Supporting Information

Photochemical C-F Activation Enables Defluorinative Alkylation of Trifluoroacetates and -Acetamides

Mark W. Campbell, Viktor C. Polites, Shivani Patel, Juliette E. Lipson, Jadab Majhi, Gary A. Molander*

Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States

 \mathbb{P} : These authors contributed equally

* To whom correspondence should be addressed: gmolandr@sas.upenn.edu

General Considerations	S2
Preparation of Non-Commercial Starting Materials	S3
Optimization of Defluorinative Alkylation (DFA)	S6
General Procedure for DFA of Ethyl Trifluoroacetate	S8
Characterization Data for DFA Products	S8
General Procedure for DFA of N-(4-Cyanophenyl)-trifluoroacetamide	S23
Procedure for Large Scale DFA	S27
Quantum Yield Experiments	S28
Cyclic Voltammetry Studies	S30
References	S32

General Considerations:

All chemical transformations requiring inert atmospheric conditions or vacuum distillation utilized Schlenk line techniques with a dual-bank manifold. N.N-Dimethylformamide was distilled over CaH₂, degassed with argon, and stored over 5 Å molecular sieves. All other reagents were purchased and used as received from their respective suppliers unless otherwise noted. 4-(4-Methoxybenzoyl)benzonitrile (benzophenone 5) was prepared as outlined in our previous report.¹ Reactions were monitored by ¹H NMR, ¹⁹F NMR, or TLC using silica gel F254 plates (60 Å porosity, 250 μ m thickness). TLC analysis was performed using EtOAc/hexanes and visualized using permanganate stain, ceric ammonium molybdate (Hanessian's) stain, and/or UV light. Flash chromatography was accomplished using an automated system (monitoring at 254 nm and 280 nm in conjunction with an evaporative light scattering detector) with silica cartridges (60 Å porosity, 20-40 μ m). Accurate mass measurement analyses were conducted using electron ionization (EI) or electrospray ionization (ESI). The signals were mass measured against an internal lock mass reference of perfluorotributylamine (PFTBA) for EI-GCMS, and leucine enkephalin for ESI-LCMS. The utilized software calibrates the instruments and reports measurements by use of neutral atomic masses. The mass of the electron is not included. IR spectra were recorded using either neat oil or solid products. Data are presented as follows: wavenumber (cm⁻¹) peak shape/intensity (w = weak, m = medium, s = strong, vs = very strong, br = broad). Melting points (°C) are uncorrected. NMR spectra [¹H, ¹³C (¹H decoupled), ¹¹B, ¹⁹F (¹H coupled and decoupled)] were obtained at 298 K. ¹H NMR (600.4 MHz) chemical shifts are referenced to residual, nondeuterated CHCl₃ (§ 7.26), DMSO (§ 2.50) or MeOH (§ 3.31). ¹³C (¹H decoupled) NMR (151 MHz) chemical shifts are reported relative to CDCl₃ (δ 77.3), DMSO-d₆ (δ 39.5) or CD₃OD (δ 49.1). ¹⁹F NMR (471 MHz) spectra are ¹H coupled unless otherwise noted. ¹⁹F NMR spectra were referenced to either hexafluorobenzene (δ -161.64) or α, α, α -trifluorotoluene (-63.72). Data are presented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant J(Hz) and integration.

Preparation of Non-Commercial Starting Materials

The following compounds were prepared according to the established procedures, and all spectral data matched that which was reported in the literature:

tert-Butyl 4-methylenepiperidine-1-carboxylate,² (3aR,6S,6aR)-2,2-dimethyl-5-vinyltetrahydro furo[2,3-d][1,3]dioxol-6-yl acetate,³ 4-(3,3-dimethylbut-1-en-2-yl)morpholine, (3aR,5aR,8aS, 8bR)-2,2,7,7-tetramethyl-5-methylenetetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran,⁴ *tert*-butyl ((3,3-dimethylbut-1-en-2-yl)oxy)dimethylsilane,⁵ (Z)-(p rop-1-en-1-yloxy)menthol⁶ N-phenylhex-5-enamide.⁷

N-(Pent-4-en-1-yl)-10,11-dihydro-5H-dibenzo[7]annulen-5-amine, S1

10,11-Dihydro-5H-dibenzo[7]**annulen-5-one oxime (S1):** Dibenzosuberone (4.10 g, 19.7 mmol, 1.0 equiv) and hydroxylamine hydrochloride (10.26 g, 147.5 mmol, 7.5 equiv) were added to a 250 mL screw cap tube and dissolved in EtOH/pyridine (4:1, 75 mL). The tube was then tightly capped and heated to 165 °C for 12 h. The reaction was removed from the heating bath and allowed to come to rt before opening the cap. The mixture was then partitioned between aq HCl (100 mL, 2 M) and CHCl₃ (150 mL), and the layers were separated. The aq layer was extracted with an additional portion of CHCl₃ (100 mL), and the combined organic extracts were washed with brine, dried (Na₂SO₄), and the solvent was removed via rotary evaporation to yield a light brown solid, which was recrystallized from cyclohexane and a minimal amount of CHCl₃ to yield the desired product as an off-white powdered solid (2.95 g, 67%). All spectral data matched that reported in the literature.⁸

10,11-Dihydro-5H-dibenzo[7]annulen-5-amine (S2): 10,11-Dihydro-5H-dibenzo[7]annulen-5one oxime, **S1**, (2.70 g, 12.1 mmol, 1.0 equiv) was added to a 250 mL round-bottom flask and dissolved in anhyd EtOH (100 mL), and the reaction solution was heated to a gentle reflux. Solid Na ribbon (~3.4 g, 145 mmol, 12 equiv) was added in small portions while refluxing under air. Each ribbon reacted vigorously on the surface of the soln, and the reaction was judged to be complete when sodium ribbon was added and was not consumed. The reaction was then removed from the heating bath, allowed to return to rt ,and slowly quenched with sat. aq NH₄Cl (100 mL). The soln was concentrated to approximately half the total volume by rotary evaporation. The resulting soln was diluted with brine (50 mL) and extracted with CHCl₃ (3 x 50 mL). The combined organic extracts were dried (Na₂SO₄), and the solvent was removed via rotary evaporation to yield the desired compound as a tan crystalline solid (2.45 g, 97% yield). All spectral data matched that reported in the literature.⁸

N-(Pent-4-en-1-yl)-10,11-dihydro-5H-dibenzo[7]annulen-5-amine, 45: To a 25 mL microwave vial was added 10,11-dihydro-5H-dibenzo[7]annulen-5-amine, **S2**, (1.08 g, 5.16 mmol, 1.0 equiv). The vial was sealed and placed under an argon atmosphere. Dioxane (5 mL), DBU (1.56 mL, 10.3 mmol, 2.0 equiv) and 5-bromo-1-pentene (920 μ L, 7.74 mmol, 1.5 equiv) were each added via syringe. The reaction was then heated to 90 °C for 16 h. The solvent was then removed via rotary evaporation, and the crude material was purified via automated flash silica column chromatography to yield the desired compound as a dense, yellow oil (0.840 g, 59% yield).

¹H NMR (CDCl₃, 600 MHz) δ ppm 7.27 (d, J = 8.8, 2H), 7.19-7.10 (m, 6H), 5.77 (ddt, J = 16.9, 10.1, 6.7 Hz, 1H), 4.96 (dd, J = 17.1, 1.8 Hz, 1H), 4.91 (d, J = 10.1 Hz, 1H), 4.81 (s, 1H), 3.78-3.68 (m, 2H), 3.02-2.93 (m, 2H), 2.56 (t, J = 7.0 Hz, 2H), 2.07 (q, J = 7.2 Hz, 2H), 1.60-1.53 (m, 2H), 1.44 (br s, 1H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 140.9, 140.2, 138.9, 130.7, 129.2, 127.6, 126.1, 114.8, 48.2, 32.7, 31.9, 29.8. **FT-IR** (cm⁻¹, neat, ATR) 3270 (w), 3062 (w), 1443 (m). **HRMS** (ESI) calcd for C₂₀H₂₄N [M + H⁺]: 278.1909, found: 278.1916.

6-(2-Bromoethoxy)quinolin-2(1H)-one, S4: 6-Hydroxyquinolin-2(1H)-one (5.00 g, 31.0 mmol, 1.0 equiv) was added to a 250 mL round-bottom flask and dissolved in *i*-PrOH (125 mL). DBU (7.02 mL, 46.5 mmol, 1.5 equiv) and 1,2-dibromoethane (6.71 mL, 77.6 mmol, 2.5 equiv) were added via syringe, and the flask was fitted with a reflux condenser and heated to 110 °C. After 16 h, the reaction had reached approximately 50% conversion, and so an additional portion of DBU (7.02 mL, 46.5 mmol, 1.5 equiv) and 1,2-dibromoethane (6.71 mL, 77.6 mmol, 2.5 equiv) were added via syringe, and the reaction was heated for an additional 16 h. The reaction was then removed from the heat and concentrated to dryness via rotary evaporation. The crude material was then passed through a short silica plug, eluting with EtOAc/EtOH (9:1). The solvent was then removed to yield the desired compound as a light brown powdered solid (3.32 g, 40%). All spectral data matched that reported in the literature.⁹

6-(Vinyloxy)quinolin-2(1H)-one, 47: 6-(2-Bromoethoxy)quinolin-2(1H)-one (710 mg, 2.65 mmol, 1.0 equiv) and KO*t*-Bu (1.49 g, 13.2 mmol, 5.0 equiv) were added to a 100 mL screw cap tube and dissolved in anhyd *t*-BuOH (12 mL). The tube was tightly sealed and heated to 140 °C for 16 h. The reaction was then concentrated to dryness via rotary evaporation, and the crude material was passed through a short silica plug, eluting with EtOAc/EtOH (9:1). The solvent was then removed to yield the desired compound as a white powdered solid (491 mg, 99%; mp = 195-205 °C decomp).

¹**H** NMR (CDCl₃, 600 MHz) δ ppm 11.72 (s, 1H), 7.86 (d, J = 9.5 Hz, 1H), 7.37 (d, J = 2.7 Hz, 1H), 7.31-7.24 (m, 2H), 6.85 (dd, J = 13.7, 6.0 Hz, 1H), 6.52 (d, J = 9.6 Hz, 1H), 4.70 (d, J = 13.5 Hz, 1H), 4.47 (d, J = 5.8 Hz, 1H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 161.6, 150.7, 148.9, 139.6, 135.0, 122.7, 120.9, 119.7, 116.6, 114.1, 94.8. **FT-IR** (cm⁻¹, neat, ATR) 3360 (br), 1661 (vs), 1621 (s), 1427 (m). **HRMS** (ESI) calcd for C₁₁H₁₀NO₂ [M + H⁺]: 188.0712, found: 188.0697.

Optimization of DFA of Ethyl Trifluoroacetate

General Procedure: To a 1-dram, septum cap vial was added diaryl ketone (0.005 g, 0.02 mmol, 0.20 equiv), sodium formate (0.025 g, 0.30 mmol, 3.0 equiv), and alkene (0.10 mmol, 1.0 equiv), if solid. Anhyd solvent (1.0 mL) was then added, the vial capped, and the reaction soln was sparged with argon for 60 sec. Ethyl trifluoroacetate (60μ L, 0.50 mmol, 5.0 equiv), thiol (0.02 mmol, 0.20 equiv), and alkene (0.10 mmol, 1.0 equiv), if liquid, were added by syringe, and the vial was sealed with Parafilm[®]. The reaction was then irradiated with a Kessil[®] PR160-390 nm lamp at a distance of 2 cm. The reaction was cooled with two compact fans ensuring that the surface temperature of the vial did not exceed 35 °C. After 16 h of irradiation, the reaction was quenched slowly with distilled H₂O (1 mL) and extracted with Et₂O (2 x 2 mL). The combined organic extracts were washed with H₂O (1 mL) followed by brine (1 mL), dried (Na₂SO₄), and the solvent was removed via rotary evaporation. The crude reaction material was analyzed by either GCMS using 4,4'-di*tert*-butylbiphenyl as an internal standard (uncorrected P/IS values) or ¹⁹F NMR in CDCl₃ using 5-bromo-3-trifluoromethyl pyridine as an internal standard.

Table S1: Optimization of Diaryl Ketone Catalyst

M⁺ GCMS P/IS ratio enzophenone 5 (20 mol%) Na 5 22 thiophenol (20 mol%) 2.02 Li OAc ĸ 0.96 1.05 DMF (0.1 M), 390 nm lamp Cs < 0.50 NH₄, NEt₄, NBu₄ (5 equiv) (3 equiv) (1 equiv)

Table S4: Optimization of Thiol

(Mes-SH = 2,4,6-trimethylthiophenol, TRIP-SH = 2,4,6-triisopropylthiophenol, Mesna = sodium 2-mercaptoethanesulfonate)

Table S5: Final Optimization Data

*additional byproducts present

- CzIPN = 2,4,5,6-Tetrakis(9*H*-carbazol-9-yl) isophthalonitrile, DPAIPN = 2,4,5,6-Tetrakis(*N*,*N*-diphenylamino) isophthalonitrile
- In the case of (CyS)₂ we observed larger amounts of thiol radical addition to the alkene
- The formation of the desired product in the absence of benzophenone 5 is due to the presence of trace disulfide impurities in commercial cyclohexanethiol that could not be removed.
- "Zero precautions" indicates that non-anhydrous solvent was used, and the reaction was capped under air without sparging.

General Procedure A: DFA of Ethyl Trifluoroacetate

To a 2 dram, septum capped vial was added was added benzophenone **5** (0.024 g, 0.1 mmol, 0.20 equiv), sodium formate (0.102 g, 1.50 mmol, 3.0 equiv) and alkene (0.50 mmol, 1.0 equiv), if solid. Anhyd DMF (5.0 mL) was then added, the vial was capped, and the reaction soln was sparged with argon for 2 min. Ethyl trifluoroacetate (300 μ L, 2.50 mmol, 5.0 equiv), cyclohexanethiol (12 μ L, 0.10 mmol, 0.20 equiv) and alkene (0.50 mmol, 1.0 equiv), if liquid, were added by syringe, and the vial was sealed with Parafilm. The reaction was then irradiated with a Kessil[®] PR160-390 nm lamp at a distance of 2 cm. The reaction was cooled with two compact fans, ensuring that the surface temperature of the vial did not exceed 35 °C. After 16 h of irradiation, the reaction was quenched slowly with distilled H₂O (20 mL) and extracted with either Et₂O or EtOAc (2 x 25 mL). The combined organic extracts were washed with H₂O (25 mL) followed by brine (10 mL), dried (Na₂SO₄), and the solvent was removed via rotary evaporation. The crude material was then redissolved in CH₂Cl₂ and evaporated onto 5 g of silica to be purified via automated flash silica column chromatography.

Ethyl 6-Acetoxy-2,2-difluorohexanoate, 6 (0.110 g, 98%) was prepared according to General Procedure A. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 4.33 (q, *J* = 7.1 Hz, 2H), 4.07 (t, *J* =

6.4 Hz, 2H), 2.13-2.06 (m, 2H), 2.05 (s, 3H), 1.72-1.67 (m, 2H), 1.59-1.54 (m, 2H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 171.4, 164.5 (t, J = 31 Hz), 116.4 (t, J = 250 Hz), 64.0, 63.1, 34.3 (t, J = 23 Hz), 28.3, 21.2, 18.5 (t, J = 4.7 Hz), 14.2. ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -107.1 (t, J = 15 Hz, 2F). FT-IR (cm⁻¹, neat, ATR) 2963 (w), 1725 (m), 1142 (vs), 1075, 726 (m). HRMS (EI) calcd for C₈H₁₄F₂O₃ [M – CH₃CO⁺]: 196.0911, found: 196.0903.

Ethyl 2,2-Difluoro-6-phenylhexanoate, 7 (0.102 g, 80%) was prepared according to General Procedure A. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 7.28 (t, *J* = 7.5 Hz, 2H), 7.21 – 7.14 (m,

3H), 4.31 (q, J = 7.2 Hz, 2H), 2.63 (t, J = 7.7 Hz, 2H), 2.15 – 2.03 (m, 2H), 1.73 – 1.63 (m, 2H), 1.55 – 1.48 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 164.6 (t, J = 33 Hz), 142.1, 128.7, 128.6, 126.2, 116.6 (t, J = 250.1 Hz), 63.0, 35.8, 34.6 (t, J = 23 Hz), 31.1, 21.4, 14.2. ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -105.8 (t, J = 16.8 Hz). FT-IR (cm⁻¹, neat, ATR) 2930 (w), 1761 (s), 1178 (s), 1094 (vs). HRMS (EI) calcd for C₁₄H₁₈F₂O₂ [M⁺]: 256.1275, found: 256.1288.

Ethyl 5-Acetoxy-2,2-difluoro-5-phenylpentanoate, 8 (0.131 g, 87%) was prepared according to General Procedure A. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 7.38-7.34 (m, 2H), 7.33-7.29 (m, 3H), 5.77 (t, *J* =

6.4 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 2.17-1.97 (m, 7H), 1.33 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 170.4, 164.3 (t, J = 33 Hz), 139.8, 128.9, 128.6, 126.6, 116.10 (t, J = 251 Hz), 74.9, 63.2, 31.0 (t, J = 24 Hz), 28.5 (t, J = 4.2 Hz), 21.4, 14.2. ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -106.14 (s, 1F), -106.16 (s, 1F). FT-IR (cm⁻¹, neat, ATR) 2941 (w), 1737 (s), 1228 (s), 1022 (vs). HRMS (EI) calcd for C₁₃H₁₅F₂O₃ [M - CH₃CO⁺]: 257.0989, found: 257.0994.

Ethyl 2,2-Difluoro-5-phenoxypentanoate, 9 (0.078 g, 60%) was prepared according to General Procedure A. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 7.28 (t, *J* = 7.7 Hz, 2H), 6.95 (t, *J* = 7.4

Hz, 1H), 6.89 (d, J = 8.7 Hz, 2H), 4.33 (q, J = 7.2 Hz, 2H), 4.01 (t, J = 6.1 Hz, 2H), 2.35 – 2.24 (m, 2H), 2.03 – 1.96 (m, 2H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 164.5 (t, J = 33 Hz), 158.9, 129.8, 121.2, 116.4 (t, J = 251 Hz), 114.7, 66.67, 63.18, 31.7 (t, J = 24 Hz), 22.0 (t, J = 4 Hz), 14.2. ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -106.1 (t, J = 18 Hz, 2F). FT-IR (cm⁻¹, neat, ATR) 2936 (w), 1762 (s), 1498 (m), 1243 (vs), 1193 (vs). HRMS (EI) calcd for C₁₃H₁₆F₂O₃ [M⁺]: 258.1068, found: 258.1082.

Ethyl 5-((*tert*-Butoxycarbonyl)amino)-2,2-difluoropentanoate, 10 (0.112 g, 80%) was prepared according to General Procedure A. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 4.58 (br s, 1H), 4.32 (q, *J* = 7.1

Hz, 2H), 3.21-3.14 (m, 2H), 2.15-2.04 (m, 2H), 1.72-1.66 (m, 2H), 1.44 (s, 9H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 164.4 (t, J = 33.2 Hz), 156.2, 116.3 (t, J = 252 Hz), 79.7, 63.2, 40.0, 32.0 (t, J = 24 Hz), 28.6, 22.6, 14.2. ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -105.9 (t, J = 17 Hz, 2F). FT-IR (cm⁻¹, neat, ATR) 3410 (br), 2979 (w), 1761 (s), 1689 (vs), 1249 (s), 1168 (vs). HRMS (ESI) calcd for C₈H₁₃F₂NO₄ [M – *t*-Bu + H⁺]: 225.0813, found: 225.0824.

Ethyl 6,8,8-Triethoxy-2,2-difluorooctanoate, 11 (0.105 g, 62%) was prepared according to General Procedure A. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 4.63 (dd, *J* = 7.3, 4.3 Hz, 1H),

4.31 (q, J = 7.1 Hz, 2H), 3.71-3.57 (m, 2H), 3.54-3.43 (m, 4H), 3.41-3.37 (m, 1H), 2.17-2.00 (m, 2H), 1.80 (ddd, J = 14.2, 8.1, 4.3 Hz, 1H), 1.69 (ddd, J = 14.1, 7.3, 4.5 Hz, 1H), 1.58-1.45 (m, 4H), 1.34 (t, J = 7.1 Hz, 3H), 1.20 (q, J = 7.0 Hz, 6H), 1.16 (t, J = 7.0 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 164.6 (t, J = 33 Hz), 116.5 (t, J = 250 Hz), 100.9, 75.7, 64.8, 63.0, 61.7, 61.6, 39.0, 34.9 (t, J = 23 Hz), 34.1, 17.6 (t, J = 4.3 Hz), 15.9, 15.7, 15.6, 14.2. ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -105.8 (t, J = 18.2 Hz, 2F). **FT-IR** (cm⁻¹, neat, ATR) 2975 (w), 1766 (m), 1097 (vs), 1059 (vs). **HRMS** (EI) calcd for C₁₄H₂₅F₂O₅ [M – Et⁺]: 311.1670, found: 311.1676.

Triethyl 5,5-Difluoropentane-1,1,5-tricarboxylate, 12 (0.159 g, 98%) was prepared according to General Procedure A. The desired compound was obtained as a dense, colorless oil. ¹H NMR (600 MHz, CDCl₃) δ ppm 4.32 (q, *J* = 7.1 Hz, 2H), 4.20

(qd, J = 7.2, 3.2 Hz, 4H), 3.32 (t, J = 7.5 Hz, 1H), 2.15-2.04 (m, 2H), 1.98-1.91 (m, 2H), 1.56-1.50 (m, 2H), 1.35 (t, J = 7.1 Hz, 3H), 1.27 (t, J = 7.1 Hz, 6H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 169.3, 164.4 (t, J = 33 Hz), 116.2 (t, J = 250 Hz), 63.1, 61.8, 51.9, 34.4 (t, J = 23 Hz), 28.4, 19.7 (t, J = 4.4 Hz), 14.3, 14.2. ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -106.0 (t, J = 16.8 Hz, 2F). FT-IR (cm⁻¹, neat, ATR) 2982 (w), 1750 (vs), 1730 (vs), 1252 (m), 1155 (vs), 1097 (vs). HRMS (EI) calcd for C₁₄H₂₂F₂O₆ [M⁺]: 324.1384, found: 324.1398.

Ethyl 2,2-Difluoro-5-(1-hydroxycyclohexyl)pentanoate, 13 (0.119 g, 90%) was prepared according to General Procedure A. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 4.30 (q, *J* = 7.1 Hz, 2H), 2.10-

1.98 (m, 2H), 1.60-1.37 (m, 13H), 1.36-1.19 (m, 5H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 164.6 (t, *J* = 33 Hz), 116.5 (t, *J* = 250 Hz), 71.4, 63.0, 41.8, 37.6, 35.2 (t, *J* = 23 Hz), 26.0, 22.4, 15.5 (t, *J* = 4.4 Hz), 14.2. ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -105.7 (t, *J* = 16.8 Hz, 2F). FT-IR (cm⁻¹, neat, ATR) 3427 (br), 2930 (m), 1760 (vs), 1187 (m). HRMS (EI) calcd for C₁₃H₂₂F₂O₃ [M⁺]: 264.1537, found: 264.1532.

Ethyl 2,2-Difluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan -2-yl)pentanoate, 14 (3.71 g, 50%) was prepared according to General Procedure A from with the following modification: 25.0 mmol scale with 5.0 mol % of benzophenone catalyst 5 was used.

Vacuum distillation (bp = 88-100 °C, 0.3 mm Hg) afforded the title product as a clear, colorless oil. ¹H NMR (CDCl₃, 500 MHz) ppm δ 4.31 (q, *J* = 7.1 Hz, 2H), 2.12-2.02 (m, 2H), 1.63-1.53 (m, 2H), 1.34 (t, *J* = 7.2 Hz, 3H), 1.23 (s, 12H), 0.82 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 164.6 (t, *J* = 33 Hz), 116.5 (t, *J* = 250 Hz), 83.3, 62.8, 36.9 (t, *J* = 23 Hz), 24.9, 16.4 (t, *J* = 4.4 Hz), 14.1 (s). ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -106.8 (t, *J* = 18.3 Hz, 2F). ¹¹B NMR (CDCl₃, 128 MHz) δ ppm 33.0. FT-IR (cm⁻¹, neat, ATR) 2980 (w), 1767 (m), 1372 (s), 1143 (vs). HRMS (ESI) calcd for C₁₃H₂₃BF₂O₄ [M⁺]: 293.1736, found: 293.1737.

Ethyl 5-Acetoxy-2,2-difluoro-4-((trimethylsilyl)methyl) pentanoate, 15 (0.069 g, 44%) was prepared according to General Procedure A. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 4.32 (q, *J* = 7.1 Hz, 2H), 4.03 (dd, *J* = 11.0, 4.6 Hz, 1H), 3.89 (dd, *J* = 11.0, 6.1 Hz,

1H), 2.30-2.22 (m, 1H), 2.21-2.15 (m, 1H), 2.06 (s, 3H), 2.12-1.98 (m, 1H), 1.35 (t, J = 7.2 Hz, 3H), 0.68 (dd, J = 12.4, 6.9 Hz, 2H), 0.04 (s, 9H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 171.2, 164.5 (t, J = 33 Hz), 116.4 (t, J = 2.2 Hz), 68.5, 63.2, 39.1 (t, J = 22 Hz), 29.0 (t, J = 3.3 Hz), 21.1, 20.4, 14.2, -0.7. ¹⁹F NMR (CDCl₃, 471 MHz, with ¹H decoupling) δ ppm -103.2 (d, J = 260.9 Hz,

1F), -104.1 (d, $J_{F-F} = 260.9$ Hz, 1F). FT-IR (cm⁻¹, neat, ATR) 3346 (br), 2955 (w), 1742 (s), 1231 (vs), 1042 (m). HRMS (EI) calcd for C₁₂H₂₁F₂O₄Si [M – CH₃⁺]: 295.1177, found: 295.1186.

Ethyl 2,2-Difluoro-5-(1H-imidazol-1-yl)pentanoate, 16 (0.072 g, 62%) was prepared according to General Procedure A with the following modifications: 5.0 equiv of sodium formate and 10.0 equiv of ethyl trifluoroacetate were used. The desired compound was

obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 7.48 (s, 1H), 7.08 (s, 1H), 6.91 (s, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 4.03 (t, *J* = 6.5 Hz, 2H), 2.08-1.99 (m, 4H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 164.1 (t, *J* = 32.6 Hz), 137.4, 130.2, 118.8, 115.9 (t, *J* = 251.0 Hz), 63.4, 46.2, 31.5 (t, *J* = 23.7 Hz), 23.6 (t, *J* = 4.0 Hz), 14.2. ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -106.8 (t, *J* = 16.8 Hz, 2F). FT-IR (cm⁻¹, neat, ATR) 2963 (w), 1725 (m), 1142 (vs), 1075, 726 (m). HRMS (ESI) calcd for C₁₀H₁₄F₂N₂O₂ [M⁺]: 233.1102, found: 233.1108.

tert-Butyl 4-(3-Ethoxy-2,2-difluoro-3-oxopropyl)piperidine-1-carboxylate, 17 (0.135 g, 84%)

was prepared according to General Procedure A. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 4.33 (q, *J* = 7.1 Hz, 2H), 4.06 (br s, 2H), 2.75-2.65 (br m, 2H), 2.02 (td, *J* = 17.8, 6.4 Hz, 2H), 1.82-1.76 (m, 1H), 1.74 (d,

2H), 1.45 (s, 9H), 1.36 (t, J = 7.1 Hz, 3H), 1.27-1.15 (m, 2H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 164.7 (t, J = 33 Hz), 155.0, 116.4 (t, J = 251 Hz), 79.8, 63.20, 40.9 (t, J = 22 Hz), 32.6, 30.7 (t, J = 3.3 Hz), 28.7, 14.3. ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -103.6 (d, J = 108 Hz, 2F). FT-IR (cm⁻¹, neat, ATR) 2925 (w), 1766 (s), 1690 (vs), 1168 (s). HRMS (ESI) calcd for C₁₅H₂₅F₂NO₄ [M⁺]: 321.1752, found: 321.1783.

Ethyl 2,2-Difluoro-4-((1*S*,2*R*,4*R*)-2-hydroxy-4-methyl cyclohexyl)pentanoate, 18 (0.128 g, 92%) was prepared according to General Procedure A. The diastereomeric ratio was determined to be 1.2:1 via crude ¹H NMR. The desired compound was obtained

as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 4.32 (q, *J* = 7.1 Hz, 2H), 3.40 (td, *J* = 10.4, 4.4 Hz, 1H), 2.44 (q, *J* = 7.8 Hz, 1H), 2.13-1.94 (m, 3H), 1.68 (d, *J* = 12.5 Hz, 1H), 1.55 (dq, *J* = 13.3, 3.4 Hz, 1H), 1.48-1.38 (m, 2H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.29-1.16 (m, 1H), 1.04 (qd, *J* = 13.0, 3.5 Hz, 1H), 0.99-0.93 (m, 1H), 0.91 (t, *J* = 6.8 Hz, 6H), 0.88-0.82 (m, 1H). ¹³C

NMR (CDCl₃, 151 MHz) δ ppm 165.1 (t, *J* = 33 Hz), 117.5 (dd, *J* = 252, 250 Hz), 71.0, 63.2, 50.7, 45.0, 37.1 (t, *J* = 22 Hz), 34.7, 31.9, 26.7 (dd, *J* = 4.0, 1.7 Hz), 25.1, 22.4, 18.8, 14.2. ¹⁹F NMR (CDCl₃, 471 MHz, ¹H decoupled) δ ppm -102.9, -103.8 (ABq, *J*_{AB} = 258 Hz, 2F). FT-IR (cm⁻¹, neat, ATR) 3415 (br), 2987 (m), 1766 (s), 1130 (m), 1190 (s). HRMS (ESI) calcd for C₁₄H₂₅F₂O₃ [M + H⁺]: 279.1772, found: 279.1742.

Ethyl 2,2-Difluoro-4-((3*R*)-6-methyl-7-oxabicyclo[4.1.0] heptan-3-yl)pentanoate, 19 (0.108 g, 82%) was prepared according to General Procedure A. The diastereomeric ratio was determined to be 3.6:3.1:1.4:1 via crude ¹H NMR. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃,

600 MHz) δ ppm 4.31 (q, J = 7.2, 2H), 3.17-2.87 (m, 1H), 2.23-1.96 (m, 2H), 1.94-1.53 (m, 5H), 1.51-1.43 (m, 1H), 1.34 (t, J = 7.1 Hz, 3H), 1.29 (d, J = 2.5 Hz, 3H), 1.23-0.96 (m, 2H), 0.96-0.84 (m, 3H). ¹³**C** NMR (CDCl₃, 151 MHz) δ ppm 164.79 and 164.78 and 164.76 (t, J = 33 Hz), 116.98 and 116.96 and 116.94 (t, J = 251 Hz), 63.1, 61.04, 60.98, 59.6, 59.5, 58.1, 58.0, 57.80, 57.76, 39.0, 38.9, 38.8, 38.74, 38.69, 38.54, 38.47, 38.46, 38.39, 38.36, 38.33, 38.31, 38.18, 38.16, 34.7, 34.6, 31.50 and 31.4 and 31.2 (t, J = 2.6 Hz), 31.09, 31.07, 31.05, 30.95, 30.6, 30.0, 29.5, 29.4, 29.3, 28.3, 27.8, 26.6, 25.5, 24.7, 24.6, 24.1, 23.27, 23.26, 22.7, 21.5, 17.02 (t, J = 17 Hz), 16.95, 14.2. ¹⁹F NMR (CDCl₃, 471 MHz, ¹H decoupled) δ ppm -103.4 – -106.5 (m, 2F). FT-IR (cm⁻¹, neat, ATR) 2966 (w), 1765 (s), 1189 (s), 1028 (vs). HRMS (EI) calcd for C₁₄H₂₂F₂O₃ [M⁺]: 276.1537, found: 276.1547.

Ethyl 2,2-Difluoro-4-(5-(2-hydroxypropan-2-yl)-2-methyl tetrahydrofuran-2-yl)butanoate, 20 (0.087 g, 59%) was prepared according to General Procedure A. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ

ppm 4.33 (q, J = 7.2 Hz, 2H), 3.79 and 3.71 (dd, J = 8.3, 6.5 Hz and dd, J = 8.9, 6.1 Hz, 1H), 2.34-2.08 (m, 2H), 1.92-1.60 (m, 7H), 1.36 and 1.35 (t, J = 7.1, 3H), 1.22-1.19 (m, 6H), 1.12-1.10 (m, 3H). ¹³**C** NMR (CDCl₃, 151 MHz) δ ppm 164.61 and 164.57 (t, J = 33 Hz), 116.8 (t, J = 250 Hz), 86.0, 85.4, 81.97, 81.92, 71.4, 71.0, 63.2, 63.1, 37.87, 37.86, 33.3 and 32.5 (t, J = 3.7 Hz), 30.18 and 30.13 (t, J = 23 Hz), 27.8, 27.6, 26.7, 26.6, 26.5, 25.6, 24.5, 24.3, 14.3 (d, J = 3.3 Hz). ¹⁹**F** NMR (CDCl₃, 471 MHz, ¹H decoupled) δ ppm -104.7 – -106.7 (m, 2F). **FT-IR** (cm⁻¹, neat, ATR) 3460 (br), 2974 (w), 1761 (m), 1183 (s), 1066 (vs). **HRMS** (EI) calcd for C₁₃H₂₁F₂O₄ [M – Me⁺]: 279.1408, found: 279.1413.

Ethyl 2,2-Difluoro-4-((R)-4-methyl-5-oxocyclohex-3-en-1yl)pentanoate, 21 (0.073 g, 53%) was prepared according to General Procedure A with the following modifications: 10.0 equiv of ethyl trifluoroacetate were used. The diastereomeric ratio was determined to be 1:1 via crude ¹H NMR. The desired compound was

obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 6.74-6.73 (m, 1H), 4.33 (q, J = 7.1, 2H), 2.49-2.42 (m, 1H), 2.37-2.26 (m, 1H), 2.23-2.04 (m, 4H), 1.99-1.81 (m, 2H), 1.77 (t, J = 1.2 Hz, 3H), 1.36 (t, J = 7.1 Hz, 3H), 1.02 and 1.01 (d, J = 3.5 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 200.0, 199.9, 164.6 (t, J = 33 Hz), 144.9, 144.8, 135.87, 135.85, 116.64 and 116.63 (t, J = 251 Hz), 63.3, 42.2, 40.92, 40.86, 40.7, 38.6 and 38.4 (t, J = 22 Hz), 31.4 and 31.3 (t, J = 2.9 Hz), 30.1, 28.6, 17.1, 17.0, 15.94, 15.93, 14.26. ¹⁹F NMR (CDCl₃, 471 MHz, ¹H decoupled) δ ppm -102.9 – -105.0 (m, 2F). FT-IR (cm⁻¹, neat, ATR) 2981 (w), 1764 (s), 1674 (vs), 1056 (m). HRMS (EI) calcd for C₁₄H₂₀F₂O₃ [M⁺]: 274.1381, found: 274.1376.

Ethyl 2,2-Difluoro-3-((4*R***,8a***S***,9***R***)-4,8,8-trimethyldecahydro-1,4-methanoazulen-9-yl)propanoate, 22** (0.152 g, 93%) was prepared according to General Procedure A. The diastereomeric ratio was determined to be 1:1 via crude ¹H NMR. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃,

600 MHz) δ ppm 4.43-4.24 (m, 2H), 2.13-1.93 (m, 4H), 1.73-1.64 (m, 1H), 1.60-1.50 (m, 4H), 1.39-1.29 (m, 10H), 1.00 (s, 3H), 0.94 (s, 3H), 0.77 (s, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 165.1 (t, J = 33 Hz), 117.4 (t, J = 250 Hz), 63.0, 61.6, 45.1, 43.5, 42.7, 40.98, 40.7, 40.3, 33.5, 33.0, 31.2 (t, J = 22 Hz), 29.8, 26.2, 24.9, 21.8, 21.3, 14.3. ¹⁹F NMR (CDCl₃, 471 MHz, ¹H decoupled) δ ppm -102.6, -104.7 (AB, $J_{AB} = 255$ Hz, 2F). FT-IR (cm⁻¹, neat, ATR) 2955 (m), 1767 (s), 1087 (vs). HRMS (EI) calcd for C₁₉H₃₀F₂O₂ [M⁺]: 328.2214, found: 328.2225.

Ethyl 2,2-Difluoro-5-(4-hydroxy-3-((2-hydroxy ethyl) carbamoyl)-5-methoxyphenyl)pentanoate, 23 (0.086 g, 46%) was prepared according to General Procedure A. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 11.21 (s, 1H), 7.34 (s, 1H), 6.96 (s, 1H), 6.77 (s, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 3.87 (s, 3H), 3.84 (br s, 2H), 3.61 (br s, 2H), 2.73 (br s, 1H), 2.57 (t, *J* = 7.6 Hz, 2H), 2.08-1.97 (m, 2H), 1.81-1.72 (m, 2H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 170.1, 164.6 (t, *J* = 33 Hz), 148.90, 148.87, 131.4, 117.8, 116.5 (t, *J* = 251 Hz), 115.2, 115.0, 63.2, 62.2, 56.4, 42.6, 34.9, 33.9 (t, *J* = 23 Hz), 23.3 (t, *J* = 3.9 Hz), 14.1. ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm 106.7 (t, *J* = 18.0 Hz, 2F). FT-IR (cm⁻¹, neat, ATR) 3375 (br), 2937 (w), 1760 (m), 1642 (m), 1265 (vs), 1091 (vs). HRMS (ESI) calcd for C₁₇H₂₄F₂NO₆ [M + H⁺]: 376.1572, found: 376.1560.

Ethyl 4-((3aR,5R,6S,6aR)-6-Acetoxy-2,2-dimethyltetra hydrofuro[2,3-d][1,3]dioxol-5-yl)-2,2-difluorobutanoate, 24 (0.112 g, 64%) was prepared according to General Procedure A. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 5.88 (d, J = 3.8 Hz, 1H),

5.15 (d, J = 2.9 Hz, 1H), 4.51 (d, J = 3.8 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 4.24 (ddd, J = 8.3, 5.2, 2.9 Hz, 1H), 2.36-2.23 (m, 1H), 2.17-2.05 (m, 4H), 1.90-1.79 (m, 1H), 1.76-1.69 (m, 1H), 1.50 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H), 1.30 (s, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 170.1, 164.3 (t, J = 33 Hz), 116.1 (t, J = 250 Hz), 112.2, 104.7, 83.9, 78.3, 63.2, 31.6 (t, J = 24 Hz), 26.9, 26.4, 21.0, 20.6, 14.2. ¹⁹F NMR (CDCl₃, 471 MHz, ¹H decoupled) δ ppm -107.60 (s, 1F), -107.63 (s, 1F). FT-IR (cm⁻¹, neat, ATR) 2988 (w), 1745 (m), 1215 (m), 1070 (m). HRMS (EI) calcd for C₁₅H₂₂F₂O₇Na [M + Na⁺]: 375.1231, found: 375.1225.

Ethyl 2,2-Difluoro-6-hydroxy-3-isopropylheptanoate, 25 (0.083 g, 59%) was prepared according to General Procedure A. The diastereomeric ratio was determined to be 1:1 via crude ¹H NMR. The desired compound was obtained as a dense, colorless oil. ¹H

NMR (CDCl₃, 600 MHz) δ ppm 4.31 (q, J = 7.1 Hz, 2H), 3.79-3.73 (m, 1H), 2.09-2.00 (m, 1H), 1.94-1.88 (m, 1H), 1.74-1.64 (m, 1H), 1.57-1.42 (m, 4H), 1.34 (t, J = 7.1 Hz, 3H), 1.19 (d, J = 6.2 Hz, 3H), 0.99 (d, J = 7.0 Hz, 3H), 0.92 (d, J = 6.9 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 165.1 (t, J = 33 Hz), 119.8 and 118.1 (dd, J = 256, 253 Hz), 68.4, 68.2, 63.0, 47.9 and 47.8 (t, J = 20 Hz), 38.9, 38.6, 27.2 (dd, J = 8.5, 4.6 Hz), 23.9, 23.8, 21.8, 20.1 (dd, J = 4.6, 2.5 Hz), 19.9 (dd,

J = 4.5, 2.5 Hz, 18.4, 14.2. ¹⁹F NMR (CDCl₃, 471 MHz, ¹H decoupled) δ ppm -104.3 and -104.9 (d, J = 34 Hz, 1F), 109.7 and 110.3 (d, J = 28 Hz, 1F). FT-IR (cm⁻¹, neat, ATR) 3380 (br), 2966 (w), 1759 (s), 1073 (s). HRMS (EI) calcd for C₁₂H₂₁F₂O₂ [M – OH⁺]: 325.1510, found: 235.1519.

Ethyl 2-((3aR,4R,7R,7aS)-1,3-Dioxooctahydro-4,7-methanoiso benzofuran-5-yl)-2,2-difluoroacetate, 26 (0.094 g, 65%) was prepared according to General Procedure A. The diastereomeric ratio was determined to be 2:1 (exo:endo) via crude ¹H NMR. The desired compound was obtained as a dense, colorless oil. The exo

diastereomer was fully characterized. ¹H NMR (CDCl₃, 600 MHz) δ ppm 4.42-4.27 (m, 2H), 3.51-3.42 (m, 2H), 3.01-2.86 (m, 2H), 2.38-2.26 (m, 1H), 1.99 (d, *J* = 10.8 Hz, 1H), 1.91-1.86 (m, 1H), 1.76 (ddd, *J* = 14.3, 9.1, 2.6 Hz, 1H), 1.60 (dd, *J* = 10.9, 2.8 Hz, 1H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 171.3, 170.9, 163.5 (t, *J* = 33 Hz), 115.7 (t, *J* = 253 Hz), 63.6, 50.2, 49.2, 41.5 (t, *J* = 23 Hz), 41.2 (t, *J* = 2.8 Hz), 41.0 (d, *J* = 2.4 Hz), 39.8, 27.1 (t, *J* = 2.9 Hz), 14.2. ¹⁹F NMR (CDCl₃, 471 MHz, ¹H decoupled) δ ppm -111.1 (d, *J* = 15 Hz, 2F). FT-IR (cm⁻¹, neat, ATR) 2987 (w), 1860 (w), 1780 (s), 1762 (s), 1081 (vs). HRMS (EI) calcd for C₁₃H₁₄F₂O₅ [M⁺]: 288.0809, found: 288.0808.

Ethyl 2,2-Difluoro-2-((1*S*,5*R*)-2-(2-hydroxyethyl)-5-isopropyl cyclohex-2-en-1-yl)acetate, 27 (0.078 g, 54%) was prepared according to General Procedure A with the following modifications: 5.0 equivalents of sodium formate and 10.0 equivalent of ethyl trifluoroacetate were used. The diastereomeric ratio was determined

to be >20:1 via crude ¹H NMR. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 5.84 (t, *J* = 3.0 Hz, 1H), 4.34 (qd, *J* = 7.1, 2.3 Hz, 2H), 3.74 (dd, *J* = 7.2, 5.4 Hz, 2H), 2.93 (ddd, *J* = 16.8, 10.4, 6.1 Hz, 1H), 2.53-2.46 (m, 1H), 2.41-2.34 (m, 1H), 2.16 (td, *J* = 18.0, 4.9 Hz, 1H), 1.79-1.70 (m, 2H), 1.56-1.47 (m, 2H), 1.40-1.28 (m, 5H), 0.87 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 164.7 (t, *J* = 33 Hz), 131.1, 128.5 (d, *J* = 2.1 Hz), 118.1 (dd, *J* = 258, 253 Hz), 63.1, 60.9, 41.4 (t, *J* = 21 Hz), 39.7 (d, *J* = 3.2 Hz), 34.7 (d, *J* = 2.7 Hz), 32.6, 29.4, 27.5 (d, *J* = 6.5 Hz), 20.0, 19.7, 14.3. ¹⁹F NMR (CDCl₃, 471 MHz, ¹H decoupled) δ ppm -99.6 (d, *J* = 251 Hz, 1F), -107.2 (d, *J* = 251 Hz, 1F). FT-IR (cm⁻¹, neat, ATR)

3395 (br), 2958 (m), 1760 (m), 1056 (vs). HRMS (EI) calcd for $C_{15}H_{24}F_2O_3Na$ [M + Na⁺]: 313.1591, found: 313.1576.

Ethyl 2,2-Difluoro-4-(2-oxoazepan-1-yl)butanoate, 28 (0.078 g, 59%) was prepared according to General Procedure A with the following modifications: 10.0 equiv of ethyl trifluoroacetate were used. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 4.33 (q, *J* = 7.1 Hz, 2H), 3.56 (t,

J = 7.2 Hz, 2H), 3.37-3.35 (m, 2H), 2.52-2.47 (m, 2H), 2.34 (tt, J = 17.1, 7.3 Hz, 2H), 1.76-1.61 (m, 6H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 176.2, 164.1 (t, J = 33 Hz), 115.6 (t, J = 251 Hz), 63.3, 50.8, 42.7 (t, J = 5.2 Hz), 37.5, 33.3 (t, J = 23 Hz), 30.2, 28.9, 23.6, 14.2. ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -107.1 (t, J = 15.4 Hz, 2F). FT-IR (cm⁻¹, neat, ATR) 2933 (w), 1761 (s), 1641 (s), 1191 (vs). HRMS (ESI) calcd for C₁₂H₂₀F₂NO₃ [M + H⁺]: 264.1411, found: 264.1391.

Ethyl 4-((*tert*-Butoxycarbonyl)amino)-2,2-difluorobutanoate, 29 (0.353 g, 66%) was prepared according to General Procedure A. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 4.72 (br s, 1H), 4.33 (q, *J* = 7.2 Hz, 2H),

3.36 (q, J = 6.1 Hz, 2H), 2.30 (tt, J = 16.8, 6.6 Hz, 2H), 1.43 (s, 9H), 1.35 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 164.3 (t, J = 32 Hz), 155.9, 115.9 (t, J = 251 Hz), 79.9, 63.3, 35.1 (t, J = 23 Hz), 34.3, 28.6, 14.2. ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -106.71 (t, J = 18.3 Hz, 2F). FT-IR (cm⁻¹, neat, ATR) 3410 (br), 2981 (w), 1762 (s), 1694 (s), 1514 (m), 1166 (s). HRMS (ESI) calcd for C₁₁H₁₉F₂NO₄Na [M + Na⁺]: 297.1180, found: 297.1203.

Ethyl 2,2-Difluoro-5,5-dimethyl-4-morpholinohexanoate, 30 (0.078 g, 53%) was prepared according to General Procedure A. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 4.34 (qd, J = 7.2, 4.0 Hz, 2H), 3.58-3.50 (m,

4H), 2.83-2.75 (m, 2H), 2.72-2.68 (m, 2H), 2.51-2.48 (m, 1H), 2.48-2.38 (m, 1H), 2.04 (dq, J = 15.7, 1.4 Hz, 1H), 1.36 (t, J = 7.1 Hz, 3H), 0.95 (s, 9H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 164.8 (t, J = 33.0 Hz), 116.7 (dd, J = 247.6, 252.2 Hz), 67.7, 67.3 (dd, J = 5.0, 2.3 Hz), 63.0, 51.3, 38.2, 32.4 (t, J = 23.5 Hz), 28.5, 14.2. ¹⁹F NMR (CDCl₃, 471 MHz, ¹H decoupled) δ ppm -102.1 (d, J = 247.6, 252.2 Hz)

259 Hz, 1F), -107.7 (d, J = 257 Hz, 1F). **FT-IR** (cm⁻¹, neat, ATR) 2956 (w), 1767 (m), 1292 (m), 1168 (s). **HRMS** (EI) calcd for C₁₃H₂₂F₂NO₃ [M – CH₃⁺]: 278.1568, found: 278.1561.

2,2-Difluoro-3-((3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyl tetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)

propanoic acid, 31 (0.135 g, 74%) was prepared according to General Procedure A. The desired compound was isolated as the corresponding carboxylic acid, a dense, colorless oil, after treatment

with 2 M aq NaOH followed by neutralization with conc. HCl and extraction with EtOAc (3 x 10 mL). The diastereomeric ratio was determined to be >20:1 via crude ¹H NMR. ¹H NMR (CDCl₃, 600 MHz) δ ppm 5.16 (d, J = 2.4 Hz, 1H), 4.52 (d, J = 5.2 Hz, 1H), 4.23 (d, J = 1.6 Hz, 1H), 3.89 (dd, J = 9.8, 5.2 Hz, 1H), 3.45 (t, J = 9.9 Hz, 1H), 2.53 (q, J = 12.5 Hz, 1H), 2.42- 2.26 (m, 1H), 1.47 (s, 3H), 1.46 (s, 3H), 1.36 (s, 3H), 1.35 (s, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 166.6, 114.8 (t, J = 252 Hz), 111.6, 109.7, 96.8, 75.9, 74.5, 72.7, 68.0, 67.9, 37.5 (t, J = 24.3 Hz), 28.2, 28.0, 26.1, 26.0. ¹⁹F NMR (CDCl₃, 471 MHz, ¹H decoupled) δ ppm -103.2 (d, J = 258 Hz, 1F), -108.4 (d, J = 258 Hz, 1F). FT-IR (cm⁻¹, neat, ATR) 3510 (br), 2988 (w), 1768 (m), 1144 (m), 1065 (vs). HRMS (ESI) calcd for C₁₄H₂₀F₂O₇Na [M + Na⁺]: 361.1075, found: 361.1083.

Ethyl 4-(Benzyloxy)-2,2-difluorobutanoate, 32 (0.066 g, 51%) was prepared according to General Procedure A. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 7.37-7.26 (m, 5H), 4.46 (s, 2H), 4.18

(q, J = 7.2 Hz, 2H), 3.66 (t, J = 6.1 Hz, 2H), 2.43 (tt, J = 15.3, 6.1 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 164.3 (t, J = 32 Hz), 138.0, 128.7, 128.0, 115.6 (t, J = 250 Hz), 73.6, 63.7 (t, J = 6.2 Hz), 63.0, 35.6 (t, J = 24 Hz), 14.1. ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -105.6 (t, J = 15.4 Hz, 2F). FT-IR (cm⁻¹, neat, ATR) 2983 (w), 1766 (s), 1373 (m), 1228 (m). HRMS (EI) calcd for C₁₃H₁₆F₂O₃ [M⁺]: 258.1044, found: 258.1044.

Ethyl 4-([1,1'-Biphenyl]-4-yloxy)-2,2-difluorobutanoate, 33

(0.107 g, 67%) was prepared according to General Procedure A with the following modifications: 5.0 equiv of sodium formate and 10.0 equiv of ethyl trifluoroacetate were used. The desired

compound was obtained as a white solid (mp = 68-70 °C). ¹H NMR (CDCl₃, 600 MHz) δ ppm

7.56-7.48 (m, 4H), 7.42 (t, J = 7.7 Hz, 2H), 7.31 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 8.6 Hz, 2H), 4.34 (q, J = 7.2 Hz, 2H), 4.22 (t, J = 6.2 Hz, 2H), 2.64 (tt, J = 15.4, 6.2 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 164.1 (t, J = 32 Hz), 157.9, 140.9, 134.8, 129.0, 128.5, 127.1, 127.0, 115.3 (t, J = 250 Hz), 115.0, 63.3, 61.6 (t, J = 6.2 Hz), 35.1 (t, J = 24 Hz), 14.2. ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -105.5 (t, J = 15 Hz, 2F). FT-IR (cm⁻¹, neat, ATR) 2988 (w), 1773 (vs), 1479 (m), 1229 (s). HRMS (EI) calcd for C₁₈H₁₈F₂O₃ [M⁺]: 320.1224, found: 320.1242.

Ethyl 4-((*tert*-Butyldimethylsilyl)oxy)-2,2-difluoro-5,5dimethylhexanoate, 34 (0.130 g, 77%) was prepared according to General Procedure A. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 4.31 (q, *J* = 7.2 Hz,

2H), 3.70 (dd, J = 4.8, 3.3 Hz, 1H), 2.41 (dddd, J = 27.6, 16.0, 13.6, 3.3 Hz, 1H), 2.07 (dddd, J = 30.0, 16.0, 8.0, 4.7 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H), 0.89 (s, 9H), 0.87 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 163.5 (t, J = 33 Hz), 114.8 (t, J = 251 Hz), 72.5 (d, J = 3.4 Hz), 61.8, 38.4 (t, J = 22 Hz), 35.1, 25.1, 24.6, 17.4, 12.9, 0.0, -5.5. ¹⁹F NMR (471 MHz, CDCl₃, ¹H decoupled) δ ppm -104.1 (d, J = 258 Hz, 1F), -106.1 (d, J = 258 Hz, 1F). FT-IR (cm⁻¹, neat, ATR) 2958 (w), 1769 (m), 1111 (vs), 1083 (vs). HRMS (EI) calcd for C₁₅H₂₉F₂O₃Si [M – CH₃⁺]: 323.1854, found: 323.1862.

1-(*tert*-Butyl) 2-(2-(4-Ethoxy-3,3-difluoro-4-oxobutoxy) Ethyl (*R*)-Pyrrolidine-1,2-dicarboxylate,
35 (0.174 g, 85%) was prepared according to General Procedure A. The desired compound was obtained as a

dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm ¹H NMR (600 MHz, CDCl₃) δ 4.35-4.10 (m, 5H), 3.62 (t, *J* = 6.2 Hz, 2H), 3.60-3.32 (m, 4H), 2.35 (tt, *J* = 15.3, 6.2 Hz, 2H), 2.26-2.10 (m, 1H), 1.99-1.88 (m, 2H), 1.87-1.78 (m, 1H), 1.42 and 1.38 (s, 9H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 173.4, 173.1, 164.10 and 164.08 (t, *J* = 32 Hz), 154.6, 154.0, 115.4 and 115.3 (t, *J* = 250 Hz), 80.1, 79.9, 69.2, 64.5 (m), 63.9, 63.8, 63.0, 59.3, 59.0, 46.8, 46.6, 35.4 and 35.3 (t, *J* = 24, 10.4 Hz), 31.1, 30.1, 28.6, 28.5, 24.5, 23.8, 14.2. ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -106.9 (t, *J* = 16 Hz, 2F). FT-IR (cm⁻¹, neat, ATR) 2979 (w), 1749 (s), 1696 (vs), 1392 (vs), 1366 (m). HRMS (ESI) calcd for C₁₈H₂₉F₂NO₇ [M + Na⁺]: 432.1810, found: 432.1805.

4-Ethoxy-3,3-difluoro-4-oxobutyldodecanoate, 36
(0.159 g, 91%) was prepared according to General Procedure A. The desired compound was obtained as a dense, colorless oil. ¹H NMR (600 MHz, CDCl₃) δ ppm

4.33 (q, J = 7.1 Hz, 2H), 4.27 (t, J = 6.4 Hz, 2H), 2.45 (tt, J = 15.9, 6.4 Hz, 2H), 2.26 (t, J = 7.6 Hz, 2H), 1.59 (q, J = 8.2, 7.7 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H), 1.26 (d, J = 16.3 Hz, 16H), 0.87 (t, J = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 173.6, 164.0 (t, J = 32.4 Hz), 115.1 (t, J = 251.0 Hz), 63.3, 57.5 (t, J = 5.9 Hz), 34.3, 34.2 (t, J = 23.5), 32.2, 29.9, 29.7, 29.6, 29.5, 29.4, 25.0, 23.0, 14.4, 14.2. ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -105.4 (t, J = 15.2 Hz, 2F). FT-IR (cm⁻¹, neat, ATR) 2925 (m), 1742 (vs), 1096 (vs). HRMS (EI) calcd for C₁₅H₂₇F₂O₂ [M - CO₂Et⁺]: 277.1979, found: 277.1992.

Ethyl2,2-Difluoro-4-(((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)-3-methylbutanoate, 37 (0.146 g, 92%)was prepared according to General Procedure A. Thediastereomeric ratio was determined to be 1:1 via crude ¹H NMR.The desired compound was obtained as a dense, colorless oil. ¹H

NMR (600 MHz, CDCl₃) δ ppm 4.34-4.20 (m, 2H), 3.72 and 3.50 (dd, J = 8.9, 7.2 Hz, and dd, J = 9.3, 7.0 Hz, 1H), 3.44 and 3.13 (dd, J = 9.3, 5.7 Hz and ddd, J = 8.9, 6.9, 1.9 Hz, 1H), 2.97 (dtd, J = 14.9, 10.6, 4.1 Hz, 1H), 2.70-2.47 (m, 1H), 2.19-2.10 (m, 1H), 2.08-2.02 (m, 1H), 1.68-1.57 (m, 2H), 1.36-1.28 (m, 4H), 1.22-1.12 (m, 1H), 1.10 and 1.08 (d, J = 7.0 Hz, 3H), 0.98-0.92 (m, 1H), 0.91 (d, J = 6.6 Hz, 3H), 0.88 and 0.87 (d, J = 4.0 Hz, 3H), 0.86-0.76 (m, 2H), 0.74 (d, J = 7.0, 3H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 164.4 and 164.2 (dd, J = 33, 14 Hz), 116.9 and 116.7 (dd, J = 279, 250 Hz), 80.0, 79.8, 67.7 and 67.2 (dd, J = 6.5, 3.4 Hz), 62.8, 62.7, 48.6, 48.5, 40.3, 39.9, 39.6 and 39.32 (t, J = 22 Hz), 34.8, 31.8, 31.8, 25.7, 25.6, 23.5, 23.5, 22.6, 22.6, 21.3, 21.2, 16.4, 16.3, 14.2, 14.2, 10.7 and 10.0 (t, J = 4.5 Hz). ¹⁹F NMR (CDCl₃, 471 MHz, ¹H decoupled) δ ppm -110.0 and -110.5 (d, J = 146 Hz, 1F), -114.1 and -118.5 (d, J = 258 Hz, 1F). **FT-IR** (cm⁻¹, neat, ATR) 2925 (m), 1742 (vs), 1096 (vs). **HRMS** (EI) calcd for C₁₆H₂₇F₂O₃ [M – CH₃⁺]: 305.1928, found: 305.1951.

Ethyl 7-((10,11-Dihydro-5H-dibenzo[a,d][7]annulen-5-yl)amino)-2,2-difluoroheptanoate, 46

(0.084 g, 42%) was prepared according to General Procedure A. The desired compound was obtained as a dense, colorless oil. ¹H
NMR (CDCl₃, 600 MHz) δ ppm 7.29-7.24 (m, 2H), 7.18-7.10 (m, 6H), 4.79 (s, 1H), 4.30 (q, J = 7.1 Hz, 2H), 3.76-3.68 (m, 2H), 2.99-2.92 (m, 2H), 2.53 (t, J = 7.0 Hz, 2H), 2.07-1.95 (m, 2H),

1.49-1.40 (m, 5H), 1.38-1.31 (m, 5H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 164.7 (t, *J* = 33.0 Hz), 140.2, 130.7, 129.3, 127.7, 126.1, 116.6 (t, *J* = 250 Hz), 63.0, 48.5, 34.7 (t, *J* = 23.2 Hz), 32.6, 30.2, 27.1, 21.6, 14.3. ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -105.7 (t, *J* = 16.8 Hz). FT-IR (cm⁻¹, neat, ATR) 2928 (w), 1760 (m), 1030 (s). HRMS (ESI) calcd for C₂₄H₃₀F₂NO₂ [M + H⁺]: 402.2245, found: 402.2246.

Ethyl 2,2-Difluoro-4-((2-oxo-1,2-dihydroquinolin-6yl)oxy)butanoate, 48 (0.065 g, 42%) was prepared according to General Procedure A. The desired compound was obtained as a white solid (mp = $199-204 \circ C$, decomp).

¹**H NMR** (600 MHz, DMSO-*d*₆) δ ppm 10.17 (s, 1H), 6.85 (d, *J* = 8.7 Hz, 1H), 6.74 (dd, *J* = 8.7, 2.8 Hz, 1H), 6.42 (d, *J* = 2.8 Hz, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 4.07-4.00 (m, 2H), 3.79-3.74 (m, 1H), 3.43-3.37 (m, 1H), 2.62-2.52 (m, 2H), 1.18 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (151 MHz, DMSO-*d*₆) δ ppm 168.6, 163.1 (t, *J* = 33 Hz), 153.2, 131.6, 123.1, 116.4, 115.4 (t, *J* = 250 Hz), 114.0, 113.0, 62.8, 61.4, 44.3, 41.8, 34.0 (t, *J* = 24 Hz), 27.2, 13.6. ¹⁹**F NMR** (DMSO-*d*₆, 471 MHz) δ ppm -103.4 (t, *J* = 17 Hz, 2F). **FT-IR** (cm⁻¹, neat, ATR) 3646 (br), 2996 (w), 1761 (m), 1670 (vs), 1253 (m). **HRMS** (ESI) calcd for C₁₅H₁₆F₂NO₄ [M + H⁺]: 312.1047, found: 312.1050.

Ethyl 2,2-Difluoro-8-oxo-8-(phenylamino)octanoate, 50 (4.801 g, 90%) was prepared according to General Procedure A with the following modification: 17.0 mmol scale with 5.0 mol % of benzophenone catalyst **5** was used.

The desired compound was obtained as a white solid (mp = 66-68 °C). ¹H NMR (CDCl₃, 600 MHz) δ ppm 7.50 (d, *J* = 8.0 Hz, 2H), 7.32 (t, *J* = 7.9, 2H), 7.13 (br s, 1H), 7.1 (t, *J* = 7.4, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 2.36 (t, *J* = 7.4 Hz, 2H), 2.13-2.02 (m, 2H), 1.78-1.73 (m, 2H), 1.56-1.49 (m, 2H), 1.49-1.41 (m, 2H), 1.35 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 171.1,

164.7 (t, J = 33 Hz), 138.1, 129.3, 124.6, 120.0, 116.5 (t, J = 250 Hz), 63.1, 37.6, 34.5 (t, J = 23 Hz), 28.9, 25.3, 21.5 (t, J = 4.3 Hz), 14.3. ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -105.8 (t, J = 17 Hz, 2F). FT-IR (cm⁻¹, neat, ATR) 3396 (br), 2930 (w), 1759 (s), 1661 (s), 1599 (s), 1542 (s), 1098 (s). HRMS (ESI) calcd for C₁₆H₂₁F₂NO₃Na [M + Na⁺]: 336.1387, found: 336.1385.

General Procedure B: DFA of N-(4-Cyanophenyl)-trifluoroacetamide

To a 40 mL, septum capped vial was added was added benzophenone **5** (0.048 g, 0.20 mmol, 0.20 equiv), sodium formate (0.204 g, 3.00 mmol, 3.0 equiv), zinc(II) trifluoromethanesulfonate (0.73 mg, 0.20 mmol, 0.20 equiv), *N*-(4-cyanophenyl)-trifluoroacetamide (1.07 g, 5.0 mmol, 5.0 equiv) and alkene (1.0 mmol, 1.0 equiv), if solid. Anhyd DMF (10.0 mL) was then added, the vial was capped, and the reaction solution was sparged with argon for 5 min. Cyclohexanethiol (24 μ L 0.20 mmol, 0.20 equiv) and alkene (1.0 mmol, 1.0 equiv), if liquid, were added by syringe, and the vial was sealed with Parafilm. The reaction was then irradiated with a Kessil[®] PR160-390 nm lamp at a distance of 2 cm. The reaction was cooled with two compact fans, ensuring that the surface temperature of the vial did not exceed 35 °C. After 16 h of irradiation, the reaction was quenched slowly with distilled H₂O (40 mL) and extracted with either Et₂O or EtOAc (2 x 40 mL). The combined organic extracts were washed with H₂O (50 mL) followed by brine (10 mL), dried (Na₂SO₄), and the solvent was removed via rotary evaporation. The resulting crude solid was then washed with a 2:1 hexanes/Et₂O mixture and filtered (2 x 50 mL) to separate the unreacted, crystalline *N*-(4-cyanophenyl)-trifluoroacetamide (typically >90% recovery). The filtrate was then evaporated onto 5 grams of silica be purified via automated flash silica column chromatography.

N-(4-Cyanophenyl)-2,2-difluoro-6-phenylhexanamide,

39 (0.230 g, 70%) was prepared according to General Procedure B. The desired compound was obtained as a white solid (mp = 73-75 °C). ¹H NMR (CDCl₃, 600 MHz) δ ppm 8.12 (s, 1H), 7.74-7.67 (m, 2H), 7.67-7.61 (m, 2H),

7.27-7.23 (m, 2H), 7.18-7.12 (m, 3H), 2.61 (t, J = 7.7 Hz, 2H), 2.27-2.12 (m, 2H), 1.72-1.66 (m, 2H), 1.57-1.49 (m, 2H). ¹³C NMR (CDCl₃, 151 MHz) δ ppm 162.7 (t, J = 30 Hz), 142.0, 140.3, 133.7, 128.6 (d, J = 7.0 Hz), 126.2, 120.5, 118.6, 118.4 (t, J = 254 Hz), 109.1, 35.7, 33.7 (t, J = 23 Hz), 31.1, 21.4 (t, J = 4.1 Hz). ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -106.2 (t, J = 18.5 Hz, 2F).

FT-IR (cm⁻¹, neat, ATR) 3310 (br), 2897 (w), 2229 (m), 1711 (m), 1596 (s), 1528 (vs). **HRMS** (ESI⁻) calcd for $C_{19}H_{17}F_2N_2O$ [M – H⁻]: 327.1309, found: 327.1297.

N-(4-Cyanophenyl)-2,2-difluoro-6-((triisopropylsilyl) oxy)hexanamide, 40 (0.323 g, 76%) was prepared according to General Procedure B. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 8.10 (br s, 1H), 7.76-

7.70 (m, 2H), 7.70-7.63 (m, 2H), 3.74-3.67 (m, 2H), 2.43-1.87 (m, 2H), 1.65-1.58 (m, 4H), 1.09-0.99 (m, 21H). ¹³**C** NMR (151 MHz, CDCl₃) δ ppm 162.8 (t, *J* = 30 Hz), 140.3, 133.7, 120.4, 118.6, 118.5 (t, *J* = 256 Hz), 109.1, 62.9, 33.8 (t, *J* = 23 Hz), 32.5, 18.5 (t, *J* = 4.4 Hz), 18.3, 12.2. ¹⁹**F** NMR (CDCl₃, 471 MHz) δ ppm -105.4 (t, *J* = 16.5 Hz, 2F). **FT-IR** (cm⁻¹, neat, ATR) 3396 (br), 2942 (m), 2230 (m), 1717 (m), 1598 (s), 1531 (s). HRMS (ESI) calcd for C₂₂H₃₅F₂N₂O₂Si [M + H⁺]: 425.2436, found: 425.2445.

N-(4-Cyanophenyl)-4-cyclohexyl-2,2-difluorobutanamide,

41 (0.355 g, 58%) was prepared according to General Procedure B. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 8.16 (s, 1H),

7.74 (d, J = 8.8 Hz, 2H), 7.70-7.59 (d, J = 8.7 Hz, 2H), 2.27-2.08 (m, 2H), 1.74-1.68 (m, 4H), 1.67-1.62 (m, 1H), 1.41 – 1.33 (m, 2H), 1.31-1.08 (m, 4H), 0.96 – 0.85 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 162.9 (t, J = 29 Hz), 140.3, 133.7, 120.4, 118.7, 118.8 (t, J = 253 Hz), 109.0, 37.5, 33.2, 31.5 (t, J = 23 Hz), 28.9 (t, J = 3.7 Hz), 26.7, 26.4. ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm - 106.4 (t, J = 18 Hz). FT-IR (cm⁻¹, neat, ATR) 3932 (br), 2924 (m), 2229 (w), 1705 (m), 1596 (s), 1529 (vs). HRMS (EI) calcd for C₁₇H₂₁F₂N₂O [M + H⁺]: 307.1622, found: 307.1627.

8-((4-Cyanophenyl)amino)-7,7-difluoro-8oxooctanoic acid, 42 (0.258 g, 83%) was prepared according to General Procedure B. The desired compound was obtained as the corresponding carboxylic acid (white solid, mp = 180-182 °C) after

treatment with HCl in dioxane (2 M) at 75 °C for 2 h. ¹H NMR (CD₃OD, 600 MHz) δ ppm 7.91-

7.87 (m, 2H), 7.75-7.71 (m, 2H), 2.29 (t, J = 7.4 Hz, 2H), 2.22-2.12 (m, 2H), 1.67-1.59 (m, 2H), 1.57-1.50 (m, 2H), 1.47-1.38 (m, 2H). ¹³C NMR (151 MHz, CD₃OD) δ ppm 177.5, 165.3 (t, J = 21 Hz), 143.0, 134.4, 122.3, 119.7, 119.4 (t, J = 252 Hz), 109.3, 35.1 (t, J = 23 Hz), 34.8, 29.8, 25.8, 22.6 (t, J = 4.4 Hz). ¹⁹F NMR (CDCl₃, 471 MHz) δ ppm -106.8 (t, J = 17.0 Hz, 2F). FT-IR (cm⁻¹, neat, ATR) 3285 (v br) 2239 (w), 1718 (m), 1598 (m). HRMS (EI) calcd for C₁₅H₁₇F₂N₂O₃ [M + H⁺]: 311.1207, found: 311.1184.

4-((*tert*-Butyldimethylsilyl)oxy)-*N*-(4-cyanophenyl)-2,2difluoro-5,5-dimethylhexanamide, 43 (0.613 g, 75%) was prepared according to General Procedure B. The desired compound was obtained as a dense, colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ ppm 8.14 (br s, 1H), 7.74 (d, *J* = 8.8 Hz,

2H), 7.67 (d, J = 8.6 Hz, 2H), 3.76 (dd, J = 4.9, 3.2 Hz, 1H), 2.57 (dddd, J = 30.8, 15.7, 12.0, 2.9 Hz, 1H), 2.19 (dddd, J = 31.8, 16.1, 8.1, 5.1 Hz, 1H), 0.90 (s, 9H), 0.89 (s, 9H), 0.09 (s, 6H). ¹³C **NMR** (151 MHz, CDCl₃) δ ppm 162.9 (t, J = 116 Hz), 140.3, 133.7, 120.4, 118.6, 118.0 (t, $J_{C-F} = 254$ Hz), 109.1, 73.8, 38.7 (t, J = 21.8 Hz), 36.4, 26.4, 26.0, 18.7, -3.0. ¹⁹F **NMR** (CDCl₃, 471 MHz) δ ppm -102.55 (ddd, J = 257.0, 31.1, 7.9 Hz, 1F), -104.48 (ddd, J = 257.2, 32.5, 12.1 Hz, 1F). **FT-IR** (cm⁻¹, neat, ATR) 3401 (br), 2957 (m), 2229 (w), 1719 (s), 1532 (s). **HRMS** (ESI) calcd for C₂₁H₃₃F₂N₂O₂Si [M + H⁺]: 411.2279, found: 411.2274.

N-(4-Cyanophenyl)-2,2-difluoro-4-(((1*R*,2*S*,5*R*)-2isopropyl-5-methylcyclohexyl)oxy)-3-

methylbutanamide, 44 (0.240 g, 61%) was prepared according to General Procedure B. The diastereomeric ratio was determined to be 1.5:1 via crude ¹H NMR. The

desired compound was obtained as a dense, colorless oil. ¹**H** NMR (CDCl₃, 600 MHz) δ ppm 8.23 and 8.10 (s, 1H), 7.74-7.70 (m, 2H), 7.68-7.65 (m, 2H), 3.77-3.63 (m, 1H), 3.41 and 3.26 (dd, *J* = 9.7, 5.8 and *J* = 9.2 and 6.1 Hz, 1H), 3.00-2.94 (m, 1H), 2.88-2.67 (m, 1H), 2.10-1.91 (m, 2H), 1.65-1.45 (m, 2H), 1.33-1.22 (m, 1H), 1.17 and 1.13 (d, *J* = 7.1 Hz, 3H), 1.07-0.82 (m, 5H), 0.79-0.59 (m, 8H). ¹³**C** NMR (151 MHz, CDCl₃) δ ppm 162.6 (t, *J* = 35 Hz), 140.7, 140.6, 133.7, 120.2, 120.1, 118.77, 118.75, 108.7, 108.6, 80.2, 80.1, 67.8 and 67.6 (t, *J* = 4.6 Hz), 48.49, 48.48, 40.4, 40.3, 39.0 and 38.5 (t, *J* = 22 Hz), 34.8, 34.7, 31.7, 31.6, 25.7, 25.6, 23.32, 23.27, 22.6, 22.5, 21.12,

21.09, 16.3, 16.2, 10.6 and 10.0 (t, J = 4.2 Hz). ¹⁹F NMR (CDCl₃, 471 MHz, ¹H decoupled) δ ppm -108.0 and -108.6 (dd, J = 76.0, 9.9 Hz, 1F), -114.4 and -119.6 (dd, J = 256.8, 19.6 and J = 254.5, 22.5 Hz, 1F). FT-IR (cm⁻¹, neat, ATR) 3315 (br), 2952 (m), 2922 (w), 1717 (m), 1596 (s), 1530 (vs). HRMS (ESI) calcd for C₂₂H₃₁F₂N₂O₂ [M + H⁺]: 393.2354, found: 393.2359.

Procedure for Large Scale DFA of Ethyl Trifluoroacetate

To a 1 L Wheaton standard, wide-mouth bottle was added benzophenone **5** (0.119 g, 0.50 mmol, 0.01 equiv) and sodium formate (10.20 g, 0.15 mol, 3.0 equiv). Anhyd DMF (500 mL) was then added via cannula, the vial sealed with a 24/40 rubber septum, and the reaction solution was sparged with argon for 25 min. Ethyl trifluoroacetate (30 mL, 0.25 mol, 5.0 equiv), cyclohexanethiol (1.20 mL 10.0 mmol, 0.20 equiv), and 4-phenyl-1-butene (6.61 g, 0.05 mol, 1.0 equiv) were added by syringe, and the bottle was sealed with Parafilm. The reaction was then irradiated with two Kessil[®] PR160-390 nm lamps at a distance of 4 cm. A balloon of argon was then fitted to the reaction (via syringe and 18G needle) for pressure equalization. The reaction was cooled with two compact fans, ensuring that the surface temperature of the vial did not exceed 35 °C (see images below). After 24 h of irradiation, the reaction was quenched slowly with distilled H₂O (250 mL) and extracted with Et₂O (2 x 250 mL). The combined organic extracts were washed with H₂O (250 mL) followed by brine (50 mL), dried (Na₂SO₄), and the solvent was removed via rotary evaporation. The crude material was then purified via short path, high vacuum distillation (bp = 110-114 °C, 0.27 mm Hg) to afford the desired compound as a colorless oil (8.91 g, 0.035 mol, 70%).

Figure S#. Reaction set up for large scale DFA

Quantum Yield Experiments

To confirm the radical chain nature of the DFA mechanism, quantum yield experiments were performed according to the procedure described by Jui *et al.*¹⁰

Determination of light intensity for 390 nm PR160 Lamp

The photon flux of the light source was determined by standard potassium ferrioxalate actinometry. A 0.15 M soln of potassium ferrioxalate was prepared by dissolving 2.21 g of potassium ferrioxalate hydrate in 30 mL of 0.05 M H₂SO₄. A quenching soln was prepared by dissolving 50 mg of phenanthroline and 11.25 g of NaOAc in 50 mL of 0.5 M H₂SO₄. Both solutions were covered in foil and stored in the dark. A 1 dram septum capped vial was then charged with 2 mL of the ferrioxolate soln and irradiated for 10.0 s with a Kessil PR160 390 nm lamp (100% power) at a distance of exactly 2.0 cm. After irradiation, 0.35 mL of the quenching soln was added to the vial. The soln was then allowed to rest for 30 min in the dark. The absorbance of the soln was measured at 510 nm and compared to that of a non-irradiated standard soln of ferrioxalate. Conversion was calculated using eq 1.

mol Fe²⁺ =
$$\frac{V \times \Delta A}{l \times \varepsilon}$$
 (eq 1)

V = final volume of the soln; ΔA = difference in absorbance at 510 nm; l = path length; ε = molar absorptivity of ferrioxalate at 510 nm. The average value of three experiments was 3.707×10^{-6} mol of Fe²⁺.

The photon flux can then be calculated using eq 2.

Photon flux =
$$\frac{\text{mol Fe}^{2+}}{\phi \times t \times f}$$
 (eq 2)

 ϕ = quantum yield of ferrioxalate actinometer (1.13 at 390 nm)¹¹; t = time ; f = fraction of light absorbed at λ = 390 nm (0.99).¹¹ The average photon flux was calculated to be 3.31×10⁻⁷ einsteins s⁻¹

Determination of Quantum Yield for DFA of Ethyl Trifluoroacetate

The quantum yield was determined by irradiating a 0.1 mmol scale DFA reaction using 3butenyl acetate as the alkene (see General Optimization Procedure) for 10 min. ¹⁹F NMR was used to determine the yield (average of three experiments = 27% yield). The quantum yield (ϕ) of the reaction was determined using eq 3.

$$\phi = \frac{\text{mol of product}}{\text{photon flux} \times t \times f} \quad (\text{eq 3})$$

The fraction of emitted light that is absorbed by benzophenone **5** was determined by integrating the overlap of the absorption of benzopheone **5** and the emission of the PR160 390 nm lamp.

Figure S1. Benzophenone 5 absorbance vs Kessil Lamp emission

Based on the overlap between benzophenone **5**'s absorption spectra and the reported emission for the Kessil PR160 390 nm lamp, approximately 5.5% of all light emitted by the lamp is absorbed by benzophenone **5**. The quantum yield was therefore calculated to be 4.94.

$$\phi = \frac{5.40 \times 10^{-5} \text{ mol}}{3.31 \times 10^{-7} \text{ E/s} \times 600 \text{ s} \times 0.05} = 4.94$$

Cyclic Voltammetry Studies

Cyclovoltammetry experiments were carried out on a CHI electrochemical workstation using a glassy carbon working electrode, Ag/AgCl pseudoreference electrode, and Pt wire counter electrode. The measurements were taken at room temperature in anhyd DMF containing 0.1 M Bu₄NPF₆ as electrolyte. Voltammograms were calibrated to either Fe(Cp)₂ or Ag(NO₃) as internal standards.^{12,13}

Ethyl Trifluoroacetate

36 μ L (0.30 mmol) of ethyl trifluoroacetate was dissolved in 10 mL of DMF, and 18 mg (0.10 mmol) of Fe(Cp)₂ was added as an internal standard, E_{1/2} = -2.0 V vs SCE. A scan rate of 0.1 V/s was used for the reported voltammogram.

N-(4-Cyanophenyl)-trifluoroacetamide

64 mg (0.30 mmol) of *N*-(4-cyanophenyl)-trifluoroacetamide was dissolved in 10 mL of DMF, and 17 mg (0.10 mmol) of Ag(NO₃) was added as an internal standard. After measuring the potential of *N*-(4-cyanophenyl)-trifluoroacetamide, 109 mg (0.30 mmol) of $Zn(OTf)_2$ was added and the measurement was repeated. A scan rate of 0.1 V/s was used for the reported voltammogram.

For *N*-(4-cyanophenyl)-trifluoroacetamide, $E_{1/2} = -2.2$ V vs SCE

With a 1:1 ratio of *N*-(4-cyanophenyl)-trifluoroacetamide and $Zn(OTf)_2$, $E_{1/2} = -1.7$ V vs SCE.

References

- Campbell, M.W., Yuan, M., Polites, V.C., Gutierrez, O., Molander, G.A., J. Am. Chem. Soc. 2021, 143, 3901–3910.
- Law, J.A., Bartfield, N.M., Frederich, J.H., Angew. Chem. Int. Ed., 2021, 60, 14360 14364.
- Nagarapu, L., Gaikwad, H.K., Bantu, R., Manikonda, S.R., Kumar C.G., Pombala, S., *Tetrahedron Letters*, 2012, 53, 1287 – 1291.
- 4. Wei-Jie, Z., Yan, M., Huang, D., Ji, S., Tetrahedron, 2005, 61, 5585 5593.
- 5. Mereyala, H., Gaddam, R., J. Chem. Soc. Perk. Trans. I, 1994, 15, 2187 2190
- 6. Su, C., Williard, P., Org. Lett., 2010, 12, 5378-5381
- Chattopadhyay, S. K., Ghosh, S., Sarkar, S., Bhadra, K., *Beilstein J. Org. Chem.*, 2019, 2524 - 2533
- 8. Giles, R.G., Heaney, H., Plater, M.J., Tetrahedron, 2015, 71, 7367 7385
- Yasuo, K., Yoshito, K., Minoru, O., Takao, N., Yoshihiro, I., Yukio, K., Hiroyoshi, H., Norio, F., Carbostyril derivatives. U.S. Patent US6143763, 2000, A.
- 10. Hendy, C.M., Smith, G.C., Xu, Z., Lian, T., Jui. N.T., J. Am. Chem. Soc. 2021, 143, 8987–8992
- 11. Montalti, M., Credi, A., Prodi, L., Gandolfi, T., Handbook of Photochemistry (Third Edition): CRC Press. 2020
- 12. Pavlishchuk, V.V., Addison, A.W., Inorg. Chim. Acta, 2000, 298, 97-102
- 13. Aranzaes, J.R., Daniel, M.C., Astruc, D., Can. J. Chem., 2006, 84, 288-299

NMR Spectra of Synthesized Compounds

151 MHz, CDCl₃

Ethyl 6-Acetoxy-2,2-difluorohexanoate, ¹⁹F NMR 471 MHz, CDCl₃

Ph.

7

Ethyl 2,2-Difluoro-6-phenylhexanoate, ¹H NMR 600 MHz, CDCl₃

Ph.

7

Ethyl 2,2-Difluoro-6-phenylhexanoate, ¹⁹F NMR 471 MHz, CDCl₃

QAc

8

Ethyl 5-Acetoxy-2,2-difluoro-5-phenylpentanoate, ¹H NMR 600 MHz, CDCl₃

QAc

8

Ethyl 5-Acetoxy-2,2-difluoro-5-phenylpentanoate, ¹³C NMR 151 MHz, CDCl₃

QAc

Ethyl 5-Acetoxy-2,2-difluoro-5-phenylpentanoate, ¹⁹F NMR 471 MHz, CDCl₃

ppm

Ethyl 2,2-Difluoro-5-phenoxypentanoate, ¹H NMR 600 MHz, CDCl₃

2.4

Г

S42

500 501

Ethyl 2,2-Difluoro-5-phenoxypentanoate, ¹³C NMR 151 MHz, CDCl₃

Boc

'N' H

10

Ethyl 5-((*tert*-Butoxycarbonyl)amino)-2,2-difluoropentanoate, ¹H NMR 600 MHz, CDCl₃

Boc

'N' H

Ethyl 5-((tert-Butoxycarbonyl)amino)-2,2-difluoropentanoate, ¹³C NMR 151 MHz, CDCl₃

EtO,

όEt

,OEt

Ethyl 6,8,8-Triethoxy-2,2-difluorooctanoate, ¹⁹F NMR 471 MHz, CDCl₃

,CO₂Et

Triethyl 5,5-Difluoropentane-1,1,5-tricarboxylate, ¹³C NMR 151 MHz, CDCl₃

,CO₂Et

CO₂Et

Triethyl 5,5-Difluoropentane-1,1,5-tricarboxylate, ¹⁹F NMR 471 MHz, CDCl₃

Ethyl 2,2-Difluoro-5-(1-hydroxycyclohexyl)pentanoate, ¹H NMR 600 MHz, CDCl₃

ö

13

Ethyl 2,2-Difluoro-5-(1-hydroxycyclohexyl)pentanoate, ¹³C NMR 151 MHz, CDCl₃

Ethyl 2,2-Difluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan -2-yl)pentanoate, ¹H NMR 600 MHz, CDCl₃

S57

Ethyl 2,2-Difluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan -2-yl)pentanoate, ¹¹B NMR 128 MHz, CDCl₃

Ethyl 5-Acetoxy-2,2-difluoro-4-((trimethylsilyl)methyl) pentanoate, ¹H NMR 600 MHz, CDCl₃

Ethyl 5-Acetoxy-2,2-difluoro-4-((trimethylsilyl)methyl) pentanoate, ¹³C NMR 151 MHz, CDCl₃

Ethyl 2,2-Difluoro-5-(1H-imidazol-1-yl)pentanoate, ¹H NMR 600 MHz, CDCl₃

Ethyl 2,2-Difluoro-5-(1H-imidazol-1-yl)pentanoate, ¹³C NMR 151 MHz, CDCl₃

16

Ethyl 2,2-Difluoro-5-(1H-imidazol-1-yl)pentanoate, ¹⁹F NMR 471 MHz, CDCl₃

tert-Butyl 4-(3-Ethoxy-2,2-difluoro-3-oxopropyl)piperidine-1-carboxylate, ¹H NMR 600 MHz, CDCl₃

. NBoc

tert-Butyl 4-(3-Ethoxy-2,2-difluoro-3-oxopropyl)piperidine-1-carboxylate, ¹³C NMR 151 MHz, CDCl₃

. NBoc

tert-Butyl 4-(3-Ethoxy-2,2-difluoro-3-oxopropyl)piperidine-1-carboxylate, ¹⁹F NMR 471 MHz, CDCl₃

Ethyl 2,2-Difluoro-4-((3R)-6-methyl-7-oxabicyclo[4.1.0] heptan-3-yl)pentanoate, ¹³C NMR 151 MHz, CDCl₃

Ethyl 2,2-Difluoro-4-((3*R*)-6-methyl-7-oxabicyclo[4.1.0] heptan-3-yl)pentanoate, ¹⁹F NMR 471 MHz, CDCl₃

ΟН

Ethyl 2,2-Difluoro-4-(5-(2-hydroxypropan-2-yl)-2-methyl tetrahydrofuran-2-yl)butanoate, ¹⁹F NMR 471 MHz, CDCl₃

Ethyl 2,2-Difluoro-4-((R)-4-methyl-5-oxocyclohex-3-en-1-yl)pentanoate, ¹H NMR 600 MHz, CDCl₃

Ethyl 2,2-Difluoro-4-((R)-4-methyl-5-oxocyclohex-3-en-1-yl)pentanoate, ¹³C NMR 151 MHz, CDCl₃

Ethyl 2,2-Difluoro-4-((*R*)-4-methyl-5-oxocyclohex-3-en-1-yl)pentanoate, ¹⁹F NMR 471 MHz, CDCl₃

Ethyl 2,2-Difluoro-3-((4*R*,8a*S*,9*R*)-4,8,8-trimethyldecahydro-1,4-methanoazulen-9-yl)propanoate, ¹⁹F NMR 471 MHz, CDCl₃

Ethyl 2,2-Difluoro-5-(4-hydroxy-3-((2-hydroxy ethyl) carbamoyl)-5-methoxyphenyl)pentanoate, ¹⁹F NMR 471 MHz, CDCl₃

0

0

ЪH

ÓМе

,OH

Ethyl 2,2-Difluoro-6-hydroxy-3-isopropylheptanoate, ¹H NMR 600 MHz, CDCl₃

.OH

 CH₃

25

Ethyl 2,2-Difluoro-6-hydroxy-3-isopropylheptanoate, ¹⁹F NMR 471 MHz, CDCl₃

Ethyl 2,2-Difluoro-2-((1S,5R)-2-(2-hydroxyethyl)-5-isopropyl cyclohex-2-en-1-yl)acetate, ¹H NMR 600 MHz, CDCl₃

0_∽OEt

27

Ethyl 2,2-Difluoro-4-(2-oxoazepan-1-yl)butanoate, ¹H NMR 600 MHz, CDCl₃

Ethyl 2,2-Difluoro-4-(2-oxoazepan-1-yl)butanoate, ¹³C NMR 151 MHz, CDCl₃

Ethyl 2,2-Difluoro-4-(2-oxoazepan-1-yl)butanoate, ¹⁹F NMR 471 MHz, CDCl₃

CHCl₃ 7.26 3.37 2.4 2.2 ppm 1.38 1.36 1.34 ppm 10 7 9 8 6 5 4 3 2 1 ppm 0 0.77 1:91 2.02 9.17

S103

Ethyl 4-((*tert*-Butoxycarbonyl)amino)-2,2-difluorobutanoate, ¹H NMR 600 MHz, CDCl₃

0

F F 29

Boc

EtO

Ethyl 4-((*tert*-Butoxycarbonyl)amino)-2,2-difluorobutanoate, ¹³C NMR 151 MHz, CDCl₃

Boc

29

Ethyl 2,2-Difluoro-5,5-dimethyl-4-morpholinohexanoate, ¹H NMR 600 MHz, CDCl₃

30

Ethyl 2,2-Difluoro-5,5-dimethyl-4-morpholinohexanoate, ¹³C NMR 151 MHz, CDCl₃

0

30

Ethyl 2,2-Difluoro-5,5-dimethyl-4-morpholinohexanoate, ¹⁹F NMR 471 MHz, CDCl₃
2,2-Difluoro-3-((3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyl tetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl) propanoic acid, ¹H NMR 600 MHz, CDCl₃

2,2-Difluoro-3-((3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyl tetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl) propanoic acid, ¹³C NMR 151 MHz, CDCl₃

2,2-Difluoro-3-((3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyl tetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl) propanoic acid, ¹⁹F NMR 471 MHz, CDCl₃

Ethyl 4-(Benzyloxy)-2,2-difluorobutanoate, ¹H NMR 600 MHz, CDCl₃

32

Ethyl 4-(Benzyloxy)-2,2-difluorobutanoate, ¹³C NMR 151 MHz, CDCl₃

Ethyl 4-(Benzyloxy)-2,2-difluorobutanoate, ¹⁹F NMR 471 MHz, CDCl₃

Ethyl 4-([1,1'-Biphenyl]-4-yloxy)-2,2-difluorobutanoate, ¹H NMR 600 MHz, CDCl₃

Ethyl 4-([1,1'-Biphenyl]-4-yloxy)-2,2-difluorobutanoate, ¹³C NMR 151 MHz, CDCl₃

33

Ethyl 4-([1,1'-Biphenyl]-4-yloxy)-2,2-difluorobutanoate, ¹⁹F NMR 471 MHz, CDCl₃

Ethyl 4-((*tert*-Butyldimethylsilyl)oxy)-2,2-difluoro-5,5-dimethylhexanoate, ¹H NMR 600 MHz, CDCl₃

Ethyl 4-((tert-Butyldimethylsilyl)oxy)-2,2-difluoro-5,5-dimethylhexanoate, ¹³C NMR 151 MHz, CDCl₃

0 II

34 F

,OTBS

Ethyl 4-((*tert*-Butyldimethylsilyl)oxy)-2,2-difluoro-5,5-dimethylhexanoate, ¹⁹F NMR 471 MHz, CDCl₃

0

1-(tert-Butyl) 2-(2-(4-Ethoxy-3,3-difluoro-4-oxobutoxy) Ethyl (R)-Pyrrolidine-1,2-dicarboxylate, ¹H NMR 600 MHz, CDCl₃

151 MHz, CDCl₃

1-(tert-Butyl) 2-(2-(4-Ethoxy-3,3-difluoro-4-oxobutoxy) Ethyl (R)-Pyrrolidine-1,2-dicarboxylate, ¹⁹F NMR 471 MHz, CDCl₃

36

4-Ethoxy-3,3-difluoro-4-oxobutyldodecanoate, ¹H NMR 600 MHz, CDCl₃

4-Ethoxy-3,3-difluoro-4-oxobutyldodecanoate, ¹³C NMR 151 MHz, CDCl₃

4-Ethoxy-3,3-difluoro-4-oxobutyldodecanoate, ¹⁹F NMR 471 MHz, CDCl₃

600 MHz, CDCl₃

151 MHz, CDCl₃

CH

37

Ethyl 2,2-Difluoro-4-(((1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl)oxy)-3-methylbutanoate, ¹⁹F NMR 471 MHz, CDCl₃

⊀ OEt

Ethyl 7-((10,11-Dihydro-5H-dibenzo[a,d][7]annulen-5-yl)amino)-2,2-difluoroheptanoate, ¹H NMR 600 MHz, CDCl₃

0 ÒEt

Ethyl 7-((10,11-Dihydro-5H-dibenzo[a,d][7]annulen-5-yl)amino)-2,2-difluoroheptanoate, ¹³C NMR 151 MHz, CDCl₃

⊀ OEt

Ethyl 7-((10,11-Dihydro-5H-dibenzo[a,d][7]annulen-5-yl)amino)-2,2-difluoroheptanoate, ¹⁹F NMR 471 MHz, CDCl₃

Ethyl 2,2-Difluoro-4-((2-oxo-1,2-dihydroquinolin-6-yl)oxy)butanoate, ¹H NMR 600 MHz, DMSO-d6

Ethyl 2,2-Difluoro-4-((2-oxo-1,2-dihydroquinolin-6-yl)oxy)butanoate, ¹³C NMR 151 MHz, DMSO-d6

471 MHz, DMSO-d6

Ethyl 2,2-Difluoro-8-oxo-8-(phenylamino)octanoate, ¹H NMR 600 MHz, CDCl₃

`Ph

Ċ

н

ö

`Ph

Ethyl 2,2-Difluoro-8-oxo-8-(phenylamino)octanoate, ¹³C NMR 151 MHz, CDCl₃

`Ph Ċ

50

Ethyl 2,2-Difluoro-8-oxo-8-(phenylamino)octanoate, ¹⁹F NMR 471 MHz, CDCl₃

CHCl₃ 2.25 2.20 ppm 7.75 7.70 7.65 ppm 2.00 8 2.00 8 2.00 8 2.00 8 2 10 5 3 ppm 9 6 4 1 0

39

N-(4-Cyanophenyl)-2,2-difluoro-6-phenylhexanamide, ¹H NMR 600 MHz, CDCl₃

N-(4-Cyanophenyl)-2,2-difluoro-6-phenylhexanamide, ¹³C NMR 151 MHz, CDCl₃

P٢

39

N-(4-Cyanophenyl)-2,2-difluoro-6-phenylhexanamide, ¹⁹F NMR 471 MHz, CDCl₃

.OTIPS

N-(4-Cyanophenyl)-2,2-difluoro-6-((triisopropylsilyl) oxy)hexanamide, ¹H NMR 600 MHz, CDCl₃

N-(4-Cyanophenyl)-2,2-difluoro-6-((triisopropylsilyl) oxy)hexanamide, ¹³C NMR 151 MHz, CDCl₃

,OTIPS

FF

40

 $\it N$ -(4-Cyanophenyl)-2,2-difluoro-6-((triisopropylsilyl) oxy)hexanamide, $^{19}{\rm F}$ NMR 471 MHz, CDCl $_3$
NC CHCl₃ 7.75 h 2.0 1.8 1.2 2.2 8.0 7.8 ppm 1.6 1.4 1.0 ppm L..... 0.94 2.03 8 8 7 3 10 9 5 ppm 6 4 0

F 41

N-(4-Cyanophenyl)-4-cyclohexyl-2,2-difluorobutanamide, ¹H NMR 600 MHz, CDCl₃

N-(4-Cyanophenyl)-4-cyclohexyl-2,2-difluorobutanamide, ¹³C NMR 151 MHz, CDCl₃

41

8-((4-Cyanophenyl)amino)-7,7-difluoro-8-oxooctanoic acid, ¹H NMR 600 MHz, CD₃OD

8-((4-Cyanophenyl)amino)-7,7-difluoro-8-oxooctanoic acid, ¹⁹F NMR 471 MHz, CD₃OD

4-((*tert*-Butyldimethylsilyl)oxy)-N-(4-cyanophenyl)-2,2-difluoro-5,5-dimethylhexanamide, ¹H NMR 600 MHz, CDCl₃

151 MHz, CDCl₃

NC

C

43

OTBS

4-((*tert*-Butyldimethylsilyl)oxy)-*N*-(4-cyanophenyl)-2,2-difluoro-5,5-dimethylhexanamide, ¹⁹F NMR 471 MHz, CDCl₃

600 MHz, CDCl₃

151 MHz, CDCl₃

