# **Supplementary Information for**

Machine Learning Recognition of Protein Secondary Structures based on Two-Dimensional Spectroscopic Descriptors

Hao Ren<sup>1</sup>, Qian Zhang<sup>1</sup>, Zhengjie Wang<sup>1</sup>, Guozhen Zhang<sup>2</sup>, Hongzhang Liu<sup>1</sup>, Wenyue Guo<sup>1</sup>, Shaul Mukamel<sup>3,\*</sup>, Jun Jiang<sup>2,\*</sup>

1. School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China

2. School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China

3. Department of Chemistry and Physics & Astronomy, University of California, Irvine, California, 92697, United States

Shaul Mukamel Email: <u>smukamel@</u>uci.edu

Jun Jiang Email: jiangj1@ustc.edu.cn

#### This PDF file includes:

Supplementary text Figures S1 to S3 Tables S1 to S4

Other supplementary materials for this manuscript include the following:

## S1. Simulation of 2DUV spectra

2DUV photon echo spectra were simulated using four coherent broad band ultrafast ultraviolet pulses, with wavevectors  $k_1, k_2, k_3$ , and  $k_4$ . The signals are detected in the direction  $k_4 = -k_1 + k_2 + k_3$  with varying time delays  $t_1$ ,  $t_2$  and  $t_3$ . The second time delay  $t_2$  was set to zero, so that the photon echo signals depend on  $t_1$  and  $t_3$ . 2D frequency-domain signals were then obtained by performing 2D Fourier transforms:  $(t_1, t_3) \rightarrow (\Omega_1, \Omega_3)$ . All pulses have the same linear polarization. We used Gaussian pulses centered at 52000 cm<sup>-1</sup> (~190 nm) with a full width at half maximum (FWHM) of 3000 cm<sup>-1</sup>. Signals in the frequency range 42000-58000 cm<sup>-1</sup> (~238-172 nm) were calculated to generate the linear absorption (LA) and 2DUV spectra.

## S2. Details of the CNN classifier

## 1. 1D CNN for LA and CD processing

The 1D CNN models for LA and CD processing adopt the same architecture (Fig. S1): start from an input layer, followed by N convolutional modules and a drop out layer, then a fully-connected model, a drop out layer and finally a softmax output layer. The number of convolutional modules and the number of filters/channels therein were optimized with the grid search method. Each group of the CNN filters was followed by a max pooling layer with pooling window size varies from 2 to 20, which was also optimized with grid search.

The input layer has the dimension of  $1601 \times 1$ , corresponds to the intensity sequence in the range 42000~58000 cm<sup>-1</sup> with the step size of 100 cm<sup>-1</sup>. The drop out rates were set to 0.25 for all the drop-out layers. The options of hyperparameters optimized with the grid search method were listed in Table S1.

## 2. 2D CNN for 2DUV processing

The 2D CNN models for 2DUV processing (**Fig. S2**) consists of an input layer, followed by N convolutional modules and a drop out layer, then a fully-connected model, a drop out layer and finally a softmax output layer. The number of convolutional modules and the number of filters/channels therein were optimized with the grid search method. Each group of the CNN filters was followed by a max pooling layer with pooling window sizes varies from 2 to 20, which was also optimized with grid search.

The input layer has the dimension of  $161 \times 161$ , corresponds to the 2DUV intensity distribution with respect to  $\Omega_1$  and  $\Omega_3$  in the range 42000~58000 cm<sup>-1</sup> with the step size of 1000 cm<sup>-1</sup>. The drop out rates were set to 0.55 for all the drop-out

layers. The options of hyperparameters optimized with the grid search method were listed in **Table S2**.

The 1D and 2D CNN models were trained by using the backpropagation algorithm with the adaptive moment estimation (Adam) optimizer. The layers were initialized with a Glorot uniform initializer; cross entropy loss was used as the loss function. We also applied early stopping to prevent overfitting. The training of the CNN was accelerated by employing four NVIDIA GeForce GTX-2080 Ti GPUs on a dual Xeon Silver 4110 workstation.

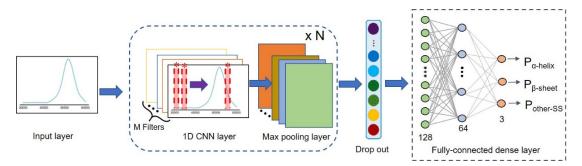



Figure S1. Scheme of the architecture of the 1DCNN model.

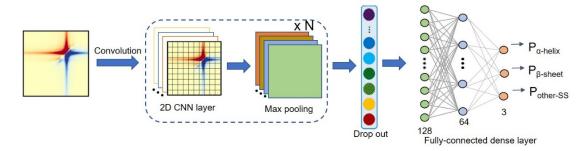


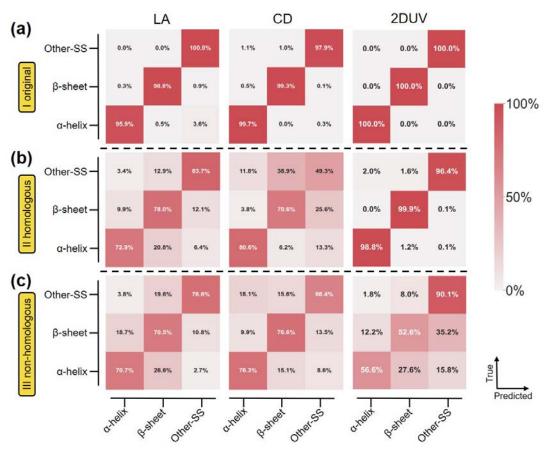

Figure S2. Scheme of the architecture of the 2D CNN model.

**Table S1.** Options of hyperparameters of the 1D CNN model optimized with the grid search method.

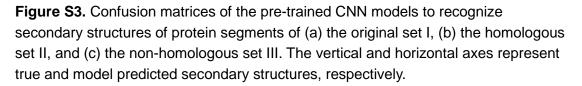
| Hyperparameter                     | values                        |
|------------------------------------|-------------------------------|
| Number of convolution layers       | 1, 2, 3                       |
| Number of filters                  | 32, 64, 128, 256, 512         |
| max pooling window size            | range from 2 to 20, step is 1 |
| Learning rate                      | 0.01, 0.001, 0.002, 0.004,    |
|                                    | 0.008, 0.0001, 0.0004, 0.0008 |
| Batch size                         | 32, 64, 128                   |
| Size of the fully-connected layers | 32, 64, 128, 256, 512         |
| Dropout rate                       | Range 0.1 to 0.5              |
| Epochs                             | Early stopping, patience 5    |

**Table S2.** Options of hyperparameters of the 2D CNN model optimized with the grid search method.

| Hyperparameter                     | values                        |  |  |  |
|------------------------------------|-------------------------------|--|--|--|
| Number of convolution modules      | 1, 2, 3                       |  |  |  |
| Number of filters                  | 32, 64, 128, 256, 512         |  |  |  |
| max pooling window size            | range from 2 to 20, step is 2 |  |  |  |
| Learning rate                      | 0.01, 0.001, 0.002, 0.004,    |  |  |  |
|                                    | 0.008, 0.0001, 0.0004, 0.0008 |  |  |  |
| Batch size                         | 32, 64, 128                   |  |  |  |
| Size of the fully-connected layers | 32, 64, 128, 256, 512         |  |  |  |
| Dropout rate                       | Range 0.1 to 0.5              |  |  |  |


## S3. Comparison between various recognition models

We had further trained and tested these models on the same datasets used for the CNN model. The incorrect recognitions by these models are presented in Table S3. We found that the recognition performance of these traditional models is significantly lower than that of the CNN model. Specifically, the KNN models achieved the best total error score 163 (out of 17599) when using hyperparameter k = 1 (only nearest neighbor); for SVM models, a linear kernel performs much better than radial basis function (rbf) kernel, and using polynomial kernel leads to much worse performance (7687 errors out of 17599); RF and FCNN also work well on this dataset, performs on par with the SVM model using a linear kernel. In conclusion, due to its powerful feature extraction ability, the CNN model out-performed all other traditional models.


**Table S3**. Numbers of incorrect recognitions for each structural category produced by

 different machine learning methods applied on the same datasets.

| Methods  | KNN(k=5) | KNN(K=3) | KNN(K=1) | SVM(linear) | SVM(poly) | SVM(rbf) | RF | FCNN | CNN |
|----------|----------|----------|----------|-------------|-----------|----------|----|------|-----|
| α-helix  | 94       | 93       | 95       | 4           | 548       | 62       | 10 | 4    | 1   |
| β-sheet  | 77       | 75       | 64       | 7           | 1996      | 79       | 4  | 7    | 0   |
| other-SS | 3        | 1        | 4        | 2           | 5143      | 69       | 8  | 1    | 0   |
| Total    | 174      | 169      | 163      | 13          | 7687      | 210      | 22 | 12   | 1   |



## S4 Secondary structure discrimination accuracies of the pre-trained CNN models



## S5. Details of molecular dynamics simulations of proteins.

For each protein studied in this work, the X-ray/NMR crystal structure taken from the RCSB protein data bank (PDB) was used to initialize a molecular dynamics (MD) simulation performed by using the Gromacs package. Taking the BH protein as example, we put the protein molecule in a  $9 \times 9 \times 9$  nm<sup>3</sup> cubic box with 21635 TIP3P water molecules. Following 1000 steps of energy minimization, a 200 ps equilibration with constant NVT at 300 K was performed. A 200 ps constant NPT equilibration and a 200 ps constant NVT equilibration were followed. The 4ns production equilibration was then performed with 1 fs time step. Snapshots were harvested every 1000 fs along the production MD trajectory to avoid structural coherence.

## S6. Proteins used to construct the non-homologous dataset

All proteins are recorded with their PDB IDs. All PDB structures were directly downloaded from the RCSB protein data bank, followed by solvation in water, energy minimization, and NVT equilibration at 300 K. Peptide segments were then extracted from the equilibrated structures in the same way we prepare the BH and LL dataset.

| Table 54 | <b>Fable S4.</b> PDB IDs of proteins used to construct the non-homologous dataset. |      |      |      |      |      |      |      |      |  |  |
|----------|------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|--|--|
| 1a00     | 1a01                                                                               | 1a0n | 1a0u | 1a2i | 1a2s | 1a3o | 1a4f | 1a6g | 1a6m |  |  |
| 1aby     | 1afp                                                                               | 1ah6 | 1ah8 | 1aj9 | 1amx | 1anb | 1aox | 1aox | 1ash |  |  |
| 1ax8     | 1ayj                                                                               | 1b0b | 1b1a | 1b86 | 1b9q | 1bbb | 1bf8 | 1bij | 1bk8 |  |  |
| 1bkv     | 1bpr                                                                               | 1bpr | 1bsn | 1buw | 1buy | 1bvc | 1bvd | 1c3g | 1c40 |  |  |
| 1c89     | 1cbl                                                                               | 1ceu | 1cg5 | 1cg8 | 1cgd | 1ch4 | 1cjq | 1ck2 | 1ck7 |  |  |
| 1ckr     | 1clg                                                                               | 1cmy | 1cn4 | 1co9 | 1coh | 1cpz | 1d2p | 1d5d | 1d9a |  |  |
| 1d9i     | 1dbd                                                                               | 1ddr | 1dg4 | 1dgf | 1dgh | 1dke | 1dkg | 1dkx | 1dky |  |  |
| 1dlw     | 1dm1                                                                               | 1dox | 1dxu | 1dy2 | 1dy2 | 1dzi | 1dzi | 1e1g | 1ebt |  |  |
| 1ecd     | 1eer                                                                               | 1ey4 | 1ezu | 1f4j | 1f6h | 1faw | 1fcs | 1fdh | 1fdm |  |  |
| 1fhj     | 1flp                                                                               | 1fm1 | 1fsz | 1fuj | 1fy9 | 1g08 | 1g0a | 1g3j | 1gcv |  |  |
| 1gd4     | 1ght                                                                               | 1gjn | 1gr3 | 1gr3 | 1gvl | 1gxd | 1gzx | 1h1x | 1h4u |  |  |
| 1h6w     | 1h7c                                                                               | 1hab | 1hba | 1hbg | 1hbh | 1hbs | 1hco | 1hda | 1hga |  |  |
| 1hgb     | 1hgc                                                                               | 1hjn | 1hk7 | 1hx1 | 1hyl | 1hze | 1i6z | 1i7x | 1ibe |  |  |
| 1iox     | 1ird                                                                               | 1i∨t | 1iwh | 1ix5 | 1j14 | 1j3z | 1j52 | 1j7w | 1ј7у |  |  |
| 1jb3     | 1jbk                                                                               | 1jf3 | 1jj9 | 1jon | 1jvx | 1jwn | 1jy7 | 1jzk | 1jzl |  |  |
| 1jzm     | 1k0v                                                                               | 1k0y | 1k9o | 1kd2 | 1kfr | 1khy | 1kid | 1kiu | 1kke |  |  |
| 1koe     | 1kr7                                                                               | 1l2y | 1l8z | 1la1 | 1les | 1lfl | 1lfq | 1lft | 1lfv |  |  |
| 1li1     | 1m3d                                                                               | 1m9p | 1mba | 1mbd | 1mbn | 1mbo | 1mbs | 1mdi | 1mgn |  |  |
| 1mhp     | 1mko                                                                               | 1moh | 1mol | 1mwb | 1myh | 1myi | 1myk | 1mym | 1myz |  |  |
| 1mz0     | 1n9x                                                                               | 1nej | 1nih | 1npf | 1npg | 1nqp | 1nwi | 1nwn | 1o1i |  |  |
| 1o1k     | 1o1n                                                                               | 1o4w | 1091 | 1ocy | 1004 | 1oqv | 1ory | 1p9h | 1pbx |  |  |
| 1pft     | 1pk6                                                                               | 1pmb | 1pt6 | 1q5l | 1q7d | 1qc5 | 1qi8 | 1qiu | 1qld |  |  |
| 1qpw     | 1qqw                                                                               | 1qsd | 1qun | 1qvr | 1qwx | 1qxd | 1r1x | 1r1y | 1rbw |  |  |
| 1roc     | 1rps                                                                               | 1rtx | 1rvw | 1s21 | 1s5y | 1s69 | 1s6a | 1s85 | 1sb6 |  |  |
| 1sdk     | 1sdl                                                                               | 1shr | 1si4 | 1slu | 1spg | 1ss3 | 1ss8 | 1swm | 1t08 |  |  |
| 1t60     | 1t61                                                                               | 1t7s | 1tey | 1thb | 1tjc | 1tnw | 1tpm | 1tr8 | 1ttw |  |  |
| 1tu9     | 1u5m                                                                               | 1u7s | 1u97 | 1uiw | 1ulo | 1umk | 1us7 | 1usu | 1uvy |  |  |
| 1uw3     | 1ux8                                                                               | 1uym | 1uz2 | 1v4u | 1v4w | 1v4x | 1v8x | 1v9q | 1vre |  |  |
| 1w09     | 1w0a                                                                               | 1w0b | 1wg3 | 1wvp | 1wxr | 1wxv | 1x3b | 1x3k | 1x46 |  |  |
| 1x9f     | 1xu0                                                                               | 1xuc | 1xxt | 1xye | 1xz2 | 1xzy | 1y01 | 1y09 | 1y2s |  |  |
| 1y4p     | 1y5j                                                                               | 1y8h | 1y8i | 1yca | 1ydz | 1yeo | 1yeq | 1ygf | 1yhu |  |  |
| 1yie     | 1yjp                                                                               | 1ykt | 1ymb | 1you | 1yut | 1yvq | 1yvt | 1yzb | 1yzi |  |  |
| 1z2g     | 1z8u                                                                               | 1zav | 1ze3 | 1zrj | 1ztq | 1zwh | 2a3g | 2aa1 | 2adn |  |  |
| 2akp     | 2arw                                                                               | 2av0 | 2b7h | 2beg | 2bmm | 2bpr | 2brc | 2bre | 2bsf |  |  |

Table S4. PDB IDs of proteins used to construct the non-homologous dataset.

| 2bw9      | 2bwh      | 2c0k | 2c0x | 2cg9 | 2cge | 2cmm | 2cpb | 2cu9 | 2d1n |
|-----------|-----------|------|------|------|------|------|------|------|------|
| 2d2m      | 2d3e      | 2d5x | 2d5z | 2d60 | 2d6c | 2dhb | 2dk1 | 2dkm | 2dkm |
| 2dn1      | 2dn2      | 2dn3 | 2dxm | 2e2d | 2e2y | 2e3m | 2e3o | 2e3r | 2e8j |
| 2ech      | 2eku      | 2evp | 2f2n | 2f42 | 2f68 | 2f6a | 2fam | 2fc6 | 2fcw |
| 2frf      | 2frj      | 2fse | 2fse | 2fxs | 2g0s | 2g12 | 2g16 | 2gtl | 2gtv |
| 2h35      | ,<br>2h8d | 2h8f | 2hbc | 2hbd | 2hbf | 2hbg | 2hbs | 2hco | 2hhb |
| 2hhd      | 2hhe      | 2hp8 | 2hue | 2hz1 | 2idc | 2iij | 2in4 | 2iw2 | 2iws |
| 2j61      | 2j7l      | 2jhh | 2jhi | 2jho | 2jjc | 2kb0 | 2kc5 | 2kco | 2kgl |
| ,<br>2kho | 2kji      | 2knx | 2ksc | 2161 | 2lhb | 2lhk | 2lkv | 2111 | 2111 |
| 2llp      | 2lm1      | 2ltb | 2lwp | 2lyj | 2lyk | 2lyl | 2lyp | 2lyq | 2lyr |
| 2lys      | 2m0m      | 2m1n | 2m3e | 2m6z | 2m8s | 2mb5 | 2mbw | 2mgo | 2miq |
| 2mj5      | 2mye      | 2myj | 2mze | 2mzi | 2n3j | 2n4g | 2n71 | 2n8r | 2nb0 |
| 2nd2      | 2nd3      | 2nd5 | 2npl | 2nrl | 2nsa | 2nsb | 2nsr | 2nx0 | 2051 |
| 2o5q      | 205s      | 2ohb | 2oj5 | 20km | 2okn | 2pei | 2peo | 2peq | 2pgh |
| 2qg2      | 2qht      | 2qif | 2qld | 2qls | 2qsp | 2qss | 2qu0 | 2r1h | 2r80 |
| 2r9y      | 2rao      | 2rk6 | 2rpj | 2seb | 2seb | 2tgf | 2uur | 2uwj | 2v15 |
| 2v1e      | 2v1f      | 2v1i | 2v1k | 2v53 | 2v7y | 2vlx | 2vly | 2vw5 | 2vwc |
| 2vyw      | 2vyy      | 2w0g | 2w60 | 2w6v | 2w6w | 2w72 | 2wep | 2wnp | 2ww7 |
| 2xd6      | 2xi6      | 2xif | 2xil | 2xj6 | 2xki | 2xx4 | 2y1z | 2y6y | 2yge |
| 2yjm      | 2yob      | 2yrs | 2yuh | 2z1p | 2z44 | 2z46 | 2z6s | 2z6t | 2z85 |
| 2z9y      | 2z9z      | 2zlv | 2zlw | 2zlx | 2zsp | 2zsq | 2zss | 2zsy | 2zwh |
| 2zwj      | 2zyp      | 3a0g | 3a2g | 3a59 | 3aeh | 3aei | 3ak5 | 3aq5 | 3ase |
| 3asw      | 3asw      | 3b72 | 3b75 | 3bj1 | 3bwu | 3c11 | 3ciu | 3d17 | 3d1k |
| 3d3r      | 3d7o      | 3dhr | 3dll | 3dpa | 3dpo | 3dpq | 3dut | 3eda | 3ejh |
| 3elm      | 3eok      | 3eu1 | 3ewo | 3ewq | 3f71 | 3fh9 | 3fp8 | 3fs4 | 3fzh |
| 3fzk      | 3gkv      | 3gla | 3gln | 3gou | 3gqg | 3gqp | 3gt6 | 3gys | 3h0x |
| 3h3q      | 3h3t      | 3hc9 | 3hf4 | 3hrv | 3ia3 | 3ic0 | 3ic2 | 3ipn | 3iuc |
| 3k1h      | 3k8b      | 3kek | 3l1e | 3ld1 | 3ldl | 3ldn | 3ldo | 3ldp | 3ldq |
| 3lfo      | 3ljz      | 3lqd | 3lr7 | 3lw2 | 3m0b | 3m38 | 3m3b | 3m6c | 3mba |
| 3mjp      | 3mju      | 3mvf | 3n3e | 3n3f | 3nl7 | 3nml | 3o2x | 3039 | 3odq |
| 3ofg      | 3ofh      | 3ogb | 3oly | 3osx | 3ovu | 3p46 | 3pel | 3pg0 | 3pi8 |
| 3pi9      | 3pr9      | 3q9q | 3qc7 | 3qje | 3ql1 | 3qle | 3qm5 | 3qzl | 3qzm |
| 3qzn      | 3qzo      | 3rik | 3rjr | 3rt5 | 3rtl | 3rur | 3s48 | 3s4u | 3s5c |
| 3s5h      | 3s5k      | 3sdh | 3sdn | 3sea | 3sz7 | 3szk | 3tee | 3tfb | 3tgf |
| 3tm3      | 3tnj      | 3tnu | 3tvc | 3tvn | 3uhi | 3uj1 | 3umm | 3ut2 | 3uyx |
| 3v03      | 3v2v      | 3vfe | 3vm5 | 3vm9 | 3vnd | 3vnw | 3vqk | 3vql | 3vqm |
| 3vz6      | 3vz9      | 3w6l | 3wai | 3wft | 3whm | 3wi8 | 3wtg | 3wv1 | 3wvl |
| 3wyo      | 3zgh      | 3zgi | 3zha | 3zhc | 3zhd | 3zhk | 3zhl | 3zri | 4a0q |
| 4a7b      | 4ait      | 4aix | 4aiz | 4aj0 | 4am9 | 4ani | 4asv | 4au2 | 4au3 |
| 4b2t      | 4b9q      | 4bb2 | 4bj3 | 4bkl | 4bkl | 4bnr | 4bpy | 4bt9 | 4c0n |
| 4c44      | 4cpg      | 4ctd | 4cud | 4cue | 4cuf | 4d0e | 4d2u | 4d3e | 4d7y |
| 4d8n      | 4dc5      | 4dc7 | 4df3 | 4dou | 4dwf | 4eew | 4eo5 | 4ezn | 4ezo |
| 4ezp      | 4ezr      | 4ezw | 4ezx | 4f01 | 4f1z | 4f3j | 4f4o | 4f68 | 4fc3 |

| 4fct | 4fcw | 4fei | 4fum | 4fup      | 4f∨l | 4fwz | 4g6t | 4gf3 | 4gr7      |
|------|------|------|------|-----------|------|------|------|------|-----------|
| 4h32 | 4hrr | 4hrt | 4hse | 4hwc      | 4i0c | 4i0y | 4i1e | 4i2s | 4i37      |
| 4i3n | 4i96 | 4igi | 4igi | 4ihk      | 4ij2 | 4j5m | 4ja7 | 4ja9 | 4jb0      |
| 4jb2 | 4jnf | 4jsd | 4jso | 4k07      | 4k5q | 4k6g | 4k6h | 4k6k | 4kjt      |
| 4kqt | 4l2a | 4l2c | 4l2d | 4lj6      | 4lja | 4116 | 4lnz | 4lx2 | ,<br>4m4b |
| 4m56 | 4m8u | 4ma7 | 4mbn | ,<br>4mjh | 4mkf | 4mkg | 4mkh | 4mpr | 4mqk      |
| 4mtc | 4mth | 4n79 | 4n7p | 4n8w      | 4ni0 | 4nla | 4nsm | 4nwe | 4nwh      |
| 4nyt | 404t | 404z | 4odk | 4odn      | 4odp | 4of9 | 4oj0 | 4ood | 4ow4      |
| 4ox0 | 4pnj | 4pqb | 4qby | 4qyw      | 4r1e | 4rmb | 4rmb | 4rrp | 4rx9      |
| 4rzk | 4tql | 4tt0 | 4tyu | 4u3h      | 4u5t | 4u8u | 4uos | 4uot | 4uox      |
| 4uoy | 4urg | 4urq | 4urs | 4uzv      | 4w68 | 4w70 | 4w81 | 4w94 | 4wbr      |
| 4wch | 4wjg | 4wt3 | 4wuy | 4x86      | 4xif | 4xif | 4xs0 | 4y00 | 4yu3      |
| 4yu4 | 4yxl | 4z3v | 4zgg | 4zly      | 4zry | 5ab8 | 5aks | 5ao6 | 5aqg      |
| 5aqi | 5aqo | 5aqt | 5azq | 5b06      | 5b5o | 5b85 | 5boy | 5bx0 | 5c6y      |
| 5cdk | 5ce5 | 5cjb | 5cjb | 5cmv      | 5cn5 | 5cnc | 5ctd | 5cti | 5cuz      |
| 5cva | 5cvb | 5d5r | 5dut | 5e3x      | 5e83 | 5e84 | 5e85 | 5eii | 5eiv      |
| 5f2r | 5ffo | 5fqd | 5fwl | 5fwp      | 5ghu | 5gw4 | 5gw5 | 5h22 | 5hba      |
| 5hgj | 5hj2 | 5hly | 5hq3 | 5hu6      | 5hy8 | 5i4w | 5iat | 5iax | 5icu      |
| 5iks | 5ilm | 5ilp | 5ilr | 5j3p      | 5j3s | 5j3z | 5j7n | 5jdo | 5jg9      |
| 5jhi | 5ji4 | 5jjd | 5jom | 5jui      | 5k31 | 5ker | 5ki0 | 5kkk | 5krw      |
| 5ksi | 5ksj | 5kvn | 5kwx | 5kwz      | 5kx0 | 5kx1 | 5kx2 | 5m3l | 5m4g      |
| 5m4j | 5m4l | 5mba | 5mby | 5mc1      | 5mu0 | 5mu0 | 5mv3 | 5mzu | 5n30      |
| 5n4h | 5nax | 5nay | 5naz | 5ni1      | 5nir | 5njx | 5nro | 5nx3 | 5o4p      |
| 5obu | 5ocx | 5ocx | 5ofo | 5oj9      | 5oja | 50mp | 5omy | 5opw | 5орх      |
| 5ou8 | 5ou8 | 5ou9 | 5owi | 5owj      | 5sv3 | 5sv7 | 5thp | 5tu7 | 5tu8      |
| 5tu9 | 5u2l | 5u2u | 5ucb | 5ucu      | 5ue2 | 5ue5 | 5uea | 5uek | 5urc      |
| 5ut7 | 5ut9 | 5uwk | 5uyx | 5v4m      | 5v4n | 5∨mm | 5vpn | 5vqp | 5vsx      |
| 5vy8 | 5vy9 | 5vzn | 5vzo | 5vzp      | 5vzq | 5w0s | 5wez | 5wo1 | 5wog      |
| 5wy9 | 5wyo | 5x2r | 5x2s | 5xef      | 5xi9 | 5xir | 5xkv | 5xl0 | 5y45      |
| 5yan | 5ycg | 5yp8 | 5ypb | 5ypg      | 5yup | 5yzf | 5z5o | 5z8i | 5zba      |
| 5zdi | 5zfo | 5zhb | 5zui | 5zyg      | 5zyk | 5zz0 | 5zzf | 5zzg | 5zzt      |
| 5zzy | 6a06 | 6a0v | 6a0y | 6a19      | 6a1w | 6a23 | 6a2u | 6a32 | 6a39      |
| 6a3c | 6a4n | 6ahf | 6ait | 6as9      | 6asy | 6axb | 6b99 | 6bb5 | 6bie      |
| 6bin | 6bin | 6bjr | 6bnr | 6bp9      | 6bwu | 6cd2 | 6cf0 | 6cii | 6cn8      |
| 6cqg | 6cqv | 6d45 | 6d6s | 6dfm      | 6dju | 6dl9 | 6dnm | 6drq | 6dtc      |
| 6e0f | 6e0g | 6e14 | 6e15 | 6e2j      | 6e2j | 6e7g | 6e7h | 6ec0 | 6ec0      |
| 6ed3 | 6eof | 6ewn | 6f0f | 6f0y      | 6f17 | 6f18 | 6f25 | 6fqf | 6fse      |
| 6ftk | 6fzw | 6g5a | 6g5b | 6g5t      | 6gzd | 6h2p | 6h2q | 6hal | 6hbi      |
| 6hbw | 6hfo | 6hg7 | 6hv2 | 6ihx      | 6ii1 | 6j0a | 6j81 | 6jp1 | 6k01      |
| 6m8f | 6mv0 | 6n02 | 6n8v | 6n8z      | 6nbc | 6nbd | 6nd8 | 6nd8 | 6ndh      |
| 605v | 6069 | 6og3 | 6owx | 6p7s      | 6prq | 6qff | 6qfh | 6qh9 | 6qi8      |
| 6rwt | 6u3r | 7hsc | 7pck |           |      |      |      |      |           |