h) and day 8 (i) in WT and JUNB OE cells. Data
are presented as mean values + SD. p values, two-tailed unpaired Student’s t test. EPC,
endothelial progenitor cell. HEC, hemogenic endothelial cell. HPC, hematopoietic

progenitor cell. Source data are provided as a Source Data file.



Supplementary Table 1. Antibodies used in this study.

Antibodies Cat. No. Company Origin __|Ig type Application Dilution
Anti-CD31-FITC 555445 BD Mouse [mAb, IgG [FACS 1:100
Anti-CD34-APC 555824 BD Mouse [mAb, IgG [FACS 1:100
Anti-CD43-FTIC 315203 BioLegend Mouse |[mAb, IgG [FACS 1:100
Anti-CD43-PE 343204 BioLegend Mouse |mAb, IgG|FACS 1:100
Anti-CD73-PE 344003 BioLegend Mouse |mAb, IgG|FACS 1:100
Anti-CD184-APC/Cy7 306527 BioLegend Mouse |mAb, IgG[FACS 1:100
Isotype Control Antibody-AP({130-113-831|Miltenyi Biotec Mouse |mAb, IgG[FACS 1:100
sotype Control Antibody-PE |130-113-834[Miltenyi Biotec Mouse |mAb, IgG[FACS 1:100
Anti-JunB ab128878 |Abcam Rabbit |mAb, IgG [western blot [1:1,000
Anti-Histone H3 A2348 abclonal Rabbit |pAb, IgG [western blot [1:10,000
Anti-Rabbit IgG 111-035-144|Jackson ImmunoResearch |Goat pAb, IgG |western blot [1:2000
Anti-JunB 37538 Cell Signaling Technology |Rabbit [mAb, IgG|IP 1:50
Anti-H3K4me3 9727 Cell Signaling Technology |Rabbit [pAb, IgG [ChIP 1:50
Anti-H3K27me3 pAb-069-050 Diagnode Rabbit |pAb, IgG |ChIP 1:50




Supplementary Table 2. DNA oligonucleotide sequences for guide RNA.

Target Forward Reverse
gRNA targeting JUNB GGGTAAAAGTACTGTCCCGG CCGGGACAGTACTTTTACCC
Non targeting control (NTC)[CACCGATTGTTCGACCGTCTACGGG |AAACCCCGTAGACGGTCGAACAATC




Supplementary Table 3. Primers for genotyping of JUNB knockout cell lines.

PCR

Forward

Reverse

JUNB

AGCTACTTTTCTGGTCAGGGCT

TGTCACGTGGTTCATCTTGTG




Supplementary Table 4. Primers for genotyping of JUNB knockout cell lines.

Gene Forward Reverse

GAPDH TGATGACATCAAGAAGGTGGTGAAG [TCCTTGGAGGCCATGTGGGCCAT
OCT4 CGACCATCTGCCGCTTTGAG CCCCCTGTCCCCCATTCCTA
SOX2 GCTACAGCATGATGCAGGACCA TCTGCGAGCTGGTCATGGAGTT
NANOG GGATGGTCTCGATCTCCTGA CCTCCCAATCCCAAACAATA




