# Distinct glycosylation responses to spinal cord injury in regenerative and non-regenerative models

Rachel Ronan<sup>1,8</sup>, Aniket Kshirsagar<sup>1</sup>, Ana Lúcia Rebelo<sup>1</sup>, Abbah Sunny<sup>1</sup>, Michelle Kilcoyne<sup>2</sup>, Roisin O' Flaherty<sup>3,4</sup>, Pauline M. Rudd<sup>4,5</sup>, Gerhard Schlosser<sup>6</sup>, Radka Saldova<sup>1,4,7#</sup>, Abhay Pandit <sup>1#</sup>, Siobhan McMahon<sup>8#\*</sup>.

 <sup>1</sup>SFI Research Centre for Medical Devices (CÚRAM), National University of Ireland Galway, Ireland, H91 W2TY; <sup>2</sup>Discipline of Microbiology, National University of Ireland Galway, Ireland, H91 W2TY;
 <sup>3</sup>Department of Chemistry, Maynooth University, Maynooth, Co., Kildare, Ireland, W23 F2H6; <sup>4</sup>The National Institute for Bioprocessing, Research, and Training (NIBRT), Dublin, Ireland A94 X099;
 <sup>5</sup>Conway Institute, University College Dublin, Belfield, Dublin 4, D04 PR94, <sup>6</sup>School of Natural Science, National University of Ireland Galway, Ireland, H91 W2TY; <sup>7</sup>UCD School of Medicine, College of Health and Agricultural Science (CHAS), University College Dublin (UCD), Dublin, Ireland; D04 PR94, <sup>8</sup>Discipline of Anatomy, National University of Ireland, Galway, Ireland, H91 W5P7.

\*Dr Siobhan McMahon, Discipline of Anatomy, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland. **Email:** siobhan.mcmahon@nuigalway.ie **Telephone:** +353 91492838

<sup>#</sup>SMcM, RF and AP should be considered joint senior author.

Table of contents:

Figure S1: ROIs for image acquisition in Xenopus laevis spinal cord tissue.

Figure S2: Linkage analysis chromatograms of spinal cord glycans.

Figure S3: Changes in the N-glycoprofile in the lesion epicentre of the injured rat spinal cord.

Figure S4: WAX-HPLC profile of undigested N-glycans from the lesion epicentre of the rat spinal cord. Figure S5: Distribution of sialic acid labelled with SNA-I lectin and its relationship to astrocytes and neurons in the rat spinal cord.

Figure S6: Treatment with collagen hydrogel reduces bleeding at the site of injury.

Figure S7: Representative images of GlcNAc distribution in the spinal cord of pre- and postmetamorphic Xenopus laevis.

Figure S8: Representative images of sialic acid distribution in the spinal cord of pre- and postmetamorphic Xenopus laevis.

Figure S9: Representative images of GalNAc distribution in the spinal cord of pre- and postmetamorphic Xenopus laevis.

Figure S10: Representative images of the lesion epicentre of injured tadpole spinal cord.

Table S1: Solvent gradients, flow rate and column temperature over each 30 minute HILIC-UPLC run. Table S2: Solvent gradients, flow rate and column temperature for DMB analysis.

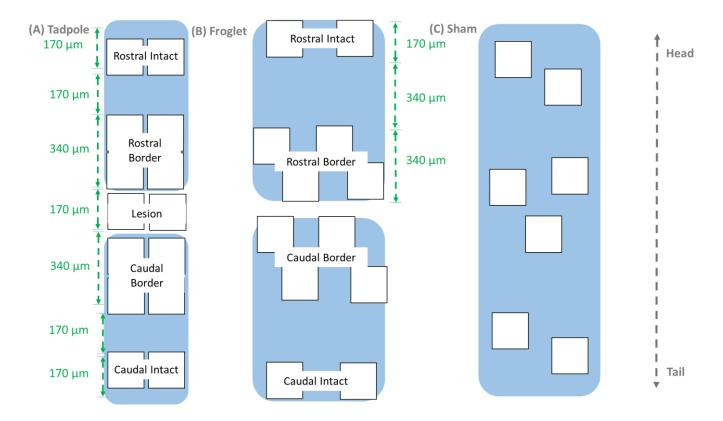
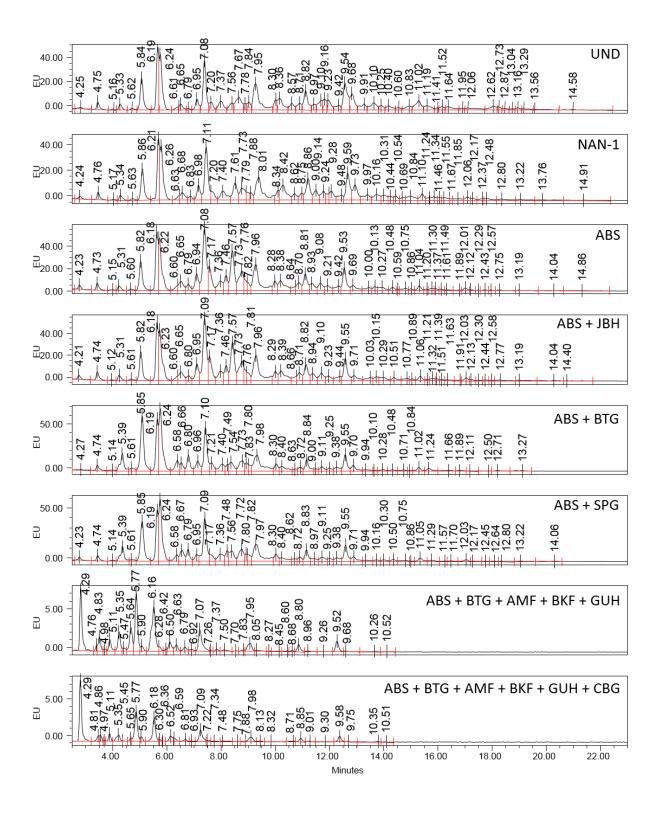
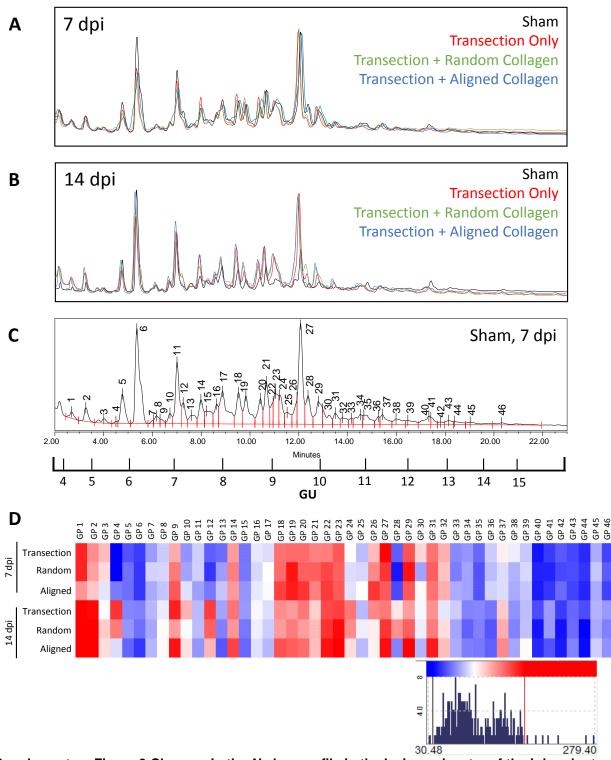

Table S3: Solvent gradients, flow rate and column temperature over each 30 min run on LC-MS. Table S4: Parameters for the mass spectrometer.

Table S5: The significant glycans of each peak determined and translation of these structures to the N-glycoprofile obtained in the SCI study.

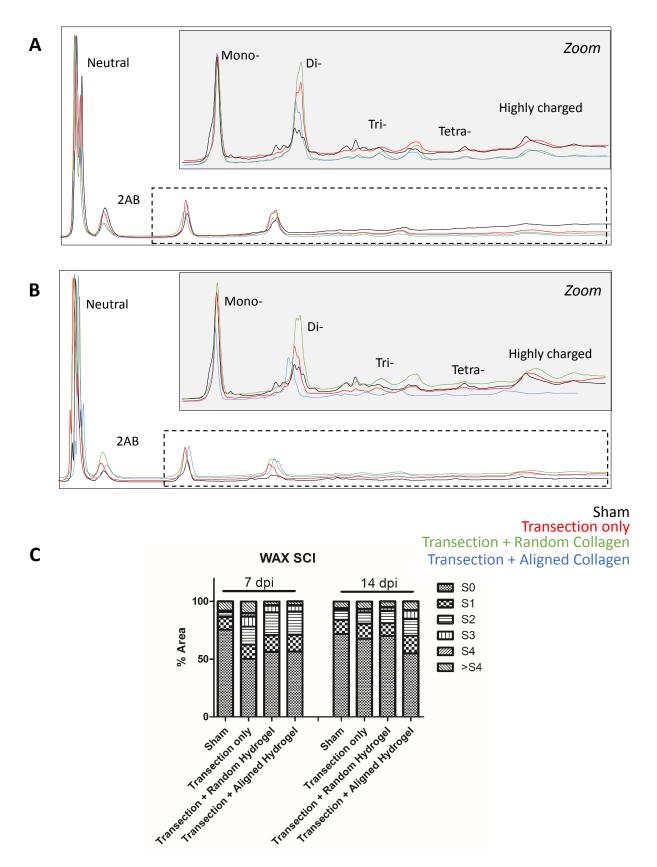
Table S6: Glycan structures identified in each peak of each exoglycosidase digest.


Table S7: Undigested N-glycans analysed using a Waters Xevo G2 Q-TOF mass spectrometer in negative mode.

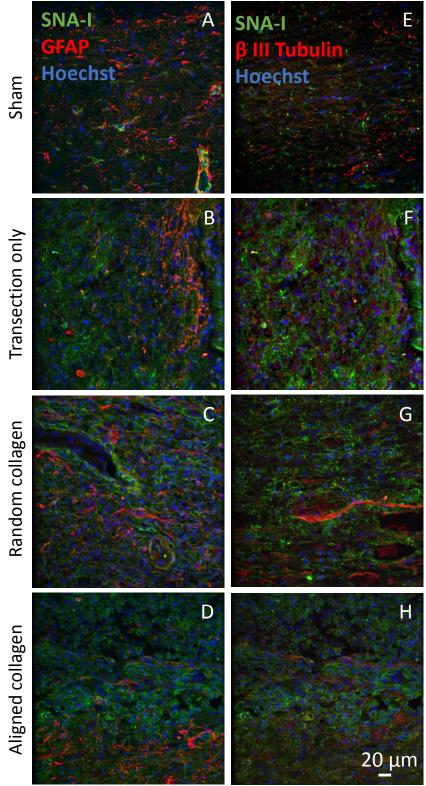
Supplementary Methods: SCI and collagen hydrogel implantation in the rat, SCI in Xenopus laevis, Lectin- and immunohistochemistry, Image acquisition and analysis



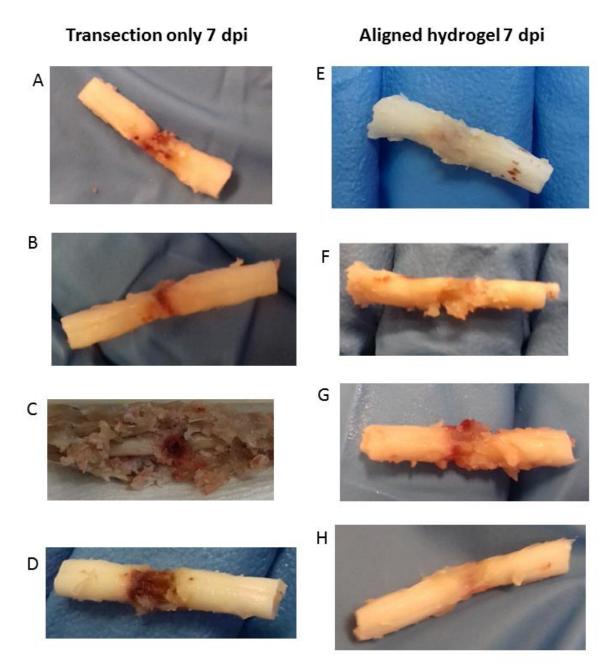

**Supplementary Figures** 


**Supplementary Figure 1: ROIs for image acquisition in** *Xenopus laevis* spinal cord tissue. Images were acquired from 5 ROIs for tadpole (A) and 4 ROIs for froglet (B). In both developmental stages, images for sham animals were acquired from an area at an equivalent level to that for injured animals (C).

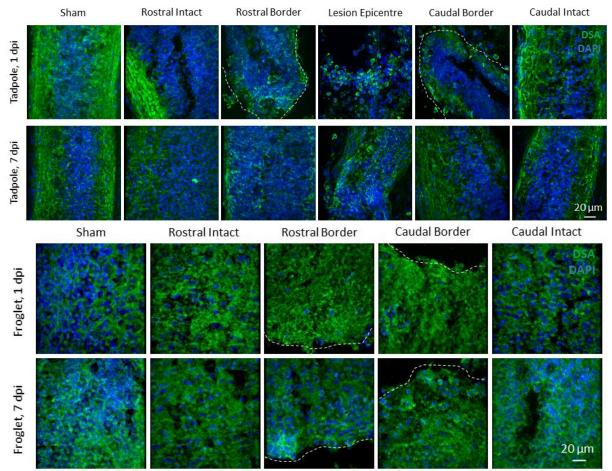



Supplementary Figure 2: Linkage analysis chromatograms of spinal cord glycans. NAN-1 removes  $\alpha(2-3)$  linked sialic acids only, ABS removes  $\alpha(2-3, 6, 8)$  linked sialic acids. JBH is a hexosaminidase which digests both GlcNAc and GalNAc. BTG removes  $\beta(1-3)$  and (1-4) linked galactose while SPG removes only  $\beta(1-4)$ -galactose. CBG removes  $\alpha(1-3)$ , and  $\alpha(1-4)$  linked galactose.

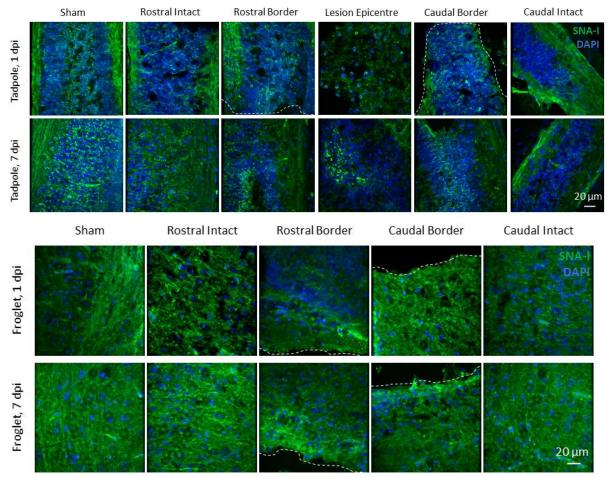



Supplementary Figure 3 Changes in the *N*-glycoprofile in the lesion epicentre of the injured rat spinal cord. (A) Representative profiles for 7 dpi groups, overlaid, (B) representative profiles for 14 dpi groups, overlaid, (C) example of integration, (D) heat map demonstrating the fold change from the sham group at 7 or 14 dpi. Peaks are labelled with the glycan peak (GP) number. GU, glucose units are shown as a scale.

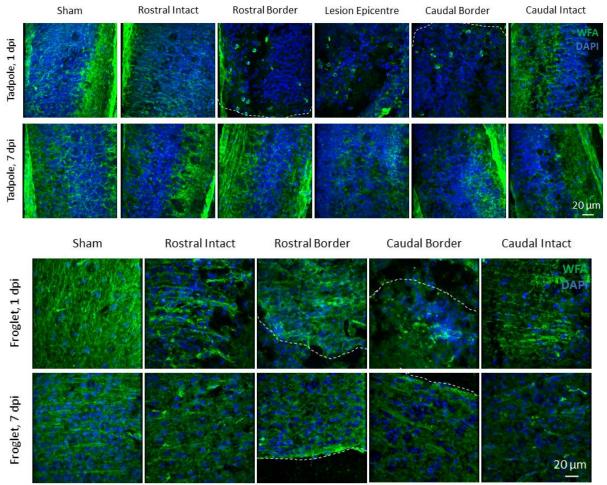



**Supplementary Figure 4** WAX-HPLC profile of undigested N-glycans from the lesion epicentre of the rat spinal cord at (A) 7 and (B) 14 dpi. The charged region is shown highlighted in grey, inset into the full view chromatogram, with dashed line indicating the zoomed region.

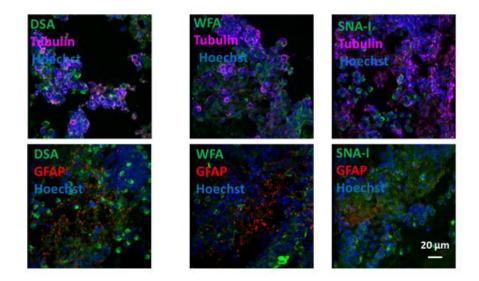



**Supplementary Figure 5** Distribution of sialic acid labelled with SNA-I lectin and its relationship to astrocytes and neurons in the rat spinal cord. Images A-D show association of SNA-I lectin and GFAP positive astrocytes. Images (E-H) show association of SNA-I staining and βIII tubulin positive neurons. (A, E) Sham, (B, F) transection only, (C, G) random collagen hydrogel treated, (D, H) aligned collagen hydrogel treated. Images B-D and G-H were captured at the borders of the injury. No positively stained astrocytes or neurons were seen in the lesion epicentre. No co-localisation was observed between SNA-I and either marker. All images are from the spinal cord at 7 dpi. Scale bar 20 μm.




**Supplementary Figure 6: Treatment with collagen hydrogel reduces bleeding at the site of injury.** Images were captured at the time of tissue dissection, post fixation in 4% PFA. In the transection only group (A-D) there appeared to be a large blood clot at the site of injury. In those animals treated with aligned collagen hydrogel (E-H) there was much less evidence of bleeding. Dpi, days post injury.




**Supplementary Figure 7**: Representative images of GlcNAc distribution in the spinal cord of pre- and post-metamorphic *Xenopus laevis* at 1 and 7 days following SCI. FITC-conjugated DSA lectin was used to label GlcNAc (green). Nuclei were labelled with Hoechst (blue). The edge of the lesion is outlined with a white dashed line.



**Supplementary Figure 8**: Representative images of sialic acid distribution in the spinal cord of preand post-metamorphic *Xenopus laevis* at 1 and 7 days following SCI. FITC-conjugated SNA-I lectin was used to label sialic acid (green). Nuclei were labelled with Hoechst (blue). The edge of the lesion is outlined with a white dashed line.



**Supplementary Figure 9**: Representative images of GalNAc distribution in the spinal cord of pre- and post-metamorphic *Xenopus laevis* at 1 and 7 days following SCI. FITC-conjugated WFA lectin was used to label GalNAc (green). Nuclei were labelled with Hoechst (blue). The edge of the lesion is outlined with a white dashed line.



Supplementary Figure 10: Representative images of the lesion epicentre of injured tadpole spinal cord at 1 dpi. All lectins are FITC conjugated and shown in green, DSA labels GlcNAc, WFA labels GalNAc and SNA-I labels sialic acid. Tubulin was used as a neuronal marker and is shown in magenta, GFAP was used as an astrocytic marker and is shown in red. All nuclei were stained with Hoechst (blue). No association was seen between either marker with any of the three lectins studied, in any region of interest, in either tadpole or froglet tissue. Representative images from the tadpole lesion site at 1 dpi are shown here for illustration. Scale bar for all images =  $20 \,\mu m$ .

# **Supplementary Tables**

Supplementary Table 1: Solvent gradients, flow rate and column temperature over each 30 minute HILIC-UPLC run. Solvent A, 50 mM ammonium formate pH 4.4, Solvent B, 100% acetonitrile.

| Time (mins) | % A | % B | Flow rate (ml/min) | Temperature (°C) |
|-------------|-----|-----|--------------------|------------------|
| 0.00        | 30  | 70  | 0.561              | 40               |
| 24.81       | 47  | 53  | 0.561              | 40               |
| 25.50       | 70  | 30  | 0.561              | 40               |
| 26.25       | 70  | 30  | 0.300              | 40               |
| 26.55       | 30  | 70  | 0.300              | 40               |
| 28.50       | 30  | 70  | 0.400              | 40               |
| 30.00       | 30  | 70  | 0.561              | 40               |

Supplementary Table 2: Solvent gradients, flow rate and column temperature for DMB analysis. Solvent A, acetonitrile:methanol:water 9:7:84 (v/v); solvent B, acetonitrile.

| Time (min) | Flow (mL/min) | %A  | %В | Temperature ( <sup>0</sup> C) |
|------------|---------------|-----|----|-------------------------------|
| 0.0        | 0.25          | 100 | 0  | 30                            |
| 7.0        | 0.25          | 100 | 0  | 30                            |
| 7.5        | 0.25          | 10  | 90 | 30                            |
| 8.0        | 0.25          | 10  | 90 | 30                            |
| 8.5        | 0.25          | 100 | 0  | 30                            |
| 15.0       | 0.25          | 100 | 0  | 30                            |

Supplementary Table 3: Details of solvent gradients, flow rate and column temperature over each 30 min run on LC-MS. Solvent A, 50 mM ammonium formate pH 4.4; solvent B, 100% acetonitrile.

| Time (min) | % A | % B | Flow rate (ml/min) | Temperature (°C) |
|------------|-----|-----|--------------------|------------------|
| 0.00       | 28  | 72  | 0.15               | 60               |
| 31.00      | 43  | 57  | 0.15               | 60               |
| 32.00      | 45  | 55  | 0.15               | 60               |
| 36.00      | 28  | 72  | 0.15               | 60               |
| 40.00      | 28  | 72  | 0.15               | 60               |

Supplementary Table 4: Parameters for the mass spectrometer.

| Capillary voltage       | 1.8 kV     |
|-------------------------|------------|
| Sampling cone           | 50         |
| Extraction cone         | 4          |
| Source temperature      | 120 °C     |
| Desolvation temperature | 400 °C     |
| Cone gas flow           | 40 L/hour  |
| Desolvation gas flow    | 600 L/hour |

Supplementary Table 5: The significant glycans of each peak determined in the characterisation study, and translation of these structures to the *N*-glycoprofile obtained in the SCI study. In the case where one glycan peak in the SCI study translates to multiple peaks from the characterisation study, the glycan with the highest overall abundance was chosen and is marked with an asterisk (\*). The GU values shown for the SCI study are an average for the peak across all experimental animals. Dark blue squares, GlcNAc; green circles, mannose; yellow circles, galactose; red triangles, fucose; magenta diamonds, Neu5Ac type sialic acid; light blue diamonds, Neu5Gc type sialic acid. Unless otherwise stated, all galactose residues are in  $\beta(1-4)$  linkage, all outer arm fucose are in  $\alpha(1-3)$  linkage, core fucose residues are in  $\alpha(1-6)$  linkage, rules. Bisecting GlcNAc is  $\beta(1-4)$  linked to the central mannose. G(\*) indicates a galactose residue which has been modified with an unidentified chemical group causing the A1G(\*)1Ga1 structure in the GUH digest to elute earlier than expected. For the complete list of all structures and how they digest with exoglycosidase enzymes, see Supplementary Table 6. For mass data for these structures, see Supplementary Table 7.

| 33)      | 16)  | 75)      | 1 (4.25) | Glycan Peak (GU), Characterisation |
|----------|------|----------|----------|------------------------------------|
| 0.89     | 0.16 | 1.02     | 0.31     | Peak %Area, Characterisation       |
| 3 (5.26) |      | 2 (4.72) | 1 (4.25) | Glycan Peak (Average GU), SCI      |
| FA1*     | M4   | FM3      | МЗ       | Structure                          |
|          |      |          |          |                                    |

|           |      |           | M4A1             |                                                                                                                               |
|-----------|------|-----------|------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 5 (5.62)  | 0.31 | 4 (5.63)  | FM4              |                                                                                                                               |
| 6 (5.84)  | 4.71 | 5 (5.80)  | FA2              |                                                                                                                               |
| 7 (6.19)  | 6.45 |           | M5               |                                                                                                                               |
| 8 (6.24)  | 8.05 | 6 (6.17)  | FA3*             |                                                                                                                               |
| 9 (6.61)  | 0.50 | 7 (6.57)  | A4               |                                                                                                                               |
| 10 (6.65) | 1.03 | 8 (6.63)  | FM5              |                                                                                                                               |
| 11 (6.79) | 0.29 | 9 (6.77)  | A2G2             |                                                                                                                               |
| 12 (6.95) | 1.75 | 10 (6.94) | A3F(2)1G1S(2Ac)1 | $\begin{array}{c} 2Ac \\ \bullet \\ $ |
| 13 (7.08) | 7.10 | 11 (7.08) | M6               |                                                                                                                               |

|           |      | (         | FA3G1                                                                   |  |
|-----------|------|-----------|-------------------------------------------------------------------------|--|
| 14 (7.20) | 1.41 | 12 (7.19) |                                                                         |  |
| 15 (7.37) | 2.14 | 13 (7.38) | M6                                                                      |  |
| 16 (7.56) | 1.44 | 14 (7.55) | M6A1                                                                    |  |
| 17 (7.67) | 3.66 | 15 (7.69) | FM4A1F(2)1G1                                                            |  |
| 18 (7.78) | 0.81 |           | M7*                                                                     |  |
|           | -    |           | FA2F2G1 (both isomers with<br>outer arm fucose F(2) and<br>F(3) linked) |  |
| 19 (7.84) | 1.20 | 16 (7.85) | FA2F2G(SO4 <sup>2-</sup> )1                                             |  |
| 20 (7.95) | 7.64 | 17 (7.97) | M7*                                                                     |  |

|           |      |           | FA3F(2)3G1S(2Ac)1            | 2Ac $a2$ $a2$ $a2$ $a2$ $a2$ $a2$ $a2$ $a2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|------|-----------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21 (8.30) | 1.45 |           | A4G2                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 22 (8.36) | 3.00 | 18 (8.27) | FA3G1S(6)1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           |      |           | A3F2G(SO4 <sup>-2</sup> )1G1 | SO <sub>4</sub> <sup>2-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 23 (8.57) | 1.44 | 19 (8.42) | FA3G1S(3)2                   | $\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}^{\mathbf{\alpha}$ |
| 24 (8.71) | 1.40 | 20 (8.70) | A3BG3                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 25 (8.82) | 3.79 | 21 (8.82) | M8                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| 26 (8.97) | 0.96 | 22 (8.95)    | M8                |              |
|-----------|------|--------------|-------------------|--------------|
| 26        | 0.   | 22           |                   |              |
| 10)       |      | <b>)</b> 2)  | FA2G2Ga2          | <u>ο</u> αο  |
| 27 (9.10) | 1.93 | 23 (9.02)    |                   |              |
|           |      |              |                   | α3           |
| 16)       |      | (60          | FA2G2S(3)2        |              |
| 28 (9.16) | 1.81 | 24 (9.09)    |                   |              |
|           |      |              | FA3F1G3S(2Ac)1    | · · · · ·    |
|           |      |              |                   |              |
|           |      |              |                   |              |
|           |      |              |                   |              |
| 23)       |      | 5 <b>6</b> ) |                   |              |
| 29 (9.23) | 1.86 | 25 (9.26)    | FM5A1G1S(6)1      |              |
|           |      |              |                   | <b>A</b>     |
| 12)       |      | (91          | A2F(2)2G1Ga1S(6)1 |              |
| 30 (9.42) | 1.22 | 26 (9.46)    |                   |              |
|           |      |              |                   | •-• <b></b>  |
| 31 (9.54) | 1    | 27 (9.54)    | M9                |              |
| 31 (      | 5.54 | 27 (         |                   |              |
|           |      |              | M9                |              |
|           |      |              |                   |              |
|           |      |              |                   | α6 <b>ΕΟ</b> |
| 8)        |      | 1)           | A3G2S(6)2         |              |
| 32 (9.68) | 3.23 | 28 (9.71)    | 10020(0)2         |              |
| 3         | с.   | Ñ            |                   | L —          |

|            |      |            | FA3F3G(SO4 <sup>-2</sup> )1G1  | SO <sub>4</sub> <sup>2-</sup>                                                                                                                                                                                                                                                                                                               |
|------------|------|------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 33 (9.91)  | 1.71 | 29 (9.93)  | A3F(2)1G(*)1G1Ga1              | $\mathbf{a}^{2} = \begin{bmatrix} \mathbf{a}^{\mathbf{a}} \\ \mathbf{a}^{\mathbf{a}} \\ \mathbf{a}^{\mathbf{a}} \end{bmatrix} \begin{bmatrix} \mathbf{a}^{\mathbf{a}} \\ \mathbf{a}^{\mathbf{a}} \end{bmatrix} \begin{bmatrix} \mathbf{a}^{\mathbf{a}} \\ \mathbf{a}^{\mathbf{a}} \end{bmatrix}$                                            |
| 34 (10.10) | 2.23 | 30 (10.10) | FA2G2Sg(3)1S(6)1               | $\mathbf{a}^{\mathbf{a}}_{\mathbf{a}} = \begin{bmatrix} \mathbf{a}^{\mathbf{a}}_{\mathbf{a}} \\ \mathbf{a}^{\mathbf{a}}_{\mathbf{a}} \end{bmatrix}$                                                                                                                                                                                         |
| 35 (10.25) | 1.01 | 31 (10.32) | M9Glc1                         |                                                                                                                                                                                                                                                                                                                                             |
|            |      |            | FA2F1G1Sg(6)1S(8)1             |                                                                                                                                                                                                                                                                                                                                             |
|            |      |            | or<br>FA2F1G1S(6)1Sg(8)1<br>or |                                                                                                                                                                                                                                                                                                                                             |
| 36 (10.40) | 1.25 | 32 (10.54) | FA2F1G1Sg(6)1S(6)1             | $\mathbf{a}^{\mathbf{a}6} = \begin{bmatrix} \mathbf{a}_{\mathbf{a}\mathbf{b}} \\ \mathbf{a}_{\mathbf{a}\mathbf{b}} \end{bmatrix} \begin{bmatrix} \mathbf{a}_{\mathbf{a}\mathbf{b}} \\ \mathbf{a}_{\mathbf{a}\mathbf{b}} \end{bmatrix} \begin{bmatrix} \mathbf{a}_{\mathbf{a}\mathbf{b}} \\ \mathbf{a}_{\mathbf{a}\mathbf{b}} \end{bmatrix}$ |
| 37 (10.60) | 0.58 | 33 (10.71) | FA3F(2)3G3                     |                                                                                                                                                                                                                                                                                                                                             |

|            |      |            | FA3G(SO4 <sup>-2</sup> )1G2Lac2                                                      |                                                                                                                                                                                 |
|------------|------|------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 38 (10.83) | 1.25 | 34 (10.91) | FA2F2G2S(6)2                                                                         |                                                                                                                                                                                 |
|            |      |            | A2F(2)2G1Ga1Sg(3)2                                                                   | $ \overset{\alpha 3}{\diamond} \overset{\alpha 3}{=} \left[ \begin{array}{c} \alpha \\ \alpha $ |
|            |      |            | FA3BF3G3                                                                             |                                                                                                                                                                                 |
| 39 (11.02) | 2.65 | 35 (11.03) | FA3F2G3S(2Ac)1                                                                       |                                                                                                                                                                                 |
| 40 (11.19) | 1.51 | 36 (11.34) | FA4F3G3                                                                              |                                                                                                                                                                                 |
| 41 (11.41) | 0.33 | 37 (11.44) | Sialylated A3 structures with<br>or without fucose in core or<br>outer arm positions | $1-3x \begin{bmatrix} 0-3x \\ 2-3x \end{bmatrix} \begin{bmatrix} 0-3x \\ 0-1x \end{bmatrix}$                                                                                    |

| 42 (11.52) | 0.78 |            | FA2G2S(6)2S(8)2<br>or<br>FA2G2S(6)4* |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|------|------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 43 (11.64) | 1.26 | 38 (11.80) | A3F(2)2F(3)1G1G(*)1Ga1               | $ \begin{array}{c} \mathbf{\alpha}^{\alpha 3} \\ \mathbf{\alpha}^{\alpha 2} \\ \mathbf{\alpha}^{\alpha 2} \end{array} \begin{bmatrix} \mathbf{\alpha}^{\ast} \\ \mathbf{\alpha}^{\ast} \\ \mathbf{\alpha}^{\ast} \end{bmatrix} \begin{bmatrix} \mathbf{\alpha}^{\ast} \\ \mathbf{\alpha}^{\ast} \\ \mathbf{\alpha}^{\ast} \\ \mathbf{\alpha}^{\ast} \end{bmatrix} \begin{bmatrix} \mathbf{\alpha}^{\ast} \\ \mathbf{\alpha}^{\ast} \\ \mathbf{\alpha}^{\ast} \\ \mathbf{\alpha}^{\ast} \end{bmatrix} \begin{bmatrix} \mathbf{\alpha}^{\ast} \\ \mathbf{\alpha}^{\ast} \\ \mathbf{\alpha}^{\ast} \\ \mathbf{\alpha}^{\ast} \\ \mathbf{\alpha}^{\ast} \\ \mathbf{\alpha}^{\ast} \end{bmatrix} \begin{bmatrix} \mathbf{\alpha}^{\ast} \\ \mathbf{\alpha}^{\ast} $ |
| 44 (11.95) | 0.45 |            | FA4F1G(SO4 <sup>-2</sup> )1G2Lac2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |      |            | A4BG3Sg(3)1Sg(6)1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |      |            | FA3F2G2Sg(6)1S(3)1                   | $\begin{array}{c} \alpha 3 \\ \alpha 6 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 45 (12.06) | 1.36 | 39 (12.03) | A4BF1G4Sg(3)1                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| 46 (12.62) | 1.34 | 40 (12.55) | FA4F2G(SO4-2)1G2Lac2                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|------|------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47 (12.73) | 0.55 | 41 (12.61) | FA4F4G(SO4-2))1G2GlcNAc3                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 48 (12.87) | 0.45 | 42 (12.85) | FA3F(2)3G1G(*)1Ga1Sg(3)1                              | $\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}_{\mathbf{a}}}}}}}}}}$ |
| 49 (13.04) | 0.31 | 43 (13.03) | FA3F(2)3G1G(*)1Ga1Sg(3)1<br>(isomer of previous peak) | $\mathbf{a}^{\alpha} = \begin{bmatrix} \alpha^{2} \\ \alpha^{2} \\ \alpha^{2} \\ \alpha^{2} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 50 (13.16) | 0.51 | 44 (13.19) | FA4F3G(SO4-2)1G3GlcNAc4*                              | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| 51 (13.29)                | 0.53 |            | FA4F4G4S(6)1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                           |                         |
|---------------------------|------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------|-------------------------|
| 52 (13.56)                | 0.70 | 45 (13.59) | A3F(2)2G1G(*)1Ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\mathbf{a}^{\underline{\alpha}6} = \begin{bmatrix} \mathbf{a}^2 \\ \mathbf{a}^2 \\ \mathbf{a}^2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{a}^2 \\ \mathbf{a}^2 \\ \mathbf{a}^2 \end{bmatrix} \begin{bmatrix} \mathbf{a}^2 \\ \mathbf{a}^2 \\ \mathbf{a}^2$ |    |                           |                         |
| 53 (14.58)                | 0.74 | 46 (14.48) | A4F1G4S(6)4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \alpha \\ \alpha $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |                           |                         |
|                           |      |            | GlcNAc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mannose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | Galactose                 | Fucose                  |
| Monosaccharide<br>symbols |      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 0                         |                         |
|                           |      |            | Sialic acid<br>(Neu5Ac)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sialic acid<br>(Neu5Gc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | Sulphate (o<br>galactose) | Acetyl (on sialic acid) |
|                           |      |            | <b>♦</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\diamond$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | SO4 <sup>2-</sup>         | Ac                      |
| Conventional<br>linkage   |      |            | $\begin{array}{c} \alpha 3 \end{array} \begin{bmatrix} \beta 4 & \beta 2 \\ \alpha 6 \\ \beta 4 & \beta 2 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \beta 4 & \beta 4 \\ \alpha 6 \\ \alpha 3 \end{bmatrix} \begin{bmatrix} \alpha 6 \\ \alpha 6 \\$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | β4 | β6<br>β4                  |                         |

## **Supplementary Methods**

#### SCI and collagen hydrogel implantation in the rat

Adult female Sprague-Dawley rats of weight 250 – 300 g (Charles River) were anaesthetized with isofluorane (Iso-vet, Chanelle group). The dorsum of the animal was shaved and cleaned with chlorhexidine (Hibiscrub). Surgery was performed on a heated table using aseptic technique.

A laminectomy at T9 was carried out to expose the spinal cord. At this stage, the wound was closed for animals designated as sham. To completely transect the spinal cord, a #15 scalpel (Swann-Morton) was passed through the spinal cord. For those animals receiving collagen hydrogel treatment, the hydrogel was trimmed to fit the wound and implanted immediately following transection of the cord into the resulting gap. Aligned hydrogels were implanted so that the fibers ran parallel to the direction of the cord. The wound was closed by suturing the muscle and skin in separate layers.

Post-operatively buprenorphine was administered for analgesia at 0.05 mg/kg; drinking water was supplemented with Dioralyte, animals were monitored twice daily for signs of infection, health and distress. Bladders were manually expressed twice daily. In the event of urinary infection, enrofloxacin was administered at 10 mg/kg.

At either 7 or 14 days post-injury (dpi) animals were euthanized by an overdose of sodium pentobarbitone. Transcardial perfusion was performed with 1X PBS. For those animals designated for glycomic analysis, the injured portion of the spinal cord was immediately dissected out, snap-frozen on dry ice and stored at -80 °C. Three regions of interest (ROIs) were collected: the lesion epicenter (10 mm of tissue centered on the lesion), and two 10 mm portions of tissue rostral or caudal to the injury. For animals designated for immunohistochemistry transcardial perfusion fixation with 4% paraformaldehyde (PFA) diluted in 1X PBS was performed. The injured segment of the spinal cord was removed and cryoprotected in 30% sucrose at 4 °C. Tissue was embedded in optimal cutting temperature (OCT) medium (Sakura), frozen in liquid nitrogen-cooled 2-methylbutane and cryosected at 20 µm thickness.

#### Collagen hydrogel preparation

Bovine type I collagen was dissolved in acetic acid at a concentration of 4 mg/ml and dialyzed. Aligned collagen fibers were formed by placing 300  $\mu$ L collagen solution on a hydrophobic Teflon surface, and passing an electric current through for 15 minutes at 6 V. Collagen fibrils migrated to their isoelectric point, forming one continuous fiber of approximately 350  $\mu$ m diameter. The collagen fiber was placed in phosphate buffered saline (PBS) overnight. Approximately 12-14 such fibers were arranged together to form the aligned collagen hydrogel for implantation into the transected rat spinal cord. The random collagen hydrogel was prepared from the same dialyzed solution. A drop of 1 mL was incubated overnight in PBS and was then ready for implantation into the spinal cord.

#### SCI in Xenopus laevis

Embryos were obtained following *in vitro* fertilization of oocytes and grown in-house until reaching Nieuwkoop and Faber (NF) stage 50 (pre-metamorphic tadpoles) or NF stage 66 (post-metamorphic froglets) (Nieuwkoop, Laboratory, & Faber, 1956). At all times, *Xenopus laevis* embryos were kept in 0.1X modified Barth solution (MBS). Animals were maintained at room temperature on a 12-hour light-dark cycle.

Stage 50 tadpoles were anaesthetized by immersion in 0.1% tricaine methanesulfonate (MS222, Fisher Scientific) diluted in 0.1X MBS for approximately 30 seconds or until loss of reflex responses. Excess MS222 was washed off in 0.1X MBS before immobilisation in plasticine. At the level of the sixth to the seventh myotome, the skin, muscle and dura were opened individually with fine forceps (Dumont #5, Fine Science Tools) to expose the spinal cord. The tip of a 25G needle (BD) was inserted ventrally to the spinal cord and pulled dorsally in one smooth movement, separating the spinal cord into two separate pieces. For sham injury, tadpoles were anaesthetized and immobilized in plasticine. Skin and muscle were opened at myotome six to seven as above, but spinal cord and dura mater were left intact.

Stage 66 froglets were anaesthetized by immersion in 0.5% MS222 for approximately 30 seconds or until loss of reflex responses. Excess MS222 was washed off in 0.1X MBS before immobilisation in plasticine. An incision through the skin and underlying connective tissue was made using a #11 scalpel (Swann Morton). A laminectomy was performed at the sixth vertebra using a Dumont #5 forceps (Fine Science Tools). The spinal cord was loosened from the surrounding vertebra and transected with fine scissors (Fine Science Tools). Complete transection was confirmed by passing the tip of the forceps

through the resulting gap in the tissue. To perform sham injury, froglets were anaesthetized and an incision made in the skin and connective tissue along the length of the spine as above. A laminectomy of the sixth vertebra was performed without touching the spinal cord.

Post-operatively both tadpoles and froglets were individually housed in 0.1X MBS supplemented with penicillin (10,000 units per ml), streptomycin (10 mg/ml) and gentamycin (2.5 mg/ml) (Sigma Aldrich) until the desired time-point. Feeding with a solution of finely ground nettle tea was re-introduced two days post-injury. Solutions were changed and health monitoring was carried out twice daily.

At either 1 or 7 dpi, euthanasia was carried out for both tadpoles and froglets by anesthetic overdose. Animals were immersed in 1% MS222 until cessation of heartbeat, and death was confirmed by the destruction of the brainstem region. Following euthanasia, the entire tadpole or the isolated vertebral column of froglets was fixed by immersion in 4% PFA in 1X PBS at 4  $^{\circ}$ C for 24 hours. Vertebral columns were cryoprotected in 30% sucrose. Tissue was placed in a small agarose mold surrounded by OCT and frozen in liquid nitrogen chilled 2-methylbutane. Tissue was stored at -80  $^{\circ}$ C and cryosectioned at 20 µm thickness.

### Lectin- and immunohistochemistry

Rat or *Xenopus* tissue sections were brought to room temperature and washed in Tris buffered saline (TBS) containing 0.05% Triton-X-100 (TBS-T). Non-specific binding was blocked with a 2% solution of periodate treated bovine serum albumin (BSA) in TBS for one hour at room temperature. Following three washes in TBS-T, a solution of FITC-conjugated lectin in TBS-T was applied for sixty minutes at room temperature. Lectins in this study were purchased from EY labs and included SNA-I which binds terminal  $\alpha$ (2-6) sialic acid (10 µg/ml), DSA which binds terminal *N*-acetyl glucosamine (GlcNAc, 5 µg/ml), and WFA which binds terminal *N*-acetyl galactosamine (GalNAc, 10 µg/ml). Sections were washed three times in TBS before incubating for 60 minutes at room temperature with primary antibodies (mouse anti-CD11b (EMD Millipore, 1:200), rabbit anti-GFAP (Dako, 1:400) and mouse anti- $\beta$ -III Tubulin (Millipore, 1:200)) diluted in TBS-T. Sections were washed with TBS and incubated in secondary antibodies for 60 minutes at room temperature (donkey anti-mouse AF647 or donkey anti-rabbit AF594, Invitrogen) diluted 1:1000 in TBS-T. Secondary antibodies were washed off with TBS washes, counterstained with Hoechst (Invitrogen, 1:200) for ten minutes before applying Fluoromount (Sigma Aldrich) and coverslips.

#### Image acquisition and analysis

All images were acquired with an Andor Revolution spinning disk confocal microscope (Andor Technology Ltd) at 40x magnification and viewed and analyzed in Fiji (version 1.50d, National Institute of Health, USA. Java 1.60\_24 (64-bit)).

For *Xenopus* experiments, images were acquired from five ROIs in tadpoles and four ROIs in froglets. The lesion epicenter could not be stabilized during froglet tissue processing and was lost. Two to four images were acquired per ROI (Supplementary Figure 1).

Image analysis was performed in Fiji, employing a stereological approach together with Fiji's threshold and integrated density functions. Integrated density was chosen to incorporate both area and intensity of staining. A uniform threshold was used for all images for any given lectin. One optical slice was analyzed per image. The average per animal for each region was used for statistical analysis.

# References

Nieuwkoop, P., Laboratory, H., & Faber, J. (1956). Normal Table of Xenopus Laevis-Daudin. A Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis. Edited by PD Nieuwkoop and J. Faber. Issued by the Hubrecht Laboratory, Utrecht. [With a Bibliography.]: North-Holland Publishing Company.

- Royle, L., Campbell, M. P., Radcliffe, C. M., White, D. M., Harvey, D. J., Abrahams, J. L., . . . Dwek, R. A. (2008). HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. *Anal Biochem*, *376*(1), 1-12. doi:10.1016/j.ab.2007.12.012
- Samal, J., Saldova, R., Rudd, P. M., Pandit, A., & O'Flaherty, R. (2020). Region-Specific
   Characterization of N-Glycans in the Striatum and Substantia Nigra of an Adult Rodent Brain.
   Anal Chem. doi:10.1021/acs.analchem.0c01206