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Figure S1. 
Schematic of the freezing plate used as the substrate for cryobioprinting. The freezing plate 
was cooled using a pair of semiconductors, which were powered by a DC voltage-generator. The 
surface temperature could be adjusted by changing the output voltage on the DC power. The 
semiconductors were cooled down via a water-based cooling module. 
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Figure S2. 
Effects of nozzle size, pressure, printhead moving speed, and DMSO concentration on the 
printability of the cryoprotective GelMA bioink by comparing cryobioprinted 8×8-mm2 
grids. The checkmarks were used to denote the high-fidelity samples with structural integrity over 
90% of the printed grids, i.e., acceptable samples, while the cross signs represent 
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poor/unsuccessful cryobioprinting jobs. The addition of DMSO as the CPA had negligible effects 
on the printability of GelMA. 
  



 
 

5 
 

 

Figure S3. 
Effects of printhead moving speed and pressure on filament diameter. (A), Bioprinting of a 
continuous filament using a 27G nozzle with different moving speeds for parametrically studying 
the effect of pressure (P) and speed (V) on the filament diameter. (B), P=34 psi. (C), P=37 psi. 
(D), P=40 psi. (E), P=43 psi. (F), V=10 mm.s-1. n = 5. 
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Figure S4. 
The effect of UV exposure time on the fidelity of the cryobioprinted grid structures. The 
samples with 10 s of UV crosslinking were not fully crosslinked as the exposure time was not 
adequate. Scale bar: 8 mm. 
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Figure S5. 
Ice crystal-formation in the freezing processes of GelMA hydrogel groups with different 
concentrations of DMSO. (A), Representative brightfield time-lapse images of the hydrogel 
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groups during ice crystal-formation. The shape and the size of the ice crystals were clearly different 
in the DMSO-free sample. Scale bar: 2 mm. (B), Identifying the ice crystals' borderline in a 
representative image for quantifying the sharpness of the ice crystals. The unfrozen portion of the 
hydrogel derived as a polygon in panel (c) was used to quantify the ice crystals’ sharpness. Scale 
bar: 2 mm. (C), Trend of changes in FD during the hydrogel freezing process. When the sharp 
crystals formed, the irregularities in the polygon geometry increased, which resulted in a higher 
FD value. (D), FD values for different hydrogels when 90% of the samples in the microscope’s 
field of view became frozen. (E), Comparison of the freezing times for different hydrogel bioink 
groups. The addition of DMSO generally increases the freezing time. t=0 corresponds to when the 
frozen area is approximately 25% of the microscope’s field of view. n = 4. 
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Figure S6. 
Effect of DMSO on ice recrystallization-inhibition determined via the splat assay. (A), 
Photographs showing ice crystals grown in GelMA wafers with different concentrations of DMSO. 
Scale bar: 50 µm. (B), Quantification of the ice crystal size for the study groups. n = 3; *P < 0.05. 
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Figure S7. 
Chemical structures of the investigated saccharides for cryobioprinting. (A), Lactose. (B), Maltose. 
(C), Sucrose. (D), Trehalose. (E), Raffinose. (F), Melezitose. 
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Figure S8. 
Cell viability in GelMA hydrogels with different concentrations of DMSO and saccharides 
cryopreserved for 72 h. (A), Raffinose. (B), Sucrose. (C), Maltose. (D), Lactose. (E), Trehalose. (F), 
Melezitose. n=3. 
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Figure S9. 
Quantified increases in cell viability post-cryopreservation for 72 h due to supplementing the 
cryoprotectant bioink with different saccharides. (A), Sucrose. (B), Maltose. (C), Trehalose. 
n=3. 
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Figure S10. 
Quantification of the effect of DMSO in the cryoprotectant bioink formulations on enhancing 
cell viability post-cryopreservation for 72 h. (A), Raffinose. (B), Sucrose. (C), Maltose. (D), 
Lactose. (E), Trehalose. (F), Melezitose. n=3. 
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Figure S11. 
Representative fluorescence images of the NIH/3T3 fibroblasts encapsulated in the selected 
cryoprotective bioinks and frozen for 72 h. Scale bar: 500 μm. 
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Figure S12. 
Representative fluorescence images of the HepG2 cells encapsulated in the selected 
cryoprotective bioinks and frozen for 72 h. Scale bar: 500 μm. 
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Figure S13. 
Representative fluorescence images of the HUVECs encapsulated in the selected 
cryoprotective bioinks and frozen for 72 h. Scale bar: 500 μm. 
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Figure S14. 
Representative fluorescence images of the MCF-7 cells encapsulated in the selected 
cryoprotective bioinks and frozen for 72 h. Scale bar: 500 μm. 
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Figure S15. 
Representative fluorescence images of the SMCs encapsulated in the selected cryoprotective 
bioinks and frozen for 72 h. Scale bar: 500 μm. 
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Figure S16. 
Effect of keeping NIH/3T3 cells in contact with the selected CPA (DMSO+melezitose) within 
GelMA for different timespans. (A), Fluorescence images. Scale bar: 500 μm. (B), 
Quantification of cell viability. n = 3; *P < 0.05. 
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Figure S17. 
NIH/3T3 cell viability after cryobioprinting at different temperatures of the freezing plate. 
(A), Fluorescence microscopy images showing viability of cells in the GelMA/CPA matrix. Scale 
bar: 500 μm. (B), Quantification of cell viability. n = 3; *P < 0.05. 
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Figure S18. 
Cell viability of C2C12 myoblasts in different layers of cryobioprinted cell-laden constructs. 
(A), Schematic and lateral live/dead images of the cryobioprinted scaffold. Scale bar: 2 mm. (B), 
Representative live/dead images of different layers on days 1, 3, and 7. Scale bar: 500 μm. (C), 
Quantification of cell viability in different layers. n=3. 
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Figure S19. 
Effects of cryopreservation on cell viability at -80 °C and -196 °C (liquid nitrogen) in the 
cryoprotective bioinks with different formulations. (A), shorter-term. (B), longer-term. n=3. 
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Figure S20. 
Cell viability in cryobioprinted cell-laden constructs after 3 months of cryopreservation at -
196 °C (liquid nitrogen), at different days post-revival. (A and B), NIH/3T3. (C and D), 
HUVECs. Scale bars: 500 μm. 
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Table S1. 
Temperature control of the freezing plate at room temperature. 
 

Voltage 
(V) 

Current 
(A) 

Environment 
temperature (ºC) 

Cooling water 
temperature (ºC) 

Freezing plate 
temperature (ºC) 

0 0 23.0 1.0 11.0 
2.00 0.47 23.0 1.0 -4.5 
4.00 0.96 23.0 1.0 -12.2 
6.00 1.48 23.0 1.0 -17.5 
8.00 1.98 23.0 1.0 -22.3 
10.00 2.49 23.0 1.0 -25.0 
12.00 3.01 23.0 1.0 -27.2 
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Table S2. 
Temperature control of the freezing plate in the cold room. 
 

Voltage 
(V) 

Current 
(A) 

Environment 
temperature (ºC) 

Cooling water 
temperature (ºC) 

Freezing plate 
temperature (ºC) 

0 0 5.0 1.0 4.0 
2.00 0.47 5.0 1.0 -6.0 
4.00 0.97 5.0 1.0 -12.7 
6.00 1.49 5.0 1.0 -19.2 
8.00 2.03 5.0 1.0 -24.9 
10.00 2.55 5.0 1.0 -27.8 
12.00 3.04 5.0 1.0 -29.5 
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Table S3. 
Freezing rates in the first two layers for different values of Tp. The values are derived from the 
heat-transfer simulation. 
 

 Tp (ºC) 
 5 10  15 20 

Freezing rate 
(ºC s-1) 

1st layer 43.89 62.89 81.33 100.00 
2nd layer 2.69 3.28 4.35 5.60 
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Table S4. 
Heat-transfer simulation parameters. 
 

Parameter Value 
Thermal conductivity (W m-1 K-1) 0.57 
Density (kg m-3) 1,000 
Heat capacity (J kg-1 K-1) 4,136 
Ratio of specific heats 1.33 
Bioink’s initial temperature (°C) 15 
Ambient temperature (°C) 20 

 


