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1 Model Definition

We report here the system of constitutive equations that defines the epidemic model. To simplify the no-

tation we define the force of infection as λk(t) = β× s(t)×
{∑

k′
Ĉkk′ (t)
Nk′

[
Ik′ + (1− V EI)(IV 1

k′ + IV 2
k′ )
]}

,

where β is the transmission rate, s(t) is the seasonality factor, Ĉkk′(t) is the k, k′ element of the contacts
matrix with the reductions due to NPIs implemented, and the term in brackets is the probability of
contacting an infectious individual in age group k′ given the contact rates and the number of individuals
per group. In the computational implementation, the model’s equations are integrated through chain
binomial processes in order to ensure the discrete and stochastic nature of the transitions among com-
partments. Namely, at each time step t the number of individuals in age group k and compartment X
transiting to compartment Y is sampled from PrBin(Xk(t), pXk→Yk

(t)), where pXk→Yk
(t) is the tran-

sition probability. For the sake of readability we report below the ODE’s version of the constitutive
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equations for each age group k.

Ṡk = −λkSk − (1 + ψ)λkSk − ΩSk
(t)

˙SV 1
k = −(1− V ES1)λkS

V 1
k − (1− V EV OCS1 )(1 + ψ)λkS

V 1
k −∆−1V 2S

V 1
k + ΩSk

(t)

˙SV 2
k = −(1− V ES2)λkS

V 2
k − (1− V EV OCS2 )(1 + ψ)λkS

V 2
k

˙LWT,k = λkSk − εLWT,k − ΩLWT,k
(t)

˙LV 1
WT,k = (1− V ES1)λkS

V 1
k − εLV 1

WT,k −∆−1V 2L
V 1
WT,k + ΩLWT,k

(t)

˙LV 2
WT,k = (1− V ES2)λkS

V 2
k + ∆−1V 2L

V 1
WT,k − εLV 2

WT,k

˙LV OC,k = (1 + ψ)λkSk − εLV OC,k − ΩLV OC,k
(t)

˙LV 1
V OC,k = (1− V EV OCS1 )(1 + ψ)λkS

V 1
k − εLV 1

V OC,k −∆−1V 2L
V 1
V OC,k + ΩLV OC,k

(t)

˙LV 2
V OC,k = (1− V EV OCS1 )(1 + ψ)λkS

V 2
k + ∆−1V 2L

V 1
V OC,k − εLV 2

V OC,k

˙IWT,k = εLWT,k − µIWT,k

˙IV 1
WT,k = εLV 1

WT,k − µIV 1
WT,k

˙IV 2
WT,k = εLV 2

WT,k − µIV 2
WT,k

˙IV OC,k = εLV OC,k − µIV OC,k
˙IV 1

V OC,k = εLV 1
V OC,k − µIV 1

V OC,k

˙IV 2
V OC,k = εLV 2

V OC,k − µIV 2
V OC,k

˙RWT,k = µ(1− IFRk)IWT,k − ΩRWT,k
(t)

˙RV 1
WT,k = µ [1− (1− V EM1)IFRk] IV 1

WT,k −∆−1V 2R
V 1
WT,k + ΩRWT,k

(t)

˙RV 2
WT,k = µ [1− (1− V EM2)IFRk] IV 2

WT,k + ∆−1V 2R
V 1
WT,k

˙RV OC,k = µ(1− IFRk)IV OC,k − ΩRV OC,k
(t)

˙RV 1
V OC,k = µ

[
1− (1− V EV OCM1 )IFRk

]
IV 1
V OC,k +−∆−1V 2R

V 1
V OC,k + ΩRV OC,k

(t)

˙RV 2
V OC,k = µ

[
1− (1− V EV OCM1 )IFRk

]
IV 2
V OC,k + ∆−1V 2R

V 1
V OC,k

˙DWT,k = µIFRkIWT,k −∆−1DWT,k

˙DV 1
WT,k = µ(1− V EM1)IFRkI

V 1
WT,k −∆−1DV 1

WT,k

˙DV 2
WT,k = µ(1− V EM1)IFRkI

V 2
WT,k −∆−1DV 2

WT,k

˙DV OC,k = µIFRkIV OC,k −∆−1DV OC,k

˙DV 1
V OC,k = µ(1− V EV OCM1 )IFRkI

V 1
V OC,k −∆−1DV 1

V OC,k

˙DV 2
V OC,k = µ(1− V EV OCM1 )IFRkI

V 2
V OC,k −∆−1DV 2

V OC,k

˙Do
WT,k = ∆−1DWT,k

˙
DV 1,o
WT,k = ∆−1DV 1

WT,k

˙
DV 2,o
WT,k = ∆−1DV 2

WT,k

˙Do
V OC,k = ∆−1DV OC,k

˙
DV 1,o
V OC,k = ∆−1DV 1

V OC,k

˙
DV 2,o
V OC,k = ∆−1DV 2

V OC,k

(1)

Where the terms ΩSk
(t), ΩLk

(t), ΩRk
(t) describes the transition of individuals due to vaccination (1st

dose). The number of individuals that receive the first dose at each time step is taken from real data [1],
while the distribution of doses among age groups depend on the strategy considered. For simplicity
we did not included in the model the delay ∆V between inoculation and actual vaccine protection. In
Tab. 1, 2, 3 we report a full list of parameters, their values and references.
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Symbol Meaning Value Ref
β Transmission rate fitted [2]
ε Inverse of latency period 1 / 4 days [3, 4]
µ Inverse of infectious period 1 / 2.5 days [3, 4]

Ck, k
′ Element of the contacts matrix / [5]

IFR Infection Fatality Rate Tab. 2 [6]
∆ Number of days between I → D and death reporting fitted [7]
ψ Increased transmissibility of Alpha VOC 0.5 [8, 9]
s(t) Seasonality modulation time-varying [10]
V ES1 Vaccine efficacy against infection (1 dose) Tab. 3 [11]
V ES2 Vaccine efficacy against infection (2 dose) Tab. 3 [11]
V EM1 Vaccine efficacy against death if infected (1 dose) Tab. 3 [11]
V EM2 Vaccine efficacy against death if infected (2 dose) Tab. 3 [11]
V EV OCS1 Vaccine efficacy against infection with Alpha VOC (1 dose) Tab. 3 [11]
V EV OCS2 Vaccine efficacy against infection with Alpha VOC (2 dose) Tab. 3 [11]
V EV OCM1 Vaccine efficacy against deaths if infected with Alpha VOC (1 dose) Tab. 3 [11]
V EV OCM2 Vaccine efficacy against deaths if infected with Alpha VOC (2 dose) Tab. 3 [11]
V EI Vaccine efficacy against further transmission 40% [11]
∆V 2 Number of days for second inoculation Tab. 3 [12]
∆V Number of days between inoculation and vaccine protection 14 days [11]

Table 1: Interpretation of different parameters and their values.

Age group Infection Fatality Ratio (Salje et al)
0-9 0.001%

10-19 0.001%
20-24 0.005%
25-29 0.005%
30-39 0.02%
40-49 0.05%
50-59 0.2%
60-69 0.7%
70-79 1.9%
80+ 8.3%

Table 2: Age stratified infection fatality rate from Ref. [6]

V E1 (V ES1) V E2 (V ES2) ∆V 2

Wild Type Alpha Wild Type Alpha
Pfizer 90% (80%) 50% (40%) 95% (90%) 90% (80%) 21 days

Moderna 90% (80%) 50% (40%) 95% (90%) 90% (80%) 28 days
AstraZeneca 70% (60%) 50% (40%) 80% (70%) 75% (65%) 90 days

Janssen 70% (60%) 50% (40%) / / /

Table 3: Vaccine efficacy. We report the values of V E and V ES in parenthesis. Using the relationship
V E = 1− (1− V ES)(1− V EM ) one can easily derive V EM1 and V EM2.

1.1 Reproductive Number Calculation

We compute the reproductive number Rt∗ (where t∗ indicate the start of our simulations) of the model
proposed using the Next Generation Matrix method [13]. We derive the Rt∗ without the compartments
related to the vaccinated and to the Alpha VOC. Indeed, our simulations start well before both the
arrival of vaccines and of the variant. Therefore, these compartments do not affect the initial stage of
the epidemic. For simplicity, we also do not consider seasonality as this factor only implies a rescaling
Rt∗ → s(t∗)Rt∗ . We consider the 2K equations (where K is the number of age groups) that describe the
evolution in time of the number of infected individuals L and I:
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L̇k = λkSk − εLk
İk = εLk − µIk

(2)

Where λk is the force of infection for age group k previously introduced. In matrix notation:

dL1

dt
...

dLK

dt
dI1
dt
...

dIK
dt


=



λ1S1

...
λKSK

0
...
0


−



εL1

...
εLK

µI1 − εL1

...
µIK − εLK


(3)



dθ1
dt
...

dθK
dt

dθK+1

dt
...

dθ2K
dt


=



F1

...
FK
0
...
0


−



V1
...
VK
VK+1

...
V2K


(4)

Then, we define the disease free equilibrium (DFE) for age group k as (Sk, Lk, Ik, Rk) ' (Nk−R̃k, 0, 0, R̃k),
where R̃k is the residual immunity from previous waves. We define the two matrices F and V as follows:
Fij = dFi

dθj

∣∣
DFE

and Vij = dVi

dθj

∣∣
DFE

. These can be written as:

F =



0 · · · 0 β (N1−R̃1)C11

N1
· · · β (N1−R̃1)C1K

NK

...
. . .

...
...

. . .
...

0 · · · 0 β (NK−R̃K)CK1

N1
· · · β (NK−R̃K)CKK

NK

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0


(5)

V =



ε · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · ε 0 · · · 0
−ε · · · 0 µ · · · 0
...

. . .
...

...
. . .

...
0 · · · −ε 0 · · · µ


(6)

The reproductive number is defined as Rt = ρ(FV −1), where ρ(·) indicates the spectral radius (i.e.,
leading eigenvalue). First, we compute V −1. We recognize that V and F can be written in blocks as:

F =

[
0 βC̃
0 0

]
, V =

[
ε1 0
−ε1 µ1

]
(7)

Where C̃ is the contacts matrix weighted by the relative susceptible population in different age groups

(i.e. C̃ij = Ni−R̃i

Nj
Cij), 1 is the K × K identity matrix, and 0 indicates a K × K matrix with zero

elements. The inverse of V is:

V −1 =

[
1/ε1 0
1/µ1 1/µ1

]
(8)

The next step consists in computing the product FV −1:

FV −1 =

[
0 βC̃
0 0

] [
1/ε1 0
1/µ1 1/µ1

]
=

[
βC̃/µ βC̃/µ

0 0

]
(9)
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Finally, we are left with finding the spectral radius of FV −1 (i.e., its largest eigenvalue). The eigenvalue
problem can be written as det(FV −1−λ1) = 0. Given the structure of FV −1, and since we are interested
in non-trivial solutions (λ 6= 0), the problem reduces to:

det[βC̃/µ− λ1] = 0 (10)

Therefore Rt∗ = ρ(FV −1) = βρ(C̃)/µ. In the main text we assumed that R̃k << Nk, therefore we
approximate the disease free equilibrium as (Sk, Lk, Ik, Rk) ' (Nk, 0, 0, 0). This assumption holds in our
case since the initial number of recovered across all age brackets is generally smaller than 10% of the
total population.
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2 Model Calibration

We calibrate the free parameters of the model using an Approximate Bayesian Computation (ABC)
technique [14, 15]. We define the prior distributions of the free parameters P (θ), a number accepted
sets N , an error metric m(E,E′), and a tolerance δ. We start sampling a set of parameters θ from P (θ)
and generate an instance of the model using these parameters. Then, using the chosen error metric we
compare an output quantity E′ of the model with the corresponding real quantity E: if m(E,E′) < δ
then we accept the set θ, otherwise we reject it. We repeat this accept/reject step until N parameter sets
are accepted. The empirical distribution of the accepted sets is an approximation of their real posterior
distribution. We produce model’s projections sampling parameters sets from the pool of accepted sets
and generating an ensemble of possible epidemic trajectories. We then compute median and confidence
intervals on this ensemble. In this work, we consider the following free parameters and priors:

• β, we explore values of the transmission rate parameter such that the associated Rt = ρ(C̃)s(t)βµ on

the first simulation day ∼ U(1.2, 2.0) [2] (where C̃ is the contacts matrix weighted by the relative
population in different age groups and ρ(·) is the leading eigenvalue; see Sec. 1.1);

• ∆ ∼ U(14, 25). The calibration range is informed by Ref. [7];

• αmin ∼ U(0.5, 1.0), in doing so we explore values from strong (0.5) to absent (1.0) seasonality;

• we select initial conditions from an ensemble of realistic estimates from GLEAM. Each estimate
has the number of individuals of different age groups in different compartments (S, L, I, R) on the
start of the simulation (2020/09/01).

The model is calibrated separately for each of the six regions considered. We set the calibration
period to 2020/09/01-2021/07/05. We consider weekly deaths as output quantity and the weighted
mean absolute percentage error (wMAPE) as error metric. We also set the number of accepted sets
N = 3000 and the tolerance δ = 0.40 for Sicily and Sardinia and δ = 0.35 for the remaining regions.
For the different basins, we represent in Fig. 1 the number of weekly real and simulated deaths (median
and 90% CI). We obtain a median wMAPE of 0.23 for North West, 0.26 for North East, 0.25 for Center,
0.18 for South, 0.30 for Sicily, and of 0.40 for Sardinia. In the Supplementary Information we report the
posterior distributions of the free parameters obtained through the ABC calibration.

In Fig. 2 are shown the posterior distributions of the parameters calibrated through the ABC rejection
algorithm [14, 15] for each region. In particular, we report the effective reproductive number Rt on the
first simulation day, the delay (expressed in days) in deaths ∆, the seasonality parameter αmin, and the
initial number of infected (I plus L individuals) and recovered per 100′000 at the start of the simulation.
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Figure 1: Calibration Results. Simulated (median and 90% CI) and observed cumulative number of
deaths.
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3 Modeling non-pharmaceutical interventions: school closures

We model variations in contacts in schools as follows. First, we identify two phases. Before 2020/11/06,
interventions from the Italian Government were mostly at the national level and different regions followed
the same rules and recommendations. During this first phase, we use data from the Oxford COVID-19
Government Response Tracker [16] to model contacts variation in schools. We consider three indexes from
this report about school closure (schoolidx), workplace closure (workidx), and stay at home requirements
(stayhomeidx). These indexes vary daily and are provided at the national level. They can assume
discrete values from 0 (no measures) to 3 (maximum restrictions). We define the parameters ws(t) and
α(t) as follows:

1. schoolidx(t) = 0→ ws(t) = 1.0, α(t) = 1.0

2. schoolidx(t) = 1→ ws(t) = 0.5, α(t) = 1.0

3. schoolidx(t) = 2→ ws(t) = 1.0, α(t) = 0.3444

4. schoolidx(t) = 3 and NOT(workidx(t) ≥ 2 and stayhomeidx(t) ≥ 2)→ ws(t) = 1.0, α(t) = 0.3444

5. schoolidx(t) = 3 and (workidx(t) ≥ 2 and stayhomeidx(t) ≥ 2)→ ws(t) = 0.0, α(t) = 1.0

Finally, we model the impact of school closing on contacts on day t multiplying the school layer Cschool

(the elements describing contacts between 0− 24 years old individuals of the overall contacts matrix C)
by ws(t) and by α(t). The two indexes are introduced to modify contacts that the younger age groups
may have at school but also in other settings. The idea behind our approach is to define increasingly
higher risk levels according to the policies implemented. The first case, for example, refers to a situation
with no restrictions in place, therefore contacts in schools are not affected. When instead schoolidx(t) = 1
some restrictions are in place, school closing or hybrid teaching mode and additional NPIs in classroom
are recommended resulting in significant differences compared to normal operations [16]. We assume
this would result in significant reduction of contacts in school. When schoolidx(t) = 2 we introduce a
reduction factor on the contacts of 0−24 which is taken from Ref. [17], where authors studied the impact
of school closure on contacts patterns among younger population. In the fourth case, strict closure policies
on school are in place (schoolidx(t) = 3) but younger age groups may still meet in different context apart
from school (i.e., the work from home and the stay at home indexes are not at the maximum value). We
assume that this would result in the same contacts reduction of the previous cases. Finally, when closure
is required at all levels we send to zero the layer of contacts in schools.

After 2020/11/06, the Italian government introduced a tier system in which different NUTS2 regions
were assigned to one of four risk levels (from 0, lowest risk, to 4 highest risk) [18]. Different tiers are
associated with increasingly more restrictive measures. Because of our spatial resolution, first we define
the risk tier at the NUTS1 level as the weighted average (according to the population) of the risk levels
of the component NUTS2 regions (rounded to the nearest integer). For example, for NUTS1 region R,
the risk tier at time t is:

TIERR(t) =

⌊∑
r∈R pr ∗ TIERr(t)∑

r∈R pr

⌉
(11)

Where the summation runs over all NUTS2 regions r which are part of NUTS1 region R, and pr is the
population of NUTS2 region r taken from official sources [19]. Finally, we define the parameters ws(t)
and α(t) similarly to what we did before for the first phase:

1. TIERR(t) = 0→ ws(t) = 0.5, α(t) = 1.0

2. TIERR(t) = 1→ ws(t) = 0.5, α(t) = 1.0

3. TIERR(t) = 2→ ws(t) = 1.0, α(t) = 0.3444

4. TIERR(t) = 3→ ws(t) = 0.0, α(t) = 1.0

Then the contacts matrix for school on day t is again obtained by the multiplying Cschool by ws(t) and
by α(t) the contact rates between 0− 24 years old individuals.
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4 Italian Regions

In Fig. 3 we report some demographic and epidemiological characteristics of the different Italian regions
under study. In Fig. 3A we show the distribution (%) of individuals in different age groups. We observe
that, in general, the population is younger in South Italy and Sicily even tough the difference with
other regions is extremely limited. Fig. 3B reports the estimated date (median and 90% CI) of the first
Alpha VOC importation estimated by the Global Epidemic and Mobility model (GLEAM [10, 20, 21]).
Importations are highly synchronized across regions. Indeed, across the board, the initial seeding of
the variant happened throughout October 2020, and slightly later (early November 2020) in Sardinia.
Fig. 3C shows the attack rate (i.e., cumulative incidence per 100) as reported by official surveillance
and as estimated by GLEAM on the 2020/09/01 (start of our simulations). We notice good accordance
between modeling estimates and official data. As expected, estimated attack rates are generally much
higher than reported ones (∼ 10×). We notice significant differences among regions. Sicily, Sardinia,
and South Italy feature a smaller attack rate with respect to Center, and especially North East and
North West. We also characterize regions according to the unfolding of the vaccine rollout in Fig. 3D,
where it is reported the cumulative number of first doses administered per 100. The evolution of the
number of doses given is extremely similar across regions with some difference at the end of the period
of observation (e.g., Sicily has a slightly smaller number of doses given respect to other regions). Finally,
Fig. 3E and Fig. 3F shows population size and density. Northwest is the most numerous and densely
populated region. The number of individuals and their density in North East, South, and Center are
comparable. Finally, Sicily and Sardinia are less populated (they are NUTS2 regions), but while Sardinia
is also less densely populated, Sicily has a high population density (similar to Northeast, Center, and
Sicily).

10



0-9
10-19

20-29
30-39
40-49
50-59
60-69
70-79

80+

7.9
9.4
9.7

11.1
14.7

16.2
12.5

10.4
8.1

Northwest

8.0
9.5
9.8

11.0
14.8

16.3
12.5

10.3
7.9

Northeast

2021-01 2021-02 2021-03 2021-04 2021-05 2021-06 2021-07

0

20

40

60

Cumulative 1st doses per 100

Northwest
Northeast
Center
South
Sicily
Sardinia

0 50 100 150 200 250

Sardinia

Sicily

South

Center

Northeast

Northwest

Population Density (ppl / km2)

0 10
%

0-9
10-19

20-29
30-39
40-49
50-59
60-69
70-79

80+

8.2
10.1

11.4
12.0

14.4
15.4

12.5
9.4

6.5

South

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
1e7

Sardinia

Sicily

South

Center

Northeast

Northwest

Population

0.2 0.4 0.6 0.8 1.0
reported (%)

0

5

10

15

es
tim

at
ed

 (%
)

Attack rate (2020/09/01)

0 10
%

8.5
10.1

11.4
12.0

14.1
15.1

12.6
9.5

6.6

Sicily

0 10
%

6.6
8.4

9.3
11.3

15.3
16.6

14.1
10.8

7.5

Sardinia

Sep, 22
Oct, 0

1
Oct, 0

8
Oct, 15Oct, 22

Nov, 01
Nov, 08

Nov, 15
Nov, 22

Sardinia

Sicily

South

Center

Northeast

Northwest

Importations of Alpha

7.8
9.3
9.6

11.2
15.0

16.2
12.6

10.3
8.1

Center

Northwest

Northeast
Center

Sicily South

Sardinia

A B

C

E F

D

Figure 3: Characteristics of Italian regions under study. A) Distribution of individuals among age
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5 Vaccine Hesitancy

In the main text we assumed that in the counterfactual scenarios (strategy 2 and strategy 3 ) all individuals
are willing to receive the vaccines. Despite Italy showing very high rates of vaccine acceptance (as of
2021/10/19 85.7% received at least one dose [22]), this is an optimistic assumption. Therefore, we
repeat here part of the analyses considering that a fraction of the population do not want to receive the
vaccine. In Fig. 4 we show the the total number of averted deaths and infections (median and IQR)
for strategy 2 (prioritizing the elderly) and 3 (prioritizing the younger) for different values of hesitancy
(i.e., the percentage of the population that refuses vaccines). We assume that hesitant individuals are
homogeneously distributed among age groups. The horizontal dashed lines indicate the number of averted
deaths/infections for the two strategies in the case of no hesitancy as presented in the main text. We
observe, overall, a negligible effects of hesitancy. The explanation for such a small impact is that, as
of 2021/07/05, only 58% of the population received at least one dose of vaccine in Italy. Therefore,
the number of doses distributed in our simulations are not high enough to make the values of hesitancy
considered significant. This also explains why we only observe an impact on model’s outputs when
considering averted deaths by strategy 2. In this scenario, we notice a decline in the number of averted
deaths as the value of hesitancy grows. Indeed, since in this case we proceed in strictly decreasing age
order between 50-80+, the values of hesitancy can play a role for older age groups that also feature higher
IFRs.
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Figure 4: Effects of vaccine hesitancy
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6 Different Transmissibility of Alpha Variant

In the main text we assumed the variant Alpha to be 50% (i.e., ψ = 0.5) more infectious than the wild
type circulating previously, in line with available estimates [8, 9]. Nonetheless, we provide a sensitivity
analysis to the results considering different values of ψ. In particular, we consider here ψ = 0.3 and
ψ = 0.6. We repeat the calibration step for the two additional values of ψ. We note a need to increase
the ABC tolerance in the case of ψ = 0.6 for convergence reasons. In Tab. 4 we report the obtained
wMAPE between simulated and reported weekly deaths for the three values of ψ. We notice how the
calibration with ψ = 0.5 gives in general better results.

wMAPE
ψ = 0.3 ψ = 0.5 ψ = 0.6

North West 0.33 0.23 0.28
North East 0.32 0.26 0.23

Center 0.32 0.25 0.32
South 0.28 0.18 0.27
Sicily 0.29 0.30 0.46

Sardinia 0.33 0.40 0.57

Table 4: wMAPE between simulated and reported weekly deaths for different ψ

In Fig. 5A we show averted deaths and infections at the subnational and national level. We observe
how figures are lower when considering ψ = 0.3. This is expected. Indeed a less transmissible variant
causes a milder wave in our simulations with no vaccine and therefore the difference with the simulations
with vaccine administered is smaller. For the opposite reason, the number of averted deaths and infections
is higher, instead, in the case of ψ = 0.6. At the national level, we estimate vaccines would have averted
12, 896 (IQR: [7, 002− 19, 254]) deaths for ψ = 0.3 and 39, 242 (IQR: [24, 539− 53, 543]) with ψ = 0.6.
As discussed in the main for ψ = 0.5 we have instead 29, 350 (IQR: [16, 454 − 42, 826]). Similarly, the
estimated number of averted infections would have been 2, 383, 158 (IQR: [748, 270− 4, 130, 513]) with
ψ = 0.3 and 4, 815, 666 (IQR: [2, 411, 182 − 7, 207, 004]) with ψ = 0.6. For ψ = 0.5 we have instead
4, 256, 332(IQR: [1, 675, 564− 6, 980, 070]).

In Fig. 5B we report the national prevalence of Alpha for the three values of ψ. When ψ = 0.5, we
get a wMAPE of 0.34 and a Pearson correlation coefficient ρ = 0.84 (p < 0.001) between the simulated
prevalence and the one reported by genomic surveillance [23]. When ψ = 0.3 we get poorer results
(wMAPE = 0.53, ρ = 0.70), and when ψ = 0.6 we get slightly better performance (wMAPE = 0.31,
ρ = 0.86).
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A B

Figure 5: Sensitivity analysis on ψ. A) Averted deaths and infections at subnational and national
level for different values of ψ. B) National prevalence of the Alpha variant as simulated with different ψ
and as reported by genomic surveillance.
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7 Increased Mortality for the Alpha Variant

In the main text we assumed the same Infection Fatality Ratio (IFR) for both the wild type and the
Alpha variant. Nonetheless, previous works showed that the Alpha variant may also be associated
with higher severity [24, 25]. To estimate how this impacts our findings we repeat here the analysis
considering IFRAlpha = 1.5IFRwildtype, where IFRwildtype is the one used in the main text and is taken
from Ref. [6], and the 1.5 factor is in line with previous works [24, 25].

In Fig. 6 we show averted deaths and infections using the same IFR for wild type and Alpha and
using the higher IFR for Alpha. We observe that our findings are not significantly impacted by the
change of the IFR. Overall, when the higher IFR for Alpha is considered we estimate a slightly higher
number of averted deaths. For example, at the national level we estimate vaccines averted 29, 350
(IQR: [16, 454 − 42, 826]) deaths when considering the same IFR for both strains, and 34, 578 (IQR:
[19, 449− 50, 314]) when considering a higher IFR for Alpha.
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Figure 6: Sensitivity analysis on Alpha variant IFR. Averted deaths and infections at subnational
and national level considering the same IFR for both wild type and Alpha and and a higher IFR for
Alpha.
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8 The Role of Asymptomatic and Recovered on Vaccinations

In the main text we assumed that all individuals but the infectious (I) can receive the vaccine. The real
vaccination rollout in Italy, however, was more complex in terms of allocation. For example, individuals
who recovered from the disease generally received only dose after at least three months from recovery
and no more than six (then extended to twelve) [26]. At the same time, since vaccines were not officially
preceded by a test, asymptomatic individuals may have received the vaccine as well. To assess how
much the different allocation of vaccines among compartments can affect our result, we propose here
the following analysis. In line with available estimates, we consider that 40% of all infections in our
simulations are asymptomatic [27, 28]. Then, we assume that 40% of infectious individuals I (i.e., the
asymptomatic) can also receive the vaccines. We also assume that only 40% of recovered can receive the
vaccine. Said differently, we assume that symptomatic recovered do not receive the vaccine. We note
how this is an extreme scenario in which all asymptomatic infectious are eligible for vaccine and none
of the symptomatic recovered are. The goal here is indeed to test the extent to which our results are
impacted by different choices of allocation of vaccines among compartments.

In Fig. 7 we show averted deaths and infections using the allocation of vaccines among compartments
presented in the main text and the one just described. We see that the change of allocation does not
significantly impact our findings. For example, the number of averted deaths with the new allocation is
35, 404 (IQR: [21, 577− 50, 200]), while in the main text we obtained 29, 350 (IQR: [16, 454− 42, 826]).
The higher number of averted deaths maybe be due to the fact that, with the new allocation among
compartments, vaccines are given only to a fraction of the recovered and as result more doses are
administered to susceptibles individuals.
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Figure 7: Sensitivity analysis on allocation of vaccines among compartments. Averted deaths
and infections at subnational and national level considering the allocation among compartments proposed
in the main text and considering also the role of asymptomatic and recovered.

9 Baseline with behavioral reactions

In the main text, the impact of vaccines is measured respect to a baseline that has everything equal
but for the presence of vaccines. This approach allows us to isolate the impact of vaccines alone on
the epidemic trajectory. Nonetheless, we acknowledge that the NPIs observed during the rollout were
contingent to the improved epidemiological condition to which vaccines contributed in a substantial way.
In the absence of vaccines, a worsening of the epidemiological conditions would have likely led to both
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bottom-up (i.e., self-initiated) and top-down (i.e., government mandated) behavioral reactions [29]. As
result, the baseline is a pessimistic estimate since it does not account for possible NPIs enforcement in
response to rises in infections and fatalities in case of no vaccinations.

Here, we present a second baseline without vaccines in which we also model behavioral reactions. It
is important to stress that we will never know what it could have happened in the spring of 2021 without
vaccines, so any scenario aiming to account for behavioral changes it is speculative. Bearing this in mind
we proceed as follows. First, we define a threshold for the introduction of tougher restrictive measures.
As mentioned in the main text, on 2020/11/06 the Italian government introduced a risk-level system to
adopt more targeted and timely countermeasures according to the local epidemic conditions. Therefore,
for each of our six regions, we compute the average number of deaths on the days when the region was
moved to the highest risk level (indicated as ‘’red zone”). We call this quantity Dred zone

i . Second, we
compute the average contacts matrix Cred zonei observed during the days when in region i were in place
the rules of the highest risk level. Finally, we follow this simple approach: in the simulation without
vaccines administered, if the number of daily deaths in region i exceeds Dred zone

i - and the region is
not already in the highest risk level - we use the contacts matrix Cred zonei instead of the one computed
following actual mobility change and policy interventions. We apply this check after 2021/03/01 since it
is around this date that the epidemic trajectories with and without vaccines start to visibly diverge.

We stress how this threshold approach to model NPIs enforcement has many limitations. For example,
the system of risk-levels developed in Italy depended on many parameters and not just on deaths [18].
Also, we consider a single threshold, while in reality multiple thresholds associated with increasingly
higher risk levels were defined. As result, our approach is admittedly simplistic to represent the com-
plexity of individual and collective response to epidemics [30]. Nonetheless, it captures the possible
evolution of NPIs in a hypothetical scenario using historical real data and allows us to assess the impact
of this on our findings.

In Fig. 8 we compare the evolution of weekly deaths as reported by official sources and as simulated
by our model. We consider the case in which i) vaccines are administered according to the real data, ii)
no vaccines are administered, iii) no vaccines are administered but NPIs are put in place to counter the
uptick of cases and deaths. As expected, in this last scenario we observe less deaths with respect to the
simple baseline considered in the main. Nonetheless, it is important to stress how also in this case the
death toll is worse with respect to the case with vaccines.

In Tab. 5 and Tab. 6 we compare the number of averted deaths and infections by vaccines with respect
to the two no-vaccine baselines in different regions. Not surprisingly, we observe that total number of
averted deaths with respect to the new baseline is diminished, from 29, 4064 (IQR: [16, 571; 42, 830])
to 12, 676 (IQR: [2, 795; 22, 887]). At the same time, we also obtain a much lower number of averted
infections (547, 554 IQR: [−1, 540, 752; 2, 701, 933] respect to 4, 306, 913 IQR: [1, 656, 934; 6, 990, 557]).
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Figure 8: Evolution of weekly deaths in Italy under different scenarios. We show the number
of weekly deaths in Italy as reported by official sources and s simulated by our model. We consider
different vaccination scenarios: i) data-driven vaccination (solid line), ii) no vaccine (dashed line), and
iii) no vaccine with possible behaviour reaction (dash-dotted line).
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Averted Deaths (Median and IQR)
No Vaccine Baseline No Vaccine + Behavior Reaction Baseline

North West 9047 [5525, 12492] 4672 [2052, 7480]
North East 3143 [750, 5961] 3128 [532, 5946]

Center 6431 [4077, 8736] 2469 [733, 4108]
South 7892 [4745, 11235] 1464 [-553, 3521]
Sicily 2263 [1246, 3310] 720 [56, 1387]

Sardinia 629 [228, 1095] 222 [-24, 444]
Italy (total) 29406 [16571, 42830] 12676 [2795, 22887]

Table 5: Averted deaths - No vaccine baseline comparison

Averted Infections (Median and IQR)
No Vaccine Baseline No Vaccine + Behavior Reaction Baseline

North West 1011733 [269085, 1733792] 260,281 [-390544, 886551]
North East 506441 [43955, 993421] 467160 [11869, 1008596]

Center 875658 [460490, 1284045] 75351 [-228365, 386458]
South 1289381 [571882, 2044919] -269856 [-745282, 201937]
Sicily 451476 [243112, 652044] 6086 [-134485, 155195]

Sardinia 172223 [68409, 282335] 8532 [-53945, 63195]
Italy (total) 4306913 [1656934, 6990557] 547554 [-1540752, 2701933]

Table 6: Averted infections - No vaccine baseline comparison

10 Impact of vaccine protection delays distributions and second
doses administration

We propose an alternative version of the model in which we use a different distribution of the delays be-
tween inoculation and actual vaccine protection. As explained previously, in the main text we considered
an average period of ∆V = 14days between inoculation (of both 1st and 2nd dose) and vaccine protection.
This means that a person receiving a dose on day t will be protected, on average, on day t + ∆V . In
practice, individuals receiving the vaccine are moved to a temporary compartment, and transition to
the final compartment of vaccinated with a rate 1/∆V . Consider the following example. The number of
susceptible individuals receiving the first dose on day t is taken from real data. These individuals are
moved to the temporary compartment SV 1

r . In this compartment they still have no vaccine protection,
therefore they can get infected at the same rate as the susceptibles. Then, SV 1

r eventually transition
to the vaccinated compartment SV 1 with a rate 1/∆V . Also this transition is regulated by a binomial
sample: PrBin(SV 1

r (t), 1/∆V ). The result is that, the times spent in the temporary compartment SV 1
r

will be exponentially distributed with scale parameter 1/∆V (mean ∆V and variance ∆2
V ).

To assess the impact of this modeling choice, we propose here a model in which vaccine protection
delays follow an Erlang distribution with shape parameter n [31]. Indeed, while the standard formu-
lation of compartmental models assume that the time spent in different compartments is exponentially
distributed, distributions might be narrower and centred around the mean [31]. The Erlang distribu-
tion is equivalent to a sequence of independent and identically distributed exponential distributions.
Therefore, we modify the modeling setup including additional temporary compartments. Consider the
previous example. In this new formulation of the model, susceptible individuals that receive the first dose
move to the temporary compartment SV 1

r1 , where they are still not protected by vaccines. Then, they
transition to the next temporary compartment SV 1

r2 at rate n/(∆V ), where n is shape parameter and
the number of temporary compartments. Finally, the individuals in SV 1

rn transition to the compartment
of the vaccinated with one dose SV 1. Following this approach, we obtain that the time spent in the
temporary compartments is distributed according to an Erlang distribution with shape parameter n and
scale parameter 1/∆V (mean ∆V and variance ∆2

V /n) [31]. In Fig. 9 we show the Erlang distribution for
different values of n. We see that for n = 1 we get the exponential distribution, while for higher values
the distribution is narrower and more peaked around the mean.

For simplicity, here we set n = 2. This implies defining two temporary compartments (SV 1
r1 and

SV 1
r2 according to the previous example), in which each individual spends on average 7 days. As an

additional sensitivity check to the modeling of vaccinations, here we also consider real data for second
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doses. Indeed, in the main text we informed the number of daily first doses with real data from official
sources, while we modeled the second inoculation introducing transitions happening at rate 1/∆V 2, with
∆V 2 depending on the vaccine manufacturer. This was done to simplify the model. Here, to assess the
impact of this choice we inform the model also with the number of second doses administered per day
by age group and manufacturer.
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Figure 9: Erlang distribution for several shape parameters. Plot is adapted from Ref. [31]. Solid
vertical line indicates the average stage duration ∆V = 14days.

In Fig. 10 we compare different strategies in terms of averted deaths and infections using the modeling
setup just described. We see that the main findings are unaltered. Indeed, the strategy prioritizing the
elderly (strategy 2 ) generally implies more averted deaths, followed by the actual strategy and the
strategy prioritizing 20-49 age groups (strategy 3 ). When considering averted infections, instead, the
order is inverted: strategy 3 guarantees less infections, followed by the actual strategy and strategy 2.
The overall national figures are also very similar to those obtained in the main text. For example, we
estimate here that the actual strategy averted 31, 314 (IQR: [18, 247 − 44, 621]) deaths compared to
29, 350 (IQR: [16, 454− 42, 826]) as reported in the main text.
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Figure 10: Comparison of vaccine allocation strategies with Erlang distributed vaccine pro-
tection delays. A) Averted COVID-19 deaths and infections, both at subnational and national level
(medians and interquartile ranges are reported). B) Percentage reduction of the Infection Fatality Rate
as of 2021/07/05. In all panels, actual strategy denotes an allocation strategy that follows the observed
allocation as it unfolded during the pandemic, strategy 2 considers the case where vaccines are allocated
in decreasing age order starting from the 80+, strategy 3 considers the case in which vaccines are first
allocated to the age groups 20−49 and then homogeneously to the rest of the population, and no-vaccine
denotes the counterfactual scenario in which vaccines were not administered. In both panel we report
the statistical significance of the Kruskal-Wallis H-test comparing different scenarios as follows: ****:
pvalue ≤ 10−4, ***: 10−4 < pvalue ≤ 10−3, **: 10−3 < pvalue ≤ 10−2, *: 10−2 < pvalue ≤ 0.05, and
otherwise blank if p > 0.05.
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