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S1 Kernels

Table S1 shows the kernels tested with the Deep Kernel Learning (DKL) regres-
sor and to create meta-learned Gaussian Processes (GPs).

Kernel kθ(x, x
′) θ Description

Squared
exponen-
tial (SE)

σ2 exp
(
− (x−x′)2

2ℓ2

)
θ = [σ, ℓ]

σ controls the
variance of the
kernel and ℓ is the
length-scale param-
eter (determining
the typical length
that we should
move in the input
space to observe a
significant change
in the function).

Matérn

σ2 21−ν

Γ(ν)

(√
2νd

)ν
Kν

(√
2νd

)
with d = (x−x′)2

2ℓ2 and where
Kν is the modified Bessel
function

θ = [σ, ℓ]

Parameters have
the same meaning
as with SE kernel.
Note that ν is not
part of θ and hence
it is not optimized.

Linear σ2x · x′ θ = [σ]
σ controls the vari-
ance of the kernel.

Polynomial (x · x′ + c)d θ = [c]

c is an offset param-
eter. Note that d
is not part of θ and
hence it is not opti-
mized.

Spectral
mixture

Q∑
q=1

wqe
−2π2τ2vq cos (2πτµq)

with τ = x− x′

θ = [w,µ,v]
with
w = [wq]

Q
q=1,

µ = [µq]
Q
q=1,

v = [vq]
Q
q=1

The kernel is a mix-
ture of Q Gaussians
with means µ, vari-
ances v and weights
w.

Table S1: Kernels tested with DKL and meta-learned GPs.

S2 Training and validation procedures for reten-
tion times prediction

Figure S1 summarizes the training and validation procedures for all tested re-
tention times predictors, with a focus on the blending approach.

2



Holdout set

Base 2
Train

Predict

Holdout 
predictions

Base 3
Train

Predict

Base 1
Train

Predict

Holdout 
predictions

Holdout 
predictions

Meta
Train

Holdout set

Holdout set
Outer resampling

Estimate 
performance 

Inner resampling
Parameter tuning

Use best 
parameters

Use best 
parameters

Figure S1: Outline of the training and validation procedures. Outer cross-
validation estimates performance by averaging the results on the light boxes.
Each dark box is used to create an inner cross-validation loop which is then
employed to tune the model parameters. Again, dark boxes are used to train
and light boxes are used to test parameter settings. The figure uses 3 and 4
folds for the outer and inner loops for simplicity. The training procedure for the
blender is outlined. A holdout set (green box) is created using a small subset
of the training set. The remaining training data (red box) is used to train the
base-regressors, which then make predictions on the holdout set. Predictions
are merged together to create a new dataset, which is used to train the meta-
regressor.

S3 Influence of the number of meta-tasks on
meta-learned Gaussian Processes

We have evaluated how the number of meta-tasks may influence the perfor-
mance of the best model from Section 3.2.2. To that end, we used a similar
experimental setup to that described in Section 3.2.1, but with a few adapta-
tions.The MEDian Absolute Error (MEDAE) was used as metric for the experi-
ment, since it is a robust statistic. For a given target Chromatographic Method
(CM), the number of meta-tasks was increased from 1 to 23 (since PredRet
database contains 24 different CMs) in steps of 4 or 5. To increase the number
of meta-tasks, we considered adding new ones randomly. However, this resulted
in very noisy curves without any clear relation between the number of meta-
tasks and MEDAE. A possible explanation for this is that, when adding new
tasks, some may be similar to the target CM (and the prior benefits from learn-
ing from them), while others may be dissimilar (hence not helping the target
CM in learning a good prior).

To tackle the issue, we first computed a similarity score between all tasks.
A GP with constant mean and polynomial kernel was fit to each CM (no meta-
learning involved) and the euclidean distance between the fitted parameters
was computed. We then tested two approaches to increase the number of meta-
tasks. In the first approach, we started with the meta-task most similar to
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the target-task and added new meta-tasks in decreasing order of similarity. In
the second approach, we started with the most dissimilar meta-task and added
meta-tasks with increasing similarity. After meta-learning on the current active
set of meta-tasks, performance on the target-tasks was evaluated 10 times with
different target training data and target test data. We focused on the low data
regime using only 10 target training points.

Results in Figure S2 show the influence of the number of meta-tasks on the
MEDAE for several target CMs. The two colors correspond to the strategy
followed to add new meta-tasks. When meta-learning starts with the most
similar meta-task and adds new meta-tasks in decreasing order of similarity,
the MEDAE can be deemed as almost flat (red curve). Hence, meta-learning
can learn from a single meta-task provided that it is similar enough to the target-
task. On the other hand, when meta-learning starts with the most dissimilar
meta-task and adds meta-tasks with increasing similarity, MEDAE decreases
with the number of meta-tasks except for the FEM orbitrap plasma CM, where
the pattern is almost flat. This may be because FEM orbitrap plasma can
be considered as an “average CM”. This is illustrated in Figure 1 of the main
manuscript. FEM orbitrap plasma is an “average CM” in the sense that its
projection curve lies in the middle of the projection space. (On the other hand,
both FEM long and LIFE old show projection curves that lie above and below
most projection curves, respectively.) Hence, even when meta-learning from the
most dissimilar task, the resulting prior is close to the optimal one for FEM
orbitrap plasma, thus showing good performance.
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Figure S2: Influence of the number of meta-tasks on the MEDAE for several
target CMs. The two colors correspond to the strategy followed to add new
meta-tasks. Red color starts with the most similar task and adds meta-tasks in
decreasing order of similarity. Blue color starts with the most dissimilar task
and adds meta-tasks in increasing order of similarity.
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Figure S2 shows that the similarity between meta and target tasks is more
relevant than the number of meta-tasks. However, since the target task is not
known in advance, in practice it would be best to use as many meta-tasks as
possible to ensure that at least one of them is similar to the target-task.

S4 MEDAE in retention time prediction

The performance of the models developed for Retention Time (RT) prediction
is summarised in Figure 5 of the main document, which shows the Mean Ab-
solute Error (MAE) of all machine learning algorithms (see Section 4.1). As
a complement to Figure 5, Figure S3 shows the MEDAE results for the same
algorithms. Note that the behavior is qualitatively the same as in Figure 5, and
hence Figure S3 was not included in the main document.
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Figure S3: MEDAE results in seconds. See Figure 5 in the main document for
an explanation of the legend.

S5 MEDAE for projections between CMs

Figure 7 in the main document shows the MAE for different projection methods
when mapping predicted RTs to different CMs (see Section 4.2.2). Figure S4
shows the MEDAE for the same projection methods. Note that the behavior is
qualitatively the same as in Figure 7, and hence Figure S4 was not included in
the main document.

5



LIFE_old RIKEN

FEM_long FEM_orbitrap_plasma

10 20 25 30 40 50 10 20 25 30 40 50

10 20 25 30 40 50 10 20 25 30 40 50

60

70

80

90

100

110

4.5

5.0

5.5

6.0

6.5

200

225

250

275

8

12

16

20

24

No. training points

M
E

D
A

E
 (

s)

method

GAM

GP

PLM

RLM

Figure S4: MEDAE for projections between the predicted RTs and different
CMs when using different projection models. See Figure 7 in the main document
for the meaning of the acronyms. The GAM value for RIKEN and 10 training
points is a large outlier and hence it is not shown.
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