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Supporting Information Text11

As a supplement to the main text, we include here the detailed calculation of the Weibel instability and the validation of12

our analytical model described in the main text. The linear dispersion relation of the Weibel instability in the system of a13

driven shear flow is derived and numerically solved in Sec. 1. In Sec. 2, we present our analytical model for each stage in the14

non-asymptotic regime. We then test this model using kinetic particle-in-cell (PIC) simulations, whose details are provided in15

Sec. 3 and from which the numerical results presented in Sec. 4 are obtained.16

1. Linear Weibel physics in the asymptotic regime17

In this section, we calculate the dispersion relation of the Weibel modes using the unmagnetized solution of the plasma18

distribution function fs [Eq. (2)]. Recall that the Weibel instability occurs at the kinetic time scale and the generated19

Weibel magnetic fields change the system’s dynamics, the unmagnetized solution [Eq. (2)] is only valid in the short time limit20

ϵ ≡ tvths/L ≪ 1. In this limit, we can take the second-order Taylor expansion of Eq. (2) for ϵ ≡ tvths/L ≪ 1 to obtain the21

early-time approximation of the distribution function:22

fs(t, x, v) = fM,s (|v|)
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2πâ0

vxvy

v2
ths

cos
(2π

L
x
)

+ â2
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[S1]23

We first show that Eq. (S1) is a multivariate distribution function under certain approximations, and can thus be written as a24

tri-Maxwellian in an orthonormal coordinate system (Sec. 1A). We then numerically solve the dispersion relation for an oblique25

Weibel mode in a tri-Maxwellian plasma and find the dependence of the growth rate of the most unstable mode, γw, on the26

thermal pressure anisotropy, ∆ (Sec. 1B) .27

A. Coordinate transformation of fs. Let us specify a location x = 0 at which maximum shear occurs and thereby remove the28

spatial dependence of fs. The plasma at this position undergoes the strongest phase mixing, and thus has the maximum29

thermal pressure anisotropy. The dynamics of the Weibel instability at this position is therefore representative of that in the30

whole system. In the small-time limit ϵ ≡ tvths/L ≪ 1 and at x = 0, Eq. (2) becomes31

ṽy ≡ vy + La0

2πvx

[
1 − cos
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vxt
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≃ vy + â0πvx

(
tvths

L

)2
+ O(ϵ3).

[S2]32

Combining the time evolution of thermal pressure anisotropy [Eq. (4)],33

∆s(t, x = 0) = 3
2πâ0

(
tvths

L

)2
+ O(ϵ3), [S3]34

we can simplify the expression of ṽy as35

ṽy ≡ vy + 2
3∆s(t)vx, [S4]36

and that of fs at x = 0 as37

fs(v) = FM,s

[(
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9∆2
s

)
v2

x + 4
3∆svxvy + v2

y + v2
z

]
. [S5]38

In this case, fs possesses the form of a multivariate normal distribution and can thus be transformed to an orthonormal39

coordinate basis {vx′ , vy′ , vz} and written as the tri-Maxwellian distribution40

f̃s ∝ exp
[

−
(

v2
x′

2Tx′,s

+
v2

y′

2Ty′,s

+ v2
z

2Tz,s

)]
. [S6]41

Here Tx′,s, Ty′,s, and Tz,s, with Ty′,s > Tz,s > Tx′,s, are the eigenvalues of the covariance matrix of fs, and vx′ , vy′ , and vz are42

the corresponding eigenvectors. Note that the orientation of the orthonormal coordinate evolves with time. The thermal pressure43

anisotropy (defined in the Theory section in the main text) thus becomes ∆s ≡
√

⟨(Pmax,s/P⊥,s)2⟩ − 1 =
√

⟨(Ty′,s/T⊥,s)2⟩ − 1,44

where T⊥,s = (Tx′,s + Tz,s)/2.45

B. General dispersion relation for Weibel instability. We proceed to derive the linear dispersion relation of the oblique Weibel46

modes for a tri-Maxwellian distribution function. The goal of this calculation is to obtain the dependence on pressure anisotropy47

of the growth rate of the most unstable Weibel mode. For simplicity, we consider a system that is 3D in velocity space48

(vx′ ,vy′ ,vz) and 2D in configuration space (x′,y′). Our numerical results in Sec. 4 show that, at least for the unmagnetized stage49

and the linear Weibel stage, systems with 3D and 2D configuration space exhibit almost identical results, thereby justifying50

this approximation.51

We begin by considering the tri-Maxwellian initial distribution52

f̃0,s(vx′ , vy′ , vz) = f̃0x′,s(vx′ )f̃0y′,s(vy′ )f̃0z,s(vz), [S7]53
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Fig. S1. Two-dimensional spectrum of the normalized growth rate of the Weibel modes, γw/ωpe, in terms of kx′ de and ky′ de for ∆e = 0.4. The most unstable mode is the
purely transverse mode (ky′ de = 0).
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Fig. S2. Numerical solution of the Weibel dispersion relation. Left: Maximum normalized Weibel growth rate, γw/ωpe, versus the thermal pressure anisotropy. The scalings
γw/ωpe ∼ ∆3/2

e and γw/ωpe ∼ ∆1.4
e are shown for reference. Right: Normalized wavenumber of the most unstable Weibel mode, kwde, versus the thermal pressure

anisotropy. A γw/ωpe ∼ ∆1/2
e scaling is shown for reference.

where54

f̃0a,s(va) = 1√
πvtha,s

exp
{

− v2
a

2v2
tha,s

}
, [S8]55

vtha,s ≡
√

Ta,s/ms, and a ∈ {x′, y′, z}. To this distribution we add a linear perturbation, whose 2D spatial dependence is56

characterized by a wavenumber that contains both transverse and longitudinal components:57

k = kx′ x̂′ + ky′ ŷ′. [S9]58

The general expression for the components of the dielectric tensor, which specifies the oscillatory response of the plasma, is59

ϵab(ω, k) =

(
1 −

∑
s
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ω2

)
δab +

∑
s
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ps
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d3v
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∂v
, [S10]60

where ω is the (complex) frequency of the response. The components of the associated dispersion matrix are given by61

Dab(ω, k) = ϵab + kakb

ω2 c2 − k2c2

ω2 δab, [S11]62

where k = |k|. Plugging in the tri-Maxwellian distribution function f̃0,s [Eq. (S7)] and defining the variables ξ ≡ (ω −63

ky′ vy′ )/|kx′ |vthx′ , u ≡ vx′ /vthx′ , and Z(ξ) ≡ π−1/2 ∫ du exp(−u2)(u − ξ)−1, we obtain64
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66
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Muni Zhou, Vladimir Zhdankin, Matthew W. Kunz, Nuno F. Loureiro, and Dmitri A. Uzdensky 3 of 10



and68

Dx′x′ = 1 −
k2
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∑
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The nontrivial solution of the mode’s dispersion relation is given by70

det D = 0 =⇒ Dy′y′ Dx′x′ − Dy′x′ Dx′y′ = 0. [S15]71

We numerically solve Eq. (S15) for two systems: (i) an electron-positron plasma in which both species respond to the72

electromagnetic fluctuations and ∆e = ∆p; and (ii) an electron-ion (proton) plasma where only electrons contribute to the73

Weibel modes and ions are considered as a cold and immobile neutralizing background. For a given thermal pressure anisotropy74

∆e, we scan across all k to obtain the 2D spectrum of the Weibel growth rate in terms of kx′ de and ky′ de. Fig. S1 shows an75

example for a given ∆e = 0.4 (the value of anisotropy that a system with â0 = 0.2π2 reaches at τlin). We find the mode with76

the largest growth rate γw at the corresponding wavenumber kw. The dependence of γw and kw on ∆e is shown in Fig. S2. The77

canonical scaling laws γw/ωpe ∼ ∆3/2
e and kwde ∼ ∆1/2

e (1) agree well for both a electron-positron plasma and an electron-cold78

ion plasma.79

In addition, we found that the most unstable mode is always the purely transverse mode (i.e., ky′ = 0). This suggests that80

Weibel instability is the primary instability in the configuration of a driven shear flow at tvth/L ≪ 1. Other instabilities, such81

as the electrostatic two-stream instability, do not play a significant role in the system we consider. This conclusion might be82

different for other configurations. For example, for a system of counter-streaming flows, the dominant instability can be the83

two-stream instability (especially in the non-relativistic regime), depending on the ratio of flow to thermal velocity (2).84

Note that the Weibel growth rate and wavenumber obtained from the dispersion relation Eq. (S15) based on the distribution85

function in Eq. (S6), valid in the small tvth/L limit, is considered as the asymptotic solution. We expect this solution to apply86

when the system possesses an asymptotically large scale separation L/de.87

2. Analytical model in non-asymptotic regimes88

In the main text, we present the analytical model in the asymptotic regime (L/de ≫ 1), where predictive scalings can be made89

for the saturated magnetic energy (∝β−1
e,sat) and the length scale of magnetic fields (∝kwde). However, for systems lacking90

such a scale separation (such as those achievable in numerical simulations and laboratory laser experiments), at the moment91

when the Weibel magnetic fields are rapidly growing, fs already deviates significantly from a (tri-)Maxwellian distribution92

and possesses a complex form. In this case, the early-time behavior for ∆e [Eq. (4)] is no longer a good approximation, and93

a different Weibel dispersion relation (different dependence of γB and kw on ∆e) is expected. Due to the lack of explicit94

analytical expressions for ∆e, γB, and kw in the non-asymptotic regime, free parameters are used in the model and are to95

be determined by first-principles numerical simulations. In this section, we follow the theoretical framework described in the96

Theory section in the main text and derive the model in the non-asymptotic regime.97

A. Linear Weibel stage. In this stage, we assume that the dependence of the growth rate of the magnetic field, γB, on ∆e98

remains a power law, and the power-law exponent is set to be a free parameter α:99

γB ≡ d ln B

dt
∼ ∆α

e ωpe
vthe

c
. [S16]100

In the asymptotic regime, we expect α = 3/2. During the linear stage of the Weibel instability, the magnetic field is not yet101

strong enough to affect the background accelerating plasma flow. The system should thus follow the unmagnetized solution102

[Eq. (2)], based on which the evolution of ∆e at arbitrary times does not have an explicit analytical expression. For simplicity,103

we assume a power-law scaling104

∆e ∼ â0(tvthe/L)κ, [S17]105

where κ = 2 in the asymptotic regime [Eq. (4)].106

As we discuss in the main text, if the time scale for the growth of magnetic fields is well separated from that of ∆e, viz.107

γB ≫ ∂t∆e/∆e ∼ ∂tγB/γB , we can integrate Eq. (S16) to obtain the evolution of the magnetic field. Assuming a constant108

mean thermal pressure of the system, the time evolution of β−1
e (representing magnetic energy) can then be written as109

β−1
e ≃ β−1

0 exp
[

2âα
0

κα + 1

(
tvthe

L

)κα+1 L

de

]
, [S18]110

where β−1
0 is determined by the initial magnetic-field perturbation at kw.111

Eq. (S18) is expected to be valid until the end of the linear electron Weibel phase (τlin), when the argument in the exponential
function in Eq. (S18) is expected to reach order unity, resulting in the scaling

τlin ∼
(

L

de

)−1/(κα+1)
â

−α/(κα+1)
0 . [S19]
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It follows that the electron pressure anisotropy ∆e and the magnetic growth rate γB at τlin should satisfy

∆e(τlin) ∼
(

L

de

)−κ/(κα+1)
â

1/(κα+1)
0 , [S20]

γB(τlin)
ωpe

∼
(

L

de

)−κα/(κα+1)
â

α/(κα+1)
0

vthe

c
. [S21]

B. Saturation of Weibel instability. As we explain in the main text, the length scale of the Weibel seed fields do not change112

significantly during the nonlinear Weibel stage before its saturation. The dependence of the length scale of the Weibel magnetic113

field, k−1
w (τlin), on ∆e(τlin) is determined by the linear dispersion relation of the Weibel instability. Alongside the power-law114

dependence of γB on ∆e [Eq. (S16)], we also assume a power-law dependence of kw on ∆e:115

kw ≃ ∆ν
e /de, [S22]116

where we expect ν = 1/2 in the asymptotic regime. It follows from Eq. (S20) that the dependence of kwde on L/de and â0
satisfies

kwde ∼
(

L

de

)−κν/(κα+1)
â

ν/(κα+1)
0 . [S23]

The average electron Larmor radius can be estimated as ρe ≃ β
1/2
e de. Combining this relation with Eq. (S22), the trapping117

condition, kwρe ∼ 1, provides the estimate of the value of β−1
e at saturation:118

β−1
e,sat ∼ ∆2ν

e (τlin). [S24]119

Combined with Eq. (S20), we obtain the dependence of the saturated β−1
e on the system parameters:

β−1
e,sat ∼

(
L

de

)− 2νκ
κα+1

â
2ν

κα+1
0 . [S25]

Eq. (S23) and Eq. (S25) provide the main deliverable of our model–the scaling dependence of the length scale [∝(kwde)−1]120

and amplitude (∝β−1
e,sat) of the saturated seed magnetic fields on the two key dimensionless parameters: â0 and L/de. Setting121

L/de as a parameter allows us to test the predicted scalings [Eq. (S21)–Eq. (S25)] using numerical simulations with relatively122

small values of L/de, and then extrapolate to relevant astrophysical systems with asymptotically large L/de. Note that another123

fundamental quantity in astrophysical environments—the normalized temperature θs ≡ Ts/msc2—is not a critical parameter124

for this problem since we focus only on the sub-relativistic regime. The Weibel magnetic energy and the thermal pressure are125

both proportional to θs. Therefore, the saturated β−1
e , reflecting the level of magnetization that can be achieved through the126

Weibel instability, is not a function of temperature (at fixed â0).127

Our model is predictive for the scaling dependence of the dominant wavenumber and inverse beta for the saturated fields in128

the asymptotic regime: kwde ∼ (L/de)−1/4â
1/8
0 and β−1

e,sat ∼ (L/de)−1/2â
1/4
0 (shown in the main text). In regimes lacking a129

large enough scale separation L/de, we have to set the exponents (α, κ, and ν) of certain power-law dependencies [Eq. (S16)–130

Eq. (S17) and Eq. (S22)] as undetermined parameters. Those exponents are to be determined by the first-principles numerical131

simulations discussed in Sec. 4. However, the derived scalings based on these undetermined exponents [Eq. (S19)–Eq. (S21),132

Eq. (S23)–Eq. (S25)] will be tested independently using the numerical results to validate the model.133

3. Simulation setup134

To test and calibrate our model in the non-asymptotic regimes, we perform the first-principles PIC simulations using the code135

ZELTRON (3) of an initially unmagnetized plasma driven by an external shearing force. The detailed setup is described in136

the Numerical Experiment section in the main text. The system is intrinsically multi-scale, containing the macroscopic, slow,137

fluid-scale dynamics driven by the external shear force; and the fast, kinetic-scale dynamics of plasma instabilities. In order to138

explore both the slow and fast dynamics, we perform parameter scans on the two key parameters: S0 and L/de. Both 3D and139

2D runs are performed with the same setup, with the 2D runs resolving only the x-y plane (but including all three velocity140

components). The main purpose of the 2D runs is to achieve the largest values of L/de that we can afford, and thus a better141

separation between the macro- and microscopic dynamics. The dynamics in the unmagnetized stage is identical between 2D142

and 3D systems, and we expect their Weibel physics to be qualitatively similar—the scaling laws [Eq. (S16)–Eq. (S25)] hold for143

both 2D and 3D cases with only a constant factor difference. On the other hand, the 2D runs do not capture possible dynamics144

in the z direction such as the kink instability and the coalescence of Weibel filaments. However, we will find (in Sec. 4) that145

those dynamics only affect the long-term evolution of Weibel filaments and do not change the main deliverable of this study:146

the scaling dependence of saturated Weibel seed fields on L/de and S0.147

We conduct scans in S0 and L/de. For the scan in S0, which we vary across S0 ∈ {0.1, 0.2, 0.3, 0.4}, we perform one group of148

3D runs with fixed L/de = 32, and two groups of 2D runs with fixed L/de = 512 and L/de = 1024, respectively. For the scan149

in L/de, we perform a group of 3D runs with fixed S0 = 0.2 and varying L/de ∈ {32, 48, 64, 96, 128, 192}, and a group of 2D150

runs with fixed S0 = 0.2 and varying L/de ∈ {32, 48, 64, 96, 128, 192, 256, 384, 512, 769, 1024}. For all simulations, the (initial)151
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Debye length λDe = ∆x where ∆x is the cell length, and de = 4∆x (so that de/λDe =
√

1/θe = 4). All 2D runs are performed152

using 256 particles per cell (PPC) (128 per species). The 3D runs with fixed S0 = 0.2 and varying L/de are performed with 32153

PPC, and those with fixed L/de = 32 and varying S0 have 256 PPC (for which the results are similar to those in runs with 32154

PPC with all the other parameters kept identical). All runs are evolved for more than one thermal crossing time to include155

both the micro- and macroscopic dynamics.156

For the scan in S0, the scale separation L/de is fixed. We vary the amplitude of the forcing to the system and study how the157

kinetic physics responds to it. For the scan in L/de, the system size L is kept fixed and de is varied by changing the plasma158

density. In other words, we drive the fluid-scale dynamics identically and study how the system’s kinetic-scale response changes159

with scale separation.160

4. Numerical results — Quantitative scalings from parameter scans.161

Fig. S3. Time evolution of M (top row), ∆ (middle row), and β−1 (bottom row). Left: 3D runs with varying L/de and fixed S0 = 0.2. Middle: 2D runs with varying L/de and
fixed S0 = 0.2. Right: 3D runs with varying S0 and fixed L/de = 32. Vertical dashed lines indicate tvth/L = τlin for corresponding runs. Horizontal dashed lines in the
bottom panels of each column indicate the values of β−1 at τlin. The dotted lines in the top and middle panels are the analytical solutions for M and ∆, respectively. The
inset figure in the top-right panel shows the values of M at the plateau versus S0.

In the main text, we focus on analyzing a fiducial case and show its qualitatively agreement with our model. In this SI,162

we focus on the parameter scans (in S0 and L/de), analyzing the scaling laws of key quantities (∆, β−1, and γB) at critical163

moments of time (τlin and τsat) and comparing our numerical results with the predictions derived in Sec. 2 [Eq. (S19)–Eq. (S21)164

and Eq. (S24)–Eq. (S25)].165

The time evolution of M , ∆, and β−1 for these two parameter scans is shown in Fig. S3. For runs performed at fixed166

S0, during the unmagnetized and linear Weibel stages for each run, the evolution of macroscopic quantities (M and ∆) is167

identical (left and middle columns in Fig. S3). For runs with varying S0 (right column in Fig. S3), M(t) and ∆(t) evolve168

differently, following Eq. (1). Simulations with different L/de and S0 enter the exponential magnetic-field growth stage at169

different moments of time. Even for systems sharing the same background evolution of M(t) and ∆(t), their increase of β−1
170

differs (left and middle column). Systems with larger L/de have a shorter kinetic time scale ω−1
p = de/c (relative to the171

macroscopic time scale L/vth) and thus a faster increase of β−1 given that the growth rate of the Weibel instability γB ∝ ωp.172

Before entering the nonlinear Weibel stage, the magnetic-field strength is not yet significant enough to affect the macroscopic173

background evolution and, therefore, M and ∆ have not deviated from the unmagnetized solution (dotted lines).174

In the Theory section in the main text, we predict that, in an unmagnetized plasma, the bulk flow velocity, and thus M ,175

should reach a saturation stage due to the developed effective viscous force that balances the external forcing. In our numerical176

results, this feature is indeed observed for runs with L/de ≲ 200. The force balance condition [Eq. (5)] provides an estimate of177

the plateau level M sat ∝ S0 [Eq. (6)]; this scaling is confirmed by the numerical results shown in the inset figure in the right178

column of Fig. S3. For runs with L/de ≳ 200, the plateau of M does not have enough time to develop because the overall179

dynamics is changed by the Weibel magnetic field before the force balance is reached.180

In our simulations with fixed S0 = 0.2, two regimes exist, depending on the scale separation L/de. For L/de ≲ 200, the linear181

Weibel stage that occurs around τlin is reached after τ0, the moment when the unmagnetized plasma reaches a steady-state182

flow and M reaches the plateau. We call this the post-plateau regime. For L/de ≳ 200, τlin is reached before τ0. Weibel183

fields grow shortly after the system is driven and change the overall dynamics before the steady-state flow could occur. We184

call this the pre-plateau regime. We denote by (L/de)cr the critical scale separation where the transition between the pre-185
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and post-plateau regimes occurs. Near this transition, the Weibel fields grow rapidly while the flow approaches the steady186

state, i.e., τ0 ≈ τlin. Combined with the estimation of these two times: τ0 ∼ 1/2π (see Theory section in the main text) and187

τlin ∼ (L/de)−1/(κα+1)S
−α/(κα+1)
0 [Eq. (S19)], we obtain the dependence of this critical scale separation on the drive of the188

system: (L/de)cr ∝ S−α
0 .189

Most of our 3D simulations are in the post-plateau regime, with the largest ones (L/de = 128, 192) marginally entering the190

pre-plateau regime, while our 2D runs, where much larger values of L/de can be afforded, allow us to explore the pre-plateau191

regime. The pre-plateau regime is closer to the asymptotic regime, which is relevant to astrophysical systems where L/de is192

typically an asymptotically large number. In the following subsections, we discuss the scaling laws measured during the the193

linear stage and saturation of the Weibel instability for both the pre- and post-plateau regimes.194
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Fig. S4. Results of ∆max versus τlin from 2D and 3D runs with varying L/de and fixed S0 = 0.2. The dash-dotted curve shows the pressure anisotropy ∆ as a function of
time calculated from the analytical solution Eq. (2). Red-dotted and black-dashed lines show power-law fits to the post-plateau and pre-plateau regimes, respectively.

0.005

0.010

0.050

0.100

B
,m

ax
/

p

asymptotic solution ( 3/2
max)

2D
2
max

3D

0.2 0.3 0.4 0.5 0.6 0.7
max

0.2

0.3
0.4
0.5
0.6
0.7
0.8

k w
(

lin
)d

e

asymptotic solution ( 1/2
max)

2D
max

3D

Fig. S5. Weibel growth rate and wavenumber from 2D and 3D runs with varying L/de and fixed S0 = 0.2. Top: γB,max/ωp versus ∆max. The dashed line shows the
∼ ∆2
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A. Scaling laws at the end of linear Weibel stage. In the linear Weibel stage, the plasma is unmagnetized and ∆ increases due to195

the external forcing until reaching its maximum value ∆max at τlin, whereupon the effects of magnetic fields become important.196

For runs with varying L/de, and thus varying τlin, the measured ∆max as a function of τlin follows the time evolution of ∆197

calculated with the unmagnetized analytical solution Eq. (2), as is shown in Fig. S4. The time evolution of ∆, and thus the198

dependence of ∆max on τlin, can be approximated with power-law expressions within certain ranges of time: ∆ ≃ â0(tvth/L)κ
199

with â0 ∝ S0 [Eq. (S17)]. In our runs, κ = 1/2 is measured for the post-plateau regime (small L/de, large τlin), and κ = 3/2 for200

the pre-plateau regime (large L/de, small τlin). In the asymptotic regime, we expect the scaling κ = 2 based on the expansion201

of the analytical solution at asymptotically small tvth/L [Eq. (4)].202

The growth rate of the most unstable mode and its wavenumber in the linear Weibel stage is expected to have power-law203

dependencies on anisotropy: γB ≃ ∆αωpvth/c [Eq. (S16)] and kwde ≃ ∆ν [Eq. (S22)]. Fig. S5 shows the measured magnetic204

growth rate at τlin, γB,max, (top panel) and the normalized wavenumber, kwde, corresponding to the peak of the isotropic205

magnetic power spectrum M(k) at τlin (bottom panel), as functions of measured ∆max for runs with varying L/de. The206

γB,max/ωp ∝ ∆2
max (i.e., α = 2) and kwde ∝ ∆max (i.e., ν = 1) scalings are found across most of the values of L/de, except for207
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Fig. S6. Right: Plots of τlin (top), ∆max (middle), and γB,max/ωp (bottom) versus L/de for 2D and 3D runs with varying L/de and fixed S0 = 0.2. Red (black) dotted
lines show the predicted scalings in post-plateau (pre-plateau) regime. Left: Plots of τlin (top), ∆max (middle), and γB,max/ωp (bottom) versus S0 for 2D and 3D runs with
varying S0. Red dotted lines show the theoretical predictions and black dashed lines show fits to the data points. With increasing L/de, the measured scalings approach the
predictions

the two runs with the largest L/de (corresponding to the two data points on the left with the smallest ∆max). These measured208

scalings are different from the expected scalings (α = 3/2 and ν = 1/2) for the asymptotic regime and from the canonical209

Weibel theory (1).210

In the same figure, we plot with the brown dash-dotted lines the analytical growth rate of the most unstable Weibel mode211

(top panel) and its corresponding wavenumber (bottom panel) as functions of pressure anisotropy, given by the asymptotic212

solution of the linear Weibel dispersion relation (Sec. 1B). This solution is obtained in the regime where an asymptotically213

large scale separation exists. With a large enough L/de (the two runs with L/de = 768, 1024), the measured growth rate214

and wavenumber agree well with the asymptotic solution, confirming that the primary instability producing the magnetic215

fields in our system is indeed the Weibel instability. As L/de decreases, however, the measured quantities deviate from the216

asymptotic solution and exhibit different scalings. We believe that this discrepancy is due to the effects of the continuous forcing217

under insufficient scale separation (L/de). With a limited L/de, the distribution function is already driven to a complex form218

when the Weibel instability becomes active (very different from a tri-Maxwellian in the asymptotic regime in an orthonormal219

coordinate system). In addition, during the linear Weibel stage, the assumption of a static background is no longer a good220

approximation if the fluid time scale L/vth is not asymptotically large compared to the inverse growth rate 1/γB ; the effect of221

the shear flow in tilting the Weibel filaments is not negligible. The combination of these effects leads to different values of222

Weibel growth rate and wavenumber and their different scaling dependencies on ∆ for limited L/de.223

The increasing magnetic growth rate leads to super-exponential growth of magnetic energy, and thus of β−1 [Eq. (S18)].224

When the argument of the exponential function becomes of order unity, the linear stage ends. This moment corresponds to the225

measured τlin. This is consistent with the fact that β−1 in runs with varying L/de or S0 reaches the same value at τlin (shown226

by the horizontal dashed lines in bottom panels of each column in Fig. S3).227

The values of τlin and quantities measured at τlin are expected to exhibit power-law dependencies on L/de and S0, according228

to Eq. (S19)–Eq. (S21). The exponents α and κ are obtained from our numerical results for small and moderate L/de (Fig. S4),229

and are obtained from the analytical solution at tvth/L ≪ 1 for asymptotically large L/de [Eq. (3) and Eq. (4)]. Plugging the230

measured values α = 2 and κ ∈ {1/2, 3/2} into Eq. (S19)–Eq. (S21), we derive the following scalings: for the L/de dependence,231

we expect that in the post-plateau regime (κ = 1/2), τlin ∼ (L/de)−1/2, ∆max ∼ (L/de)−1/4, and γB,max ∼ (L/de)−1/2;232

in the pre-plateau regime (κ = 3/2), τlin ∼ (L/de)−1/4, ∆max ∼ (L/de)−3/8, and γB,max ∼ (L/de)−3/4. These latter (pre-233

plateau) scalings are close to those in the asymptotic regime, for which we expect τlin ∼ (L/de)−1/4, ∆max ∼ (L/de)−1/2, and234

γB,max ∼ (L/de)−3/4 (see Theory section in the main text). The above predicted scalings for the post- and pre-plateau regimes235

are confirmed by the numerical results shown in the left panel of Fig. S6, where the transition of scalings occurs at around236

L/de ≈ 200, consistent with what we observe in Fig. S3.237

The dependence of τlin, ∆max, and γB,max on S0 (â0 ∝ S0) is more difficult to test in our numerical results. For runs with238

varying S0, the background evolution of M and ∆ for the unmagnetized plasma differs and the transition between the pre- and239
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post-plateau regimes occurs at different critical values of L/de. For fixed small or moderate L/de, ∆ scales differently with240

time (at around τlin) for systems with different S0, rendering the application of our scaling theory nontrivial. We therefore241

focus on the regime with asymptotically large L/de, where the quadratic time dependence of ∆ [Eq. (4)] applies to systems242

with any values of S0. In this asymptotic regime, quantities are expected to scale with S0 as τlin ∼ S
−3/8
0 , ∆max ∼ S

1/4
0 ,243

γB,max/ωp ∼ S
3/8
0 (see Theory section in the main text), shown by the red dotted lines in the right panel of Fig. S6. Three244

groups of runs with different values of L/de fixed in each case and with a parameter scan on S0 are presented. We are not able245

to perform simulations deep in the asymptotic regime due to computational constraints, especially in 3D. However, it seems246

clear that with increasing L/de the measured scalings approach our asymptotic predictions.247

B. Scaling laws at the saturation of Weibel instability. The saturation of Weibel instability (that we observe in the fiducial248

case in the main text) occurs when the produced magnetic fields become strong enough to instigate particles’ gyromotion249

on the length scale of magnetic filaments, i.e., kwρe ∼ 1 (1, 4). As discussed in Sec. 2B, at saturation, ρe is related to the250

saturated magnetic field as ρe ≃ β
1/2
sat de, and kw is approximated with the inverse length scale of the magnetic field at τlin,251

determined by ∆max: kw(τlin) ≃ ∆ν
max/de [Eq. (S22)]. The index ν = 1 is measured for the post- and pre-plateau regimes252

(Fig. S5, bottom panel), while ν = 1/2 is expected for the asymptotic regime. The scaling β−1
sat ∼ ∆2

max [Eq. (S24)] immediately253

follows (with ν = 1), and is confirmed both in the post- and pre-plateau regimes (Fig. S7, left panel). Combined with the254

dependence of ∆max on L/de and S0 [Eq. (S20) and Eq. (10)], we obtain the following predictions [Eq. (S25) and Eq. (13)]:255

in the post-plateau regime, β−1
sat ∼ (L/de)−1/2; in the pre-plateau regime β−1

sat ∼ (L/de)−3/4; and in the asymptotic regime,256

β−1
sat ∼ (L/de)−1/2. The scalings in the post- and pre-plateau regimes are confirmed by the numerical results (Fig. S7, right257

panel). For the same reason explained in Sec. 4A, we are only able to predict the dependence of β−1
sat on S0 for systems with258

asymptotically large L/de: β−1
sat ∼ S

1/4
0 [Eq. (13)]. Although we are not able to perform simulations deep in this asymptotic259

regime, a clear trend is shown in Fig. S8 that the measured scalings approach the S
1/4
0 prediction with increasing L/de.260
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Fig. S7. Saturated inverse beta β−1
sat versus ∆max (left) and versus L/de (right) for 2D and 3D runs with varying L/de and fixed S0 = 0.2.
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Fig. S8. Saturated inverse beta β−1
sat versus S0 for 2D and 3D runs with varying S0.

The presented numerical results confirm our analytical model (Sec. 2) in the post- and pre-plateau regimes (for small and262

moderate L/de). The three exponents in the model, α, κ, and ν, are determined by the numerical results. The derived scalings263

[Eq. (S19)–Eq. (S21) and Eq. (S24)–Eq. (S25)], whose indices are functions of α, κ, and ν, are confirmed independently by the264

numerical results. The validation of our model in the post- and pre-plateau regimes gives us confidence in its predictions in the265

asymptotic regime, which are derived within the same framework as the other regimes. More detailed discussion about how our266

numerical simulations support our theory is provided in the next section.267

5. Time-scale analysis268

In this section, we preform a time-scale analysis to justify that, although our simulations are not in the strict asymptotic269

regime, their scale separation is large enough to test the modified (i.e., non-asymptotic) version of the theory; and, thus, they270
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directly support the reasoning that underlies the asymptotic theory. We first introduce the relevant time scales in this analysis,271

and then explain the differences between our shear-flow setup and the conventional super-critical (to the Weibel instability)272

setup. After that, we compare different time scales and discuss the time-scale separation required in the asymptotic theory, in273

the modified theory, and that achieved in our simulations, respectively.274

There are three relevant time scales: (i) the thermal crossing time L/vth — this is the time scale that characterizes the275

evolution of the background equilibrium (the evolution of pressure anisotropy ∆) slowly driven by the imposed force; (ii)276

τlinL/vth — this is the time scale for the Weibel instability to reach the end of the linear stage, i.e., the time required for the277

Weibel magnetic fields to reach sufficient strength to affect the evolution of the background equilibrium; and (iii) 1/γB,max,278

where γB,max is the maximum growth rate of magnetic fields that occurs at τlin (details can be found in SI) — this is the time279

scale for the rapid growth of magnetic fields.280

We emphasize that rather than initialize a configuration that is super-critical to the Weibel instability, we instead start281

with a stable equilibrium and drive the system gradually towards becoming unstable to the Weibel instability. The different282

setups yield some differences when doing the time-scale comparison: (i) In a super-critical setup, the maximum growth rate,283

γB,max, occurs at the beginning of the simulation, and so the time scale to reach the end of the linear stage is the same as that284

during which the magnetic fields grow rapidly, τlinL/vth ∼ 1/γB,max. In our driven-flow setup, initially the magnetic growth285

rate γB is small because the pressure anisotropy ∆ is small. The growth of magnetic field during this initial time interval286

is not significant, which lengthens the time scale of the linear Weibel phase, τlinL/vth. The rapid growth of magnetic fields287

only occurs toward the end of the linear stage when γB,max is reached. Therefore, in our setup, τlinL/vth > 1/γB,max. (ii) In288

a super-critical setup, 1/γB and τlinL/vth are on the purely kinetic time scale. On the contrary, in our setup the pressure289

anisotropy ∆, which is set by the flow and determines γB in the linear phase, evolves on the fluid time scale. Therefore, 1/γB290

and τlinL/vth are on the hybrid time scale of the kinetic time scale (∼ 1/ωpe) and the fluid thermal crossing time (∼ L/vth).291

In our asymptotic theory (described in the main text), there are two requirements for the time-scale separation. The first is292

about whether linear theory can be performed at all. This requires that during the time interval when magnetic fields increase293

rapidly (∼ 1/γB,max), the change of background equilibrium (on the fluid time scale L/vth) is negligible. That leads to the294

condition γB,maxL/vth ≫ 1. Combined with the expression for the Weibel growth rate, γB ∼ ∆αωpevthe/c, where α = 3/2295

in the asymptotic regime and α = 2 in our simulations, the above condition yields to L/de ≫ ∆−α. The values of ∆ in our296

simulations range from 0.1 to 0.6 (Fig. S3), and so this condition of scale separation is satisfied. Therefore, the adoption of a297

linear theory is valid in our modified theory and when analysing simulation results.298

The second requirement arises from the use of the early-time behaviour of the equilibrium distribution function. In the299

main text, we derived the early-time behaviour of the system by taking the Taylor expansion of the unmagnetized solution for300

ϵ ≡ tvth/L ≪ 1. In this limit, the equilibrium distribution is tri-Maxwellian, and yields the scalings ∆ ∼ (tvth/L)2, γB ∼ ∆3/2,301

and kw ∼ ∆1/2/de. As we mentioned in the main text, to enter the deep asymptotic regime and obtain these scalings, the302

short-time (tvth/L ≲ 0.1) approximation of the unmagnetized solution needs to be valid during the growth of Weibel seed303

fields (at tvth/L ≃ τlin), i.e., τlin ≲ 0.1. (We found that the deviation between the second-order expansion and the full solution304

becomes noticeable at tvth/L ≈ 0.1.) The weak scaling dependence τlin ∼ (L/de)−1/4 then suggests that a significantly larger305

scale separation, L/de ≳ 104, is required to access the deep asymptotic regime. This large scale separation is not required in our306

modified theory, and is not achieved in our simulations. Therefore, in our modified theory in the supplementary materials, we307

replaced the above predictive scalings with power laws with undetermined indices, which are then measured in the simulations.308

Note that the satisfaction of the time-scale separation required for a linear theory (γB,maxL/vth ≫ 1) in our modified theory309

and in the simulations justifies the use of modified power-laws: because the time interval for the growth of magnetic fields is310

short on the fluid time scale, we can approximate the time-dependence of slowly-evolving quantities with power-laws.311

In summary, in our simulations the time scale separation is large enough to justify the linear theory, but not enough to312

guarantee that the equilibrium distribution remains close to a tri-Maxwellian distribution. Therefore, the simulation results313

can be used to test the modified theory in the non-asymptotic regime, and provide justification for the theoretical arguments314

described in the Theory Section in the main text.315
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