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S1. Simulation of 2DUV spectra

2DUV photon echo spectra were simulated using four coherent broad band ultrafast
ultraviolet pulses, with wavevectors k4, k,, k;, and k,. The signals are detected in the
direction k, = —k; + k, + k3 with varying time delays t;, t, and t;. The second
time delay t, was set to zero, so that the photon echo signals depend on t; and t;.
2D frequency-domain signals were then obtained by performing 2D Fourier transforms:
(t1,t3) = (24, 23). All pulses have the same linear polarization. We used Gaussian
pulses centered at 52000 cm™ (~190 nm) with a full width at half maximum (FWHM) of
3000 cm. Signals in the frequency range 42000-58000 cm™ (~238-172 nm) were

calculated to generate the linear absorption (LA) and 2DUV spectra.



S2. Details of the CNN classifier

1. 1D CNN for LA and CD processing

The 1D CNN models for LA and CD processing adopt the same architecture (Fig.
S1): start from an input layer, followed by N convolutional modules and a drop out layer,
then a fully-connected model, a drop out layer and finally a softmax output layer. The
number of convolutional modules and the number of filters/channels therein were
optimized with the grid search method. Each group of the CNN filters was followed by
a max pooling layer with pooling window size varies from 2 to 20, which was also
optimized with grid search.

The input layer has the dimension of 1601 x 1, corresponds to the intensity
sequence in the range 42000~58000 cm* with the step size of 100 cm™. The drop out
rates were set to 0.25 for all the drop-out layers. The options of hyperparameters
optimized with the grid search method were listed in Table S1.

2. 2D CNN for 2DUV processing

The 2D CNN models for 2DUV processing (Fig. S2) consists of an input layer,
followed by N convolutional modules and a drop out layer, then a fully-connected model,
a drop out layer and finally a softmax output layer. The number of convolutional
modules and the number of filters/channels therein were optimized with the grid search
method. Each group of the CNN filters was followed by a max pooling layer with pooling
window sizes varies from 2 to 20, which was also optimized with grid search.

The input layer has the dimension of 161 x 161, corresponds to the 2DUV
intensity distribution with respect to Q; and Q5 in the range 42000~58000 cm™* with

the step size of 1000 cm™. The drop out rates were set to 0.55 for all the drop-out



layers. The options of hyperparameters optimized with the grid search method were

listed in Table S2.

The 1D and 2D CNN models were trained by using the backpropagation algorithm
with the adaptive moment estimation (Adam) optimizer. The layers were initialized with
a Glorot uniform initializer; cross entropy loss was used as the loss function. We also
applied early stopping to prevent overfitting. The training of the CNN was accelerated
by employing four NVIDIA GeForce GTX-2080 Ti GPUs on a dual Xeon Silver 4110

workstation.
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Figure S1. Scheme of the architecture of the 1DCNN model.
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Figure S2. Scheme of the architecture of the 2D CNN model.



Table S1. Options of hyperparameters of the 1D CNN model optimized with the grid
search method.

Hyperparameter values

Number of convolution layers 1,23

Number of filters 32, 64, 128, 256, 512

max pooling window size range from 2 to 20, stepis 1

Learning rate 0.01, 0.001, 0.002, 0.004,
0.008, 0.0001, 0.0004, 0.0008

Batch size 32,64, 128

Size of the fully-connected layers | 32, 64, 128, 256, 512

Dropout rate Range 0.1 to 0.5

Epochs Early stopping, patience 5

Table S2. Options of hyperparameters of the 2D CNN model optimized with the grid
search method.

Hyperparameter values

Number of convolution modules 1,2,3

Number of filters 32, 64, 128, 256, 512
max pooling window size range from 2 to 20, step is 2
Learning rate 0.01, 0.001, 0.002, 0.004,

0.008, 0.0001, 0.0004, 0.0008

Batch size 32,64, 128

Size of the fully-connected layers | 32, 64, 128, 256, 512

Dropout rate Range 0.1 to 0.5




S3. Comparison between various recognition models

We had further trained and tested these models on the same datasets used for
the CNN model. The incorrect recognitions by these models are presented in Table S3.
We found that the recognition performance of these traditional models is significantly
lower than that of the CNN model. Specifically, the KNN models achieved the best total
error score 163 (out of 17599) when using hyperparameter k =1 (only nearest
neighbor); for SVM models, a linear kernel performs much better than radial basis
function (rbf) kernel, and using polynomial kernel leads to much worse performance
(7687 errors out of 17599); RF and FCNN also work well on this dataset, performs on
par with the SVM model using a linear kernel. In conclusion, due to its powerful feature

extraction ability, the CNN model out-performed all other traditional models.

Table S3. Numbers of incorrect recognitions for each structural category produced by

different machine learning methods applied on the same datasets.

Methods ~ KNN(k=5) KNN(K=3) KNN(K=1) SVM(linear) SVM(poly) SVM(tbfy RF  FCNN  CNN

a-helix 94 93 95 4 548 62 10 4 1
B-sheet 77 75 64 7 1996 79 4 7 0
other-SS 3 1 4 2 5143 69 8 1 0

Total 174 169 163 13 7687 210 22 12 1




S4 Secondary structure discrimination accuracies of the pre-trained CNN models
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Figure S3. Confusion matrices of the pre-trained CNN models to recognize
secondary structures of protein segments of (a) the original set I, (b) the homologous
set I, and (c) the non-homologous set Ill. The vertical and horizontal axes represent
true and model predicted secondary structures, respectively.



S5. Details of molecular dynamics simulations of proteins.

For each protein studied in this work, the X-ray/NMR crystal structure taken from
the RCSB protein data bank (PDB) was used to initialize a molecular dynamics (MD)
simulation performed by using the Gromacs package. Taking the BH protein as
example, we put the protein molecule ina 9 x 9 x 9 nm?3 cubic box with 21635
TIP3P water molecules. Following 1000 steps of energy minimization, a 200 ps
equilibration with constant NVT at 300 K was performed. A 200 ps constant NPT
equilibration and a 200 ps constant NVT equilibration were followed. The 4ns
production equilibration was then performed with 1 fs time step. Snapshots
were harvested every 1000 fs along the production MD trajectory to avoid

structural coherence.



S6. Proteins used to construct the non-homologous dataset

All proteins are recorded with their PDB IDs. All PDB structures were directly
downloaded from the RCSB protein data bank, followed by solvation in water, energy
minimization, and NVT equilibration at 300 K. Peptide segments were then extracted

from the equilibrated structures in the same way we prepare the BH and LL dataset.

Table S4. PDB IDs of proteins used to construct the non-homologous dataset.
1la00 |1a01 |1aOn | laOu | 1la2i la2s | la3o | la4f la6g | labm
laby | lafp lah6 | 1ah8 | 1aj9 lamx | lanb |laox | laox | lash
lax8 | layj 1bOb | 1bla | 1b86 | 1b9q | 1bbb | 1bf8 | 1bijj 1bk8
1bkv | 1bpr | 1bpr |1bsn | 1buw | 1buy | 1lbvc | 1bvd | 1c3g | 1c40
1c89 | 1chl lceu | 1cg5 |1cg8 |1lcgd |1ch4 | 1cjq 1ck2 | 1ck7
lckr 1clg lcmy | 1cn4 | 1co9 | 1coh |1cpz |1d2p |1d5d | 1d9a
1d9i 1dbd | 1ddr | 1dg4 | 1dgf | 1dgh | 1dke | 1dkg | 1dkx | 1dky
1dlw | 1dml | 1dox | 1dxu |1dy2 | 1dy2 | 1ldzi 1dzi lelg | lebt
lecd |leer |1ley4 |1lezu | 1f4j 1f6h 1faw | 1fcs 1fdh 1fdm
1fhj 1flp 1fml | 1fsz 1fuj 1fy9 1908 | 1g0a | 1g3j 1lgcv
1gd4 | 1ght 1gjn 1gr3 | 1gr3 | 1gvl 1gxd | 1gzx | 1hix | 1h4u
lh6éw | 1h7c | l1hab | lhba | 1hbg | 1hbh | 1hbs | 1hco | 1hda | lhga
lhgb | 1hgc | 1lhjn 1hk7 | 1hx1 | 1hyl lhze | li6z 1i7x libe
liox lird Livt liwh | 1ix5 1j14 1j3z 1j52 1j7w | 1j7y
1jb3 1jbk 1jf3 1jj9 ljon ljvx ljwn | ljy7 ljzk 1jzl
ljzm | 1kOv | 1kOy | 1k9o | 1kd2 | 1kfr 1khy | 1kid 1kiu 1kke
lkoe | 1kr7 112y 118z llal lles 11l 1lfq 1Ift 1lfv
1li1 Im3d | 1m9p | Imba | Imbd | Imbn | Imbo | Imbs | Imdi | 1mgn
Imhp | Imko | 1moh | 1mol | Imwb | Imyh | Imyi | 1Imyk | Imym | 1myz
1mz0 | 1n9x | 1lnej 1nih 1npf Inpg |1ngp |1nwi | lnwn | loli
lolk |1oln |1lo4w | 1091 |1locy |1loo4 | loqv | lory 1p9h | 1pbx
1pft 1pk6é | 1pmb | 1pt6 195l 1g7d | 1qc5 | 1qi8 1qiu 1qld
1gpw | 1qgw | 1gsd | lqun | 1qvr 1gwx | 1gxd | 1rlx 1rly 1rbw
1lroc 1rps 1rtx Irvw | 1s21 |1sby | 1s69 | 1sba | 1s85 | 1sb6
1sdk | 1sdl 1shr 1si4 1slu 1spg | 1ss3 | 1ss8 | 1swm | 1t08
1t60 1t61 1t7s ltey 1thb ltjc ltnw | 1tpm | 1tr8 1ttw
1tu9 1uSm | 1u7s | 1u97 | luiw | lulo lumk | lus7 | 1usu | luvy
luw3d | 1ux8 |luym | luz2 |1v4u |1v4w | 1lvdx |1v8x |1v9q | lvre
w09 | 1wOa | 1wOb | 1wg3 |1wvp | 1wxr |1wxv | 1x3b | 1x3k | 1x46
1xof Ixu0 | Ixuc | Ixxt Ixye | 1xz2 |1xzy |1y01 |1y09 | 1ly2s
lydp | 1y5j 1y8h | 1y8i lyca |1lydz |1lyeo |1lyeq | lydf lyhu
lyie lyjp 1ykt lymb | 1lyou | lyut lyvq | 1ywvt lyzb | lyzi
1z2g9 | 1z8u |1zav | 1ze3 | 1lzrj 1ztq lzwh | 2a3g |2aal | 2adn
2akp | 2arw | 2av0 | 2b7h | 2beg | 2bmm | 2bpr | 2brc 2bre | 2bsf




2bw9 | 2bwh | 2cOk | 2cOx | 2cg9 |2cge |2cmm | 2cpb | 2cu9 | 2d1n
2d2m | 2d3e | 2d5x |2d5z |2d60 |2d6¢c |2dhb |2dkl | 2dkm | 2dkm
2dnl | 2dn2 |2dn3 | 2dxm |2e2d |2e2y |2e3m |2e30 |2e3r | 2e8|
2ech | 2eku |2evp | 2f2n 242 268 2féa | 2fam | 2fc6 2fcw
2frf 2frj 2fse 2fse 2fxs 290s | 2g12 | 2916 | 2qtl 2gtv
2h35 | 2h8d | 2h8f | 2hbc | 2hbd | 2hbf | 2hbg |2hbs | 2hco | 2hhb
2hhd | 2hhe | 2hp8 | 2hue | 2hzl | 2idc 2iij 2in4 2iw2 | 2iws
2j61 2j71 2jhh 2jhi 2jho 2jjc 2kb0 | 2kc5 | 2kco | 2kgl
2kho | 2Kji 2knx | 2ksc | 2l6l 2lhb 2lhk 2lkv 21 21
2llp 2Im1 | 2ltb 2lwp | 2lyj 2lyk 21yl 2lyp 2lyq 2lyr
2lys 2mOm | 2mln | 2m3e | 2m6z | 2m8s | 2mb5 | 2mbw | 2mgo | 2miq
2mj5 | 2mye | 2myj | 2mze | 2mzi | 2n3j 2nd4g | 2n71 | 2n8r | 2nb0
2nd2 | 2nd3 | 2nd5 | 2npl 2nrl 2nsa | 2nsb | 2nsr | 2nx0 | 205l
2059 | 205s | 20hb | 20j5 20km | 2okn | 2pei 2peo | 2peq | 2pgh
2092 | 2ght | 2qif 2qld 2qls 20sp | 2gss |2qu0 |2rlh | 2r80
2r9y | 2rao | 2rk6 2rpj 2seb | 2seb | 2tgof 2uur | 2uwj | 2v15
2vle | 2vif 2v1i 2vlk | 2v53 | 2v7y | 2vix 2vly 2vw5 | 2vwc
2vyw | 2vyy | 2wOg | 2w60 | 2w6v | 2wbw | 2w72 | 2wep | 2wnp | 2ww7
2xd6 | 2xi6 2xif 2xil 2xj6 2xki 2xx4 | 2ylz | 2y6y | 2yge
2yjm | 2yob | 2yrs 2yuh | 2z1p | 2z44 | 2z46 | 2z6s | 2z6t 2285
2729y | 229z | 2zlv 2zlw | 2zIx 2zsp | 2zsq | 2zss | 2zsy |2zwh
2zwj | 2zyp |3a0g |3a2g | 3a59 | 3aeh | 3aei 3ak5 | 3ag5 | 3ase
3asw | 3asw | 3b72 |3b75 | 3bjl 3bwu | 3c11l | 3ciu 3d17 | 3dlk
3d3r | 3d70 | 3dhr | 3dll 3dpa |3dpo |3dpq |3dut |3eda | 3ejh
3elm | 3eok | 3eul |3ewo |3ewq | 3f71 3fh9 3fp8 3fs4 3fzh
3fzk 3gkv | 3gla 3gln 3gou |3gqg | 3ggqp | 3gt6 3gys | 3h0x
3h3g |3h3t |3hc9 |3hf4 | 3hrv | 3ia3 3ico 3ic2 3ipn 3iuc
3kih | 3k8b | 3kek | 3lle 3id1 3ldI 3ldn 3ldo 3ldp 3ldq
3lfo 3ljz 3lqd 3lr7 3lw2 | 3mOb | 3m38 | 3m3b | 3m6c | 3mba
3mjp | 3mju | 3mvf | 3n3e | 3n3f 3nl7 3nml | 302x | 3039 | 3odq
3ofg 3ofh 3ogb | 3oly 3o0sx | 3ovu | 3p46 | 3pel 3pg0 | 3pi8
3pi9 3pr9 |399q | 3qc7 | 3qgje 3qi1 3qle 3gm5 | 3qzl 3g9zm
3gzn | 3gzo | 3rik 3rjr 3rt5 3rtl 3rur 3s48 | 3s4u | 3s5c
3sbh | 3sbk | 3sdh | 3sdn | 3sea | 3sz7 | 3szk | 3tee 3tfb 3tgf
3tm3 | 3tn; 3tnu 3tvc 3tvn 3uhi 3ujl 3umm | 3ut2 3uyx
3v03 | 3v2v | 3vfe 3vm5 | 3vm9 | 3vnd | 3vhw | 3vgk | 3vql 3vgm
3vz6 | 3vz9 | 3w6l | 3wai | 3wft 3whm | 3wi8 | 3wtg | 3wvl | 3wvl
3wyo | 3zgh | 3zgi 3zha |3zhc | 3zhd | 3zhk | 3zhl 3zri 4a0q
4a7b | 4ait 4aix 4aiz 4ajo 4am9 | 4ani 4asv | 4au2 | 4au3
4b2t | 4b9q | 4bb2 | 4bj3 | 4bkl 4bkl dbnr | 4bpy | 4bt9 | 4cOn
4c44 | 4cpg | 4ctd 4cud | 4cue | 4cuf 4d0e | 4d2u | 4d3e | 4d7y
4d8n | 4dc5 | 4dc7 | 4df3 4dou | 4dwf | 4eew | 4eo05 |4dezn | 4ezo
dezp | 4dezr |4dezw |4dezx | 401 | 4flz 4f3j 4f40 | 4168 | 4fc3




4fct Afcw | 4fei 4fum | 4fup | 4fvl 4fwz | 496t | 49f3 | 4gr7
4h32 | 4hrr 4hrt 4dhse | 4hwc | 4i0c 4i0y dile 4i2s 4i37
4i3n 4i96 4igi 4igi 4ihk 4ij2 4ij5m | 4ja7 4ja9 4jb0
4jb2 4jnf 4jsd 4jso 4k07 | 4k5q | 4k6g | 4keéh | 4kek | 4kjt
4kqt | 412a | 412c 412d 41j6 4lja 4116 4Inz 41x2 4m4b
4m56 | 4m8u | 4ma7 | 4mbn | 4mjh | 4mkf | 4mkg | 4mkh | 4mpr | 4magk
4dmtc | 4mth | 4n79 | 4n7p | 4n8w | 4ni0 4nla 4nsm | 4nwe | 4nwh
4nyt 404t | 404z |4odk |4odn |4odp | 40f9 40j0 4o0d | 4ow4
40x0 | 4pnj 4pgb | 4qgby |4qyw |4rle |4rmb | 4rmb | 4rrp 4rx9
4rzk 4tql 4tt0 4tyu 4u3h | 4ubt | 4u8u | 4uos | 4uot | 4uox
4uoy | 4urg 4urq | 4urs 4uzv | 4w68 | 4w70 | 4w81 | 4w94 | 4wbr
4dwch | 4wjg | 4wt3 | dwuy | 4x86 | 4xif Axif 4xs0 | 4y00 | 4yu3
4yud | 4yxl 4z3v | 4zgg | 4zly azry 5ab8 | 5aks | 5a06 | 5aqg
5aqi 5ago | 5aqt | 5azq |5b06 |5b50 |5b85 |5boy |5bx0 | 5c6y
5cdk | 5¢ce5 | 5cjb 5cjb 5cmv | 5¢cn5 | bene | 5cetd Scti 5cuz
Scva |5cvb | 5d5r | 5dut | 5e3x | 5e83 | 5e84 |5e85 | 5ei 5eiv
5f2r 5ffo 5fqd 5fwil 5fwp | 5ghu | 5gw4 | 5gw5 | 5h22 | 5hba
5hgj 5hj2 Shly 5hg3 | 5hu6 | 5hy8 | 5i4w | Siat 5iax 5icu
5iks 5ilm 5ilp 5ilr 5j3p 5j3s 5j3z 5j7n 5jdo 5jg9
5jhi 5ji4 5jid 5jom | 5jui 5k31 | 5ker | 5ki0 5kkk | 5krw
5ksi 5ksj S5kvn | 5kwx | 5kwz | 5kx0 | 5kx1 | 5kx2 | 5m3l | 5m4g
5m4j | 5m4l |5mba | 5mby | 5mcl | 5mu0 | 5mu0 | 5mv3 | 5mzu | 5n30
5n4h | 5nax |5nay |5naz | 5nil 5nir 5njx 5nro | 5nx3 | 504p
50bu | 50cx | bocx | 50fo 50j9 50ja 50mp | 5omy | 50opw | 50px
50u8 | 50u8 |50u9 |50owi |50wj |5sv3 |5sv7 | 5thp 5tu7 5tu8
5tu9 | 5u2l 5u2u | 5ucb | 5ucu | 5ue2 |5ue5 |5uea |5uek | 5urc
5ut7 5ut9 5uwk | 5uyx | 5vdm | 5v4n | 5vmm | 5vpn | 5vgp | 5vsx
5vy8 | 5w9 |5vzn |5vzo |5vzp |5vzq |5wOs | 5wez | 5wol | 5wog
5wy9 | 5wyo | 5x2r | 5x2s | Sxef 5xi9 5xir 5xkv | 5xI0 5y45
S5yan |5ycg |5yp8 |5ypb |5ypg |5yup | 5Syzf 5z50 | 5z8i 5zba
5zdi 5zfo 5zhb | 5zui 5zyg | 5zyk | 5zz0 | 5zzf 5zzg | 5zzt
5zzy |6a06 |6a0v |6al0y |6al9 |6alw |6a23 |6a2u |6a32 |6a39
6a3c | 6a4n | 6ahf | 6Gait 6as9 |6asy |6axb |6b99 | 6bb5 | 6bie
6bin 6bin 6bjr 6bnr | 6bp9 | 6bwu | 6cd2 | 6¢f0 6Cii 6cn8
6cqg | 6cqv | 6d45 | 6d6s | 6dfm | 6dju 6dI9 6dnm | 6drq | 6dtc
6e0f | 6e0g | 6eld | 6el5 | 6e2j 6e2j 6e7g | 6e7h | 6ecO | 6ecO
6ed3 | 6eof | 6ewn | 6fOf 6f0y 6f17 6f18 6f25 6fgf 6fse
6ftk 6fzw | 6gba | 6g5b | 6g5t 6gzd | 6h2p | 6h2q | 6hal 6hbi
6hbw | 6hfo 6hg7 | 6hv2 | 6ihx 6iil 6j0a 6j81 6jpl 6k01
6m8f | 6mv0 | 6n02 |6Nn8v | 6n8z | 6nbCc | 6Nbd | 6nd8 | 6Nnd8 | 6Ndh
605v | 6069 | 60g3 | 6owx | 6p7s | 6prq | 6qff 6qfh 6gh9 | 6qi8
6rwt 6u3r | 7Thsc | 7pck




