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SI Method 

Subjects. Twenty-six subjects (age: 19–28 years; 13 females) participated in the study with 
monetary compensation for their participation. Among them, two subjects who did not respond to 
a task or sense odor in more than half of the trials (15 trials) for at least one odor and two 
subjects who did not complete the experiment due to physical conditions were excluded from the 
analysis. Consequently, 22 subjects remained (19–28 years; 11 females). The inclusion criteria 
for participation were being right-handed (Edinburgh Handedness Inventory (1), score higher than 
60) and native Japanese speakers (self-report), not having either olfactory, respiratory, 
psychiatric, or neurological disorders, traumatic brain injury, or metals in the body, and not 
currently smoking, pregnant, or using medication. Subjects were asked to refrain from consuming 
any food or drink except for water within 2 h before the experiment. Written informed consent was 
obtained from the subjects before conducting the experiments. The study was approved by the 
ethics committee of the University of Tokyo and in accordance with the Declaration of Helsinki. 
 
Odor selection. Ten odors were selected from 138 monomolecular odors listed on a database 
compiled by Dravnieks, in which the applicability of 146 semantic descriptors based on ratings of 
120–140 panelists was reported for each odor (2). To select odors with a variety of pleasantness 
and quality, we conducted principal component analysis on the applicability and selected odors 
that were widely distributed in 2-dimensional principal component space. To minimize the 
influence of the trigeminal system, we excluded odors that induced apparent trigeminal 
sensations from candidates (see also subsection, “Trigeminal test”). Consequently, the following 
odors were selected: allyl caproate (Ally; 10%; TCI), fructone (Fru; 10%; TCI), citral (Cit; 1%; 
TCI), linalool (Lin; 1%; Santa), vanillin (Van; 8%; TCI), acetophenone (Ace; 1%; TCI), hexanal 
(Hex; 1%; TCI), alpha-pinene (Pin; 10%; Sigma), cyclodithalfarol (Cyc; 1%; TCI), and 4-pentanoic 
acid (4Pe; 10%; TCI). The odors were diluted in propylene glycol (kindly provided by T. 
Hasegawa Company, Tokyo, Japan). The dilution ratio was determined based on pilot studies 
using a separate group of subjects (n = 8), so that the subjective intensity of odors became 
approximately equal. 
 
Odor delivery. Odors were presented in a computer-controlled setup using an olfactometer 
(OL022; Burghart Messtechnik GmbH), which was supplemented with a custom-made heating 
system and upgraded to allow a high flow rate. The olfactometer provided a constant flow of 
humidified and heated air via a nosepiece inserted in the right nostril and allowed switching of the 
base airflow to stimulus airflow without mechanical stimulation so that odor presentation was 
possible without tactile stimulation (Fig. S1A) (3). While OL022 originally had only four odor 
channels, we modified the system to allow presentation of 10 odors without a loss of temporal 
precision (Fig. S1B and C) (4). Odor onset time (time = 0) was defined as the time point at which 
the PID value was above 10% of the maximum value (60 ms after valve switching; Fig. S1C), and 
all analyses were conducted after correcting this delay. The flow rate was 7.5 L/min for both the 
baseline and stimulus airflows, which were humidified and heated to approximately 36 °C. To 
avoid time lags due to differences of odor accessibility between right and left nostrils, caused by 
factors such as differences of nasal cavity structures, air was presented monorhinally, as in 
previous studies on olfactory event-related potentials (OERPs) (5–10). Subjects performed the 
velopharyngeal closure breathing technique to minimize nasal airflow during the experiment (11). 
The olfactometer was located outside an electrically shielded EEG chamber. The subjects were 
seated in a relaxed position and listened to white noise to mask the valve switching click sounds 
from the olfactometer. 
 
Experimental procedure. The experiment consisted of five sessions conducted over four days 
(Fig. 1A): an EEG session, an intensity rating session, a pairwise similarity rating session, a 
trigeminal test session, and a quality and unipolar (un)pleasantness rating session (details are as 
follows). Obtaining perceptual ratings on a separate day from the EEG session was necessary for 
reducing subjects’ fatigue, as both EEG recordings and ratings required a long time. The order of 
the sessions was as shown in Fig. 1A, and the same across subjects. The inter-subject mean ± 
SD of interval between Day 1 and Day 4 was 18.0 ± 7.0 days. 
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EEG recording 
 Before the EEG recordings, the subjects were provided explanations regarding the experimental 
task. Next, they were trained for velopharyngeal closure breathing, which was continued until 
airflow via the nostril detected by the breathing sensor became flat. They were also trained in the 
experimental task for 5 to 15 min, which was continued until they were able to respond to tasks 
within the time limit and tolerate without eye blinking during the fixation phase (see below). This 
training was conducted in almost the same way as during the EEG recording, but no odors were 
presented. 
After training, each subject underwent 10 EEG recording sub-sessions. Each recording sub-

session consisted of 30 trials, three for each odor, which were presented in a pseudorandom 
order. Thus, data from 30 trials for each of the odors were acquired across all sub-sessions. At 
the beginning of each recording sub-session, the subjects inserted a nosepiece to their right 
nostril, through which the olfactometer airflow was presented. Trials started when the base airflow 
stabilized to the specified flow rate. Each trial consisted of three phases: fixation, response, and 
blinking (Fig. 1B). During the fixation phase, subjects were instructed to focus on a white cross 
and avoid blinking. The olfactometer valve switched the airflow from base air to stimulus air for 1 
s within this fixation phase. The stimulus onset time was jittered to minimize the odor-related 
expectancy. The fixation phase lasted for 3 s after stimulus offset, and subsequently, the 
response phase began. During the response phase, subjects were asked to rate odor 
pleasantness on a scale of 1 (very unpleasant) to 5 (very pleasant). They were instructed that if 
they did not sense any odor, they should report 0. To avoid motor-related confounding factors in 
the decoding analysis, ratings were provided as follows (12). First, a random number from 0 to 5 
was displayed at the beginning of the response phase. The numbers were changed by pressing 
two keys on a keyboard (left arrow key labeled with the “up” mark for increment, and down arrow 
key labeled with “down” mark for decrement) using the index and middle fingers of their right 
hands. When a desired number was displayed, subjects finalized the rating by pressing another 
key (up arrow key labeled with a circle mark) using either the index or middle fingers of their right 
hands. The delayed-response paradigm was used to minimize motor-related confounds in the 
ERP (13). The response phase lasted for a maximum of 7 s or until response, and if the response 
phase was less than 7 s, the blinking phase followed, where a white circle was displayed. 
Subjects were allowed to blink during the response and blinking phases. The total duration of the 
response and blinking phases was 7 s. The inter-stimulus intervals (ISIs) were 16 ± 1 s. Each 
recording sub-session lasted ~9 min, with a 1 to 3 min break between them. 
 
Intensity rating 
In the intensity rating session, subjects underwent 10 trials, one for each odor, which were 

presented in random order. The odor delivery condition (e.g., flow rate), and the timeline of each 
trial were the same as those of the EEG session, except that subjects rated odor intensity on a 
scale of 1 (odorless) to 5 (extremely strong) instead of pleasantness, by changing a random 
number from 1 to 5, as described previously. 
 
Pairwise similarity rating 
In the similarity rating session, the subjects evaluated the similarity of two odors presented 

consecutively. Each subject rated all 45 possible odor pairs twice, once in the forward and once 
in the reverse order. The odor pairs were presented in pseudorandom order, with trials separated 
into six sub-sessions, each consisting of 15 trials, and with 90 trials in total. Odor delivery 
conditions were the same as those of the EEG session, except for the timeline of the trials. At the 
beginning of each trial, a visual cue, ‘Odor A,’ was displayed for 5 s. The first odor was presented 
during the last 1 s of the visual cue presentation. Then, an 11 s fixation period followed, and a 
cue, ‘Odor B’ was presented for 5 seconds, with the second odor being presented in the last 1 s. 
The subjects then rated the similarity of the two odors using a visual analog scale (0, dissimilar; 
100, similar). The next trial started 11 s after the offset of odor B in the previous trial. Each sub-
session lasted for approximately 8 min, with a 1 to 3 min break between them.  
 
Trigeminal test 
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While we selected odors that did not induce apparent trigeminal sensations at the concentration 
used here, considering that individual differences in trigeminal sensitivities are known (14, 15), we 
tested the trigeminal sensations of each odor for each subject. 
The trigeminal sensitivity was measured using the lateralization test (we refer to this test as 

trigeminal test in the rest of the manuscript) (16, 17). This test is based on experimental evidence 
that when odors are administered monorhinally, it is difficult for humans to identify the stimulated 
side of the nostril, unless the odor stimuli simultaneously excite the trigeminal system (18). The 
test was administered using an odor presentation condition as similar as possible to that used in 
the EEG session (using the olfactometer with a 7.5 L/min flow rate for each nostril; each airline 
was humidified and heated to 36 °C; odor duration, 1000 ms; ISI, 17 s; velopharyngeal closure 
breathing), with the major exception that the air was presented birhinally as described below. 
Each subject underwent 10 sub-sessions—one sub-session for one odor—comprising 20 trials. 
At the start of each trial, subjects inserted two nosepieces, one for the right and the other for the 
left nostril, each connected to a separate olfactometer channel calibrated to an identical flow rate. 
During the baseline period, odorless air was delivered to both nostrils. During the odor period, the 
odorless air was switched to odorous air for one nostril, while for the other nostril, it was switched 
to another odorless airline. Odorless to odorless switching was performed to control for any 
possible tactile stimulation evoked by switching. After odor presentation, subjects handed the 
nosepieces to the experimenter and stated the side in which they felt the odor in a forced-choice 
manner. The subjects were then handed two nosepieces again for the next trial. For each subject 
for each odor, a trigeminal test score was calculated as the percentage of correct trials. In the 
positive control experiment using an independent subject group, we found that the inter-subject 
mean trigeminal test score of the eucalyptol (2.5%; TCI), which is known to stimulate the 
trigeminal system (19), was 96 (20 trials, 5 subjects). The subjects were blindfolded during the 
trigeminal test. The order of the odors was randomized between the subjects. 
 
Quality, unipolar pleasantness and unpleasantness ratings 
Subjects rated the perceived quality of odors using 44 descriptors on a scale of 1 (not at all 

applicable) to 5 (very well applicable). These descriptors were selected from a translated version 
of 146 descriptors used in the odor profile database of Dravnieks (2) based on pilot studies using 
a separate subject group (n = 9). Moreover, to evaluate the odor unipolar pleasantness and 
unpleasantness, subjects also rated the applicability for two additional descriptors, ‘pleasant’ and 
‘unpleasant’, in the same 5-step scale. Consequently, there were 46 descriptors in total. The odor 
delivery condition was the same as that used in the EEG session, except that subjects provided 
ratings for all 46 descriptors after every odor presentation, and each trial lasted until the ratings 
were completed (approximately 3 min). Each odor was presented three times, for a total of 30 
trials. The order of odors was randomized across all trials, with the descriptors presented in 
random order in each trial. 
 
EEG acquisition. The EEG signals were obtained using 64 active Ag-AgCl electrodes placed 
according to the international 10–20 system (BioSemi Active Two, BioSemi GmbH, Amsterdam, 
NL). A standard BioSemi cap was used for electrode placement. In addition, Biosemi active 
electrodes were placed at the following four locations: the right and left mastoids for later offline 
referencing, and below and above the left eye to obtain the electrooculogram (EOG). The signals 
were recorded at a sampling rate of 2048 Hz. Online low-pass filtering was performed in the 
analog-to-digital converter’s decimation filter (hardware bandwidth limit) using the default settings 
of BioSemi, which has a fifth order cascaded integrator-comb filter response with a -3 dB point at 
1/5th of the sample rate (i.e., 410 Hz in the current study). 
 
EEG preprocessing. EEG data were analyzed using EEGLAB (version 13.6.5b)—an open-source 
toolbox for EEG data analysis (20)— and custom-written MATLAB scripts unless otherwise stated.  
All offline filters were carried out using the default settings of the EEGLAB function 
pop_eegfiltnew, which implements linear, non-causal, zero-phase Hamming windowed sinc finite 
impulse response (FIR) filters (21). The continuous time series data were first processed by 
PREP (22) to remove line noise and detect bad electrodes. After line noise removal, re-
referencing to a robust mean reference, and interpolation of bad electrodes, the data, which we 
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will refer to as “post-PREP,” were saved for later analyses. Independent component analysis 
(ICA) was performed using the runica function in the EEGLAB (23). To optimize ICA, the post-
PREP data were bandpass filtered between 1 (passband edge, 1 Hz; cutoff frequency (-6 dB), 0.5 
Hz; transition band width, 1 Hz; filter order, 6760) and 249 Hz (passband edge, 249 Hz; cutoff 
frequency (-6 dB), 280.125 Hz; transition band width, 62.25 Hz; filter order, 110), divided into 
5400 ms epochs for each trial, beginning 2200 ms before the stimulus onset. Note that the 
resulting data were only used for ICA and not for later analyses. The rank of the data was 
adjusted for the number of interpolated electrodes. Independent components (ICs) were 
probabilistically classified using MARA (24), and ICs with artifact probability scores above 90% 
were considered artifacts. Next, the post-PREP data (not the preprocessed data for ICA) were 
high pass filtered at 0.2 Hz (passband edge, 0.2 Hz; cutoff frequency (-6 dB), 0.1 Hz; transition 
band width, 0.2 Hz; filter order, 33792) and divided into 5400 ms epochs. Then, ICs regarded as 
artifacts were removed, and bad electrodes detected by PREP were interpolated by the 
eeg_interp function in EEGLAB. The inter-subject mean and SD of the number of removed ICs 
was 32.1±6.0, and the number of interpolated electrodes was 8.9±5.8. Data were baseline 
corrected using a pre-stimulus interval of −500 to 0 ms and low-pass filtered at 30 Hz (passband 
edge, 30 Hz; cutoff frequency (-6 dB), 33.75 Hz; transition band width, 7.5 Hz; filter order, 902). 
After filtering, the data were resampled to 500 Hz to reduce computation time and re-referenced 
to a mean reference. Trials in which the absolute amplitude exceeded 100 μV in the vertical EOG 
(top minus bottom EOG) or 80 μV at any scalp electrodes were rejected to remove any remaining 
artifacts (7.4±19.4 trials were rejected). In addition, trials in which the subjects did not sense 
odors were also removed. Consequently, 283.0 ± 24.1 trials were used for the following analysis, 
and the minimum number of trials for one odor across subjects was 18. 
 
Visualization of OERPs. To visually inspect odor-evoked potentials, we plotted the time courses 
of the grand mean global field powers (GFPs; Fig. 1G) and OERP waveforms (Fig. S2). GFP is a 
measure of electric field strength and is defined as the standard deviation of ERP amplitudes 
across electrodes (25). GFP was computed for each subject, each odor, and each time point and 
was baseline corrected by subtracting the mean amplitude during the pre-stimulus interval of 
−500 to 0 ms. An increase in GFP against the baseline was tested for each of the post-stimulus 
time points using one-sided, one-sample Student’s t-test (P < 0.05, Bonferroni–Holm corrected 
for number of time points). In addition, classical OERP waveforms were obtained by averaging 
the ERP amplitudes across trials for each condition. An average of the mastoid electrodes was 
used as a reference, as in previous OERP studies (26). 
 
Source reconstruction. To examine the spatiotemporal dynamics of odor representations, we 
estimated the electrical activity in the brain using the standardized low-resolution brain 
electromagnetic tomography (sLORETA) software available at 
http://www.uzh.ch/keyinst/loreta.htm. Source reconstruction was performed using the trial-
averaged ERPs for each subject and each odor, and the 3D coordinates of the EEG electrode 
positions were obtained from the BioSemi official website 
(https://www.biosemi.com/headcap.htm). The forward problem was addressed using a realistic 
head model (27) derived from the Montreal Neurological Institute (MNI) 152 template (28). The 
inverse problem was addressed using the sLORETA method (29), which has been shown to 
correctly localize EEG signals to deep structures, including those known to be associated with 
olfaction, such as the medial temporal regions (30–32). Brain activity was estimated as the 
standardized current density power for each of the 6239 isotropic (5 × 5 × 5 mm) voxels in the 
cortical gray matter in the MNI space for every time point after odor onset. The source 
orientations were unconstrained (29). For each voxel in the source space, the standardized 
current density was estimated for three Cartesian components, and the standardized current 
density power of each voxel was computed as the sum of their squires. The data were then 
down-sampled to 20 Hz, the same temporal resolution as in the sensor-level decoding analysis 
and used for source-level tRSA. The results of the source-level tRSA were visualized by 
overlaying on a brain using a sLORETA software. Because the anatomical atlas provided by 
sLORETA software does not define the POA, voxels containing the POA (piriform cortex, anterior 
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olfactory nucleus and olfactory tubercle) were determined based on their MNI coordinates and a 
previous study that reported the MNI coordinates of the POA (33).  
 
Statistical hypothesis testing. All statistical tests were performed using MATLAB functions 
(Statistics and Machine Learning Toolbox, R2021a), with the number of observations equal to the 
number of subjects (n = 22), unless otherwise stated. We report the specific method for statistical 
testing, multiple testing correction, and alpha level used for each analysis in the legends of 
figures where corresponding results are presented. Whenever we used Student’s t-test, we 
confirmed that the distributions did not significantly deviate from the normal distribution using the 
Shapiro-Wilk test (alpha level = 0.05) in advance. 
 
Time-resolved multivariate pattern analysis (tMVPA). To assess the temporal dynamics of 
neural representations of odor information, we performed tMVPA decoding of individual odors 
from EEG time series data using pairwise decoding models (Fig. 2A) and multi-class decoding 
models (Fig. S3). For both pairwise and multi-class decoding, we employed two approaches, one 
based on a subject-wise model, and the other based on a cross-subject model. In the former 
approach, the decoding models were built separately for each subject, and then group-level 
inference was performed by combining the subject-wise decoding performances of all the 
subjects. This is the most commonly used approach in cognitive neuroscience (34, 35) and has 
the advantage of allowing flexibility to conduct individually tailored analysis. In contrast, in the 
cross-subject approach, the decoding models were generalized across subjects. Therefore, 
whether and when brain signatures of odors common across subjects exist can be addressed 
using this approach. 
  For all the analyses, EEG data were first temporally down-sampled to 100 Hz. Then, decoding 
models were built every 50 ms. For each model, single-trial ERP amplitudes at all 64 scalp 
electrodes within a preceding time interval of 200 ms were used as features. This yielded 1280 
features per model (64 electrodes × 20 time points). 
 
Pairwise decoding models 
For both the subject-wise and cross-subject approaches, pairwise decoding models were built 

for each of the 45 possible odor pairs using an ℓଶ-regularized linear least-squares classifier. We 
used a nested cross-validation (CV) procedure, where an inner loop CV responsible for tuning the 
cost parameter was nested in an outer loop CV, which was responsible for model evaluation. The 
cost parameter, λ, was chosen from 11 possible values (log-spaced, between 2-15 and 215) based 
on 10-fold CV in the inner loop of the nested CV at every iteration of the outer loop CV. 
 
Subject-wise pairwise decoding model 
In the subject-wise approach, decoding models were independently built for each subject. For 

each iteration of the outer loop CV, EEG trials of a given subject for a given odor pair were 
randomly split into a training and test set at a ratio of 9:1 (the number of trials used is shown in 
Table S4). To avoid classification bias due to an unbalanced number of trials, the number of trials 
was adjusted using random undersampling for both the training and test sets. The range of each 
of the 1280 features was scaled across trials using a scaling factor estimated based on a training 
set using the minimum-maximum (min-max) scaling method. The training set was further split into 
10-folds for the inner loop CV to choose the best value for the cost parameter λ. Finally, the 
performance of the decoding model built using the selected λ and training set was evaluated 
using the test set. This entire procedure was repeated 60 times (i.e., number of outer loops, CV = 
60). 
For each subject and each odor pair, the decoding accuracy was measured as the mean 

percentage of correct trials across the outer CVs. The grand average across-odor-pair decoding 
accuracy shown in Fig. 2B was calculated by first obtaining the across-odor-pair mean accuracy 
for each subject and then averaging them across subjects. To test whether the decoding 
performance was significantly above the chance level (50%), a one-sided, one-sample Student’s 
t-test was used, with the number of subjects (n = 22) being the number of observations. The 
alpha level was set at 0.05, after applying the Bonferroni–Holm correction for the number of time 
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points. The grand average decoding accuracy for each odor pair shown in Fig. 2D (upper triangle) 
was calculated by averaging the decoding accuracies of each odor pair across the subjects. 
 
Cross-subject pairwise decoding model 
In the cross-subject approach, decoding models were generalized across subjects using leave-

one-subject-out CV. For each iteration of the outer loop CV, EEG trials for a given odor pair from 
21 subjects were used for training, and those of the remaining one subject were used for testing. 
The range of each of the 1280 features was scaled across trials, which were pooled from 
subjects, using a scaling factor estimated based on the training set using the min-max scaling 
method. The training set was further split into 10-folds for the inner loop CV to choose the best 
value for the cost parameter λ. Finally, the performance of the decoding model built using the 
selected λ and training set was evaluated using the test set. The entire procedure was repeated 
until all subjects were used as a test set (i.e., the number of outer loops CV = 22). 
For each of the outer loop CVs, for each odor pair, the decoding accuracy was measured as the 

mean percentage of correct trials. The grand average decoding accuracy across odor pairs 
shown in Fig. 2C was calculated by first obtaining the across-odor-pair mean accuracy for each of 
the outer loop CVs and averaging them across CVs. To test whether the decoding performance 
was significantly above the chance level (50%), a one-sided, one-sample Student’s t-test was 
used, with the number of outer loop CVs (n = 22) being the number of observations. After 
applying the Bonferroni–Holm correction, the alpha level was set at 0.05. The grand average 
decoding accuracy for each odor pair shown in Fig. 2D (lower triangle) was calculated by 
averaging the decoding accuracies of each odor pair across the outer loop CVs. 
 
Multi-class decoding 

In both the subject-wise and cross-subject approaches, a ten-class classification model was 
built for each time point. An ℓଶ-regularized multinomial logistic regression classifier, provided by 
scikit-learn python module (version 0.23.2), was used. As in the pairwise models, a nested cross-
validation (CV) procedure was used, where an inner loop CV responsible for tuning the cost 
parameter was nested in an outer loop CV, which was responsible for model evaluation. The 
training algorithm used the cross-entropy loss, and the cost parameter, λ, was chosen from 6 
possible values (log-spaced, between 2-3 and 212) based on the 10-fold CV in the inner loop of the 
nested CV at every iteration of the outer loop CV. The temporal resolution of EEG data and 
features used for each model were the same as those of the pairwise models. 
 
Subject-wise multi-class model 
In the subject-wise approach, decoding models were independently built for each subject. For 

each iteration of the outer loop CV, EEG trials of a given subject for each of the 10 odors were 
split into training and test sets at a ratio of 9:1. To avoid classification bias, stratified random 
sampling was performed to create training and test sets with the same class ratio. The remaining 
procedures (feature scaling, selection of λ and number of outer CVs) were the same as those of 
subject-wise pairwise decoding. 
 For each subject, the decoding accuracy was measured as a mean percentage of correct trials 

across the outer CVs (CV = 60). The grand average decoding accuracy shown in Fig. S3A was 
calculated by first obtaining the across-odor mean accuracy for each subject and then averaging 
them across subjects. To test whether the decoding performance was significantly above the 
chance level (10%), a one-sided, one-sample Student’s t-test was used, with the number of 
subjects (n = 22) being the number of observations. The alpha level was set at 0.05, after 
applying the Bonferroni–Holm correction for the number of time points. The grand average 
confusion matrix shown in Fig. S3B was calculated by averaging the confusion matrices across 
subjects. 
 
Cross-subject multi-class model 
In the cross-subject approach, decoding models were generalized across subjects using leave-

one-subject-out CV. For each iteration of the outer loop CV, EEG trials for all 10 odors from 21 
subjects were used for training, and those of the remaining one subject were used for testing. 
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Remaining procedures (feature scaling, selection of λ and number of outer CVs) were the same 
as those of cross-subject pairwise decoding. 
For each of the outer loop CVs (CV = 22), the decoding accuracy was measured as a mean 

percentage of correct trials. The grand average decoding accuracy across odors in Fig. S3C was 
calculated by first obtaining the across-odor mean accuracy for each of the outer loop CVs and 
then averaging them across CVs. To test whether the decoding performance was significantly 
above the chance level (10%), a one-sided, one-sample Student’s t-test was used, with the 
number of outer loop CVs (n = 22) being the number of observations. After applying the 
Bonferroni–Holm correction, the alpha level was set at 0.05. The grand average confusion matrix 
shown in Fig. S3D was calculated by averaging the confusion matrices across the outer loop 
CVs. 
 
 
Time-resolved representational similarity analysis (tRSA). To examine how the sensor-level, 
source-level, and perceptual representations of odors relate to each other, we conducted a 
representational similarity analysis (RSA) (36, 37) in a time-resolved manner (Fig. 1F). In the 
RSA framework, a representational structure of a given concept (e.g., odor) in a given space 
(e.g., neural space) can be defined as a representational dissimilarity vector (RDV), which 
consists of pairwise distances of all pairs of samples of that concept (e.g., odors used in the 
experiment) in that space. Then, similarities between different representational structures, for 
example, odors in perceptual space vs. those in neural space, are examined as correlations 
between RDVs. 
 In the current study, representational structures were defined based on the data for all the 45 
possible odor pairs, and thus, each RDV comprised 45 elements (specific variables used are 
explained in the following subsections). When RDVs were constructed based on decoding 
accuracies or trigeminal test scores, we replaced the values under the chance level (50%) with 
50%. As recommended for RSA (36, 38), relationships between representational structures were 
examined using Spearman’s rank correlation, and the statistical significance of correlation 
coefficients was tested using a resampling-based method. In particular, null distributions of the 
correlation coefficients were obtained by randomly shuffling the odor labels of the real data and 
computing rank correlations between RDVs constructed using the shuffled data. This procedure 
was repeated 10,000 times. The p values were computed as a proportion of simulated correlation 
coefficients that were larger than the actual correlation in all simulated correlation coefficients 
(one-sided test) to test whether the representational dissimilarity vectors were positively 
correlated or not (e.g., odor pairs with more similar perception evoke more similar brain activities). 
Multiple testing corrections were applied, as described in the following subsections. tRSA was 
conducted every 50 ms at the same temporal resolution as tMVPA decoding. 
 
Sensor-level tRSA based on the subject-wise model  
To examine whether and when the neural representational structure revealed by tMVPA 

decoding relates to the perceptual characteristics of odors, we performed sensor-level tRSA, 
where correlations between RDVs based on decoding accuracies and perceptual scores were 
examined (Fig. 3). Given the large individual differences in odor perception (Fig. 1 C–E), we 
primarily focused on tRSA based on subject-wise models (Fig. 3, Fig. S4A). In this analysis, 
RDVs were constructed by first computing individual-level RDVs, each consisting of 45 odor 
pairs, and averaging them across subjects (Fig. 3A). To better reflect individual differences, the 
order of the odor pairs in individual-level RDVs was sorted according to the decoding accuracies 
of a given subject for a given time point before averaging across subjects.  
In particular, for each time point for each subject, an individual-level brain RDV was constructed 

using pairwise decoding accuracies based on the decoding models of the subject. An individual-
level perceptual RDV was constructed using a subject’s own perceptual score(s) for each of the 
following perceptual aspects: quality, unipolar pleasantness, unipolar unpleasantness, intensity, 
similarity, pleasantness rated during EEG recordings, and trigeminal stimulation. For similarity, 
pairwise odor dissimilarities were quantified using reversed pairwise similarity rating scores. For 
the other perceptual aspects, pairwise odor dissimilarities were quantified as pairwise Euclidean 
distances of corresponding rating scores (for trigeminal and trigeminal test scores). Then, these 
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individual-level RDVs were averaged across subjects to construct brain and perceptual RDVs, as 
described in the previous paragraph, and were used for correlation analysis. In the case of rank-
transformed RSA, every RDV was rank-transformed before averaging (Fig. S4B). This made the 
RDV of each subject a vector consisting of numbers 1 to 45.  In this way, all subjects contributed 
equally to averaged RDVs. To examine the time course of neural representations associated with 
each of the perceptual aspects, zero-order correlation analysis was performed between the brain 
RDVs and each of the perceptual RDVs described above. To identify the time course of neural 
representations associated with specific aspects of perception, partial correlation analysis was 
performed between the brain RDVs and each of the following perceptual RDVs: unipolar 
pleasantness, unipolar unpleasantness, and quality. For unipolar pleasantness and unipolar 
unpleasantness, intensity was partialled out. For quality, unipolar pleasantness, unipolar 
unpleasantness, and intensity were partialled out. Significance thresholds were corrected for the 
number of time points using the Bonferroni–Holm method. 
 
Sensor-level tRSA based on cross-subject model 
Although large individual differences existed, when looking at the group level, sensory 

characteristics significantly differed across odors (Fig. 1 C–E). To examine whether such 
perceptual differences of odors are associated with the neural representational structures 
common across subjects (Fig. 2 D, lower triangle), we also conducted the tRSA based on inter-
subject mean sensory scores and the cross-subject decoding models (Fig. S4E). In this analysis, 
brain RDVs were constructed based on pairwise cross-subject decoding accuracies, and 
perceptual RDVs were constructed by computing the inter-subject mean pairwise Euclidean 
distances for each of the following perceptual aspects: quality, unipolar pleasantness, unipolar 
unpleasantness, and intensity. Zero-order correlation analysis was performed between the brain 
RDVs and each of the following perceptual RDVs: quality, unipolar pleasantness, and unipolar 
unpleasantness. Partial correlation analysis was performed between the brain RDVs and each of 
the following perceptual RDVs: unipolar pleasantness while partialling out intensity, unipolar 
unpleasantness while partialling out intensity, and quality while partialling out unipolar 
pleasantness, unipolar unpleasantness, and intensity. Significance thresholds were corrected for 
the number of time points using the Bonferroni–Holm method. 
 
tRSA between source-level activity and sensor-level decoding accuracy (source-sensor tRSA) 
To gain insights into the cortical generators underlying the neural representational structure 

revealed by sensor-level tMVPA decoding, we performed source-sensor tRSA, where correlations 
between RDVs based on source-level brain activities and sensor-level tMVPA decoding 
accuracies were examined (Fig. 4). In this analysis, we used decoding accuracies based on the 
subject-wise models. RDVs were constructed by first computing the individual-level RDVs, each 
consisting of 45 odor pairs, and averaging them across subjects. In particular, for each time point 
for each subject, an individual-level, source-level brain RDV was constructed for each of the 6239 
voxels by computing the pairwise differences in the standardized current density powers for all 
possible 45 odor pairs. An individual-level, sensor-level brain RDV was constructed based on the 
decoding accuracies obtained by the subject’s own decoding models for the given time point. For 
both source-level and sensor-level brain RDVs, odor pairs of individual-level RDVs were sorted 
according to the source-level dissimilarities of the given time point and were then averaged 
across subjects. Significance thresholds were corrected for the number of time points and 
number of voxels using the Benjamini–Hochberg false discovery rate (FDR) controlling 
procedure. 
 
tRSA between source-level activity and perceptual ratings 
To examine when and where different aspects of odor perception are represented in the brain, 

we performed tRSA between source-level activity and perceptual ratings. The procedures for 
constructing RDVs were the same as those for the source-sensor tRSA, except that the RDVs 
based on perceptual scores were used instead of sensor-level brain RDVs. In particular, for each 
time point for each subject, an individual-level, source-level brain RDV was constructed for each 
voxel, as described in the previous subsection. An individual-level perceptual RDV was 
constructed using the subject’s own perceptual score(s) for each of the following perceptual 



 
 

10 
 

aspects: quality, unipolar pleasantness, unipolar unpleasantness, and intensity. The odor pairs of 
individual-level RDVs were sorted according to the source-level dissimilarities of the given time 
point and then averaged across subjects. To reveal the source activities associated with holistic 
perception, zero-order correlations between source-level brain RDVs and RDVs based on quality 
ratings were examined (source-quality tRSA). To identify source activities associated with specific 
aspects of perception, partial correlation analysis was performed between the source-level brain 
RDVs and each of the following perceptual RDVs: unipolar pleasantness, unipolar 
unpleasantness, and quality. For unipolar pleasantness and unipolar unpleasantness, the 
intensity was partialled out. For quality, unipolar pleasantness, unipolar unpleasantness, and 
intensity were partialled out. The analysis was limited to the significant time points in the 
corresponding sensor-level tRSA (Fig. 3B, C), that is, for the zero-order correlation analysis using 
quality, 400–1500 ms; for partial correlation analysis focusing on unipolar pleasantness, 500–
1500 ms; unipolar unpleasantness, 300–1500 ms; and quality, 500–600 ms. Significance 
thresholds were corrected for the number of time points and number of voxels using the 
Benjamini–Hochberg FDR procedure. 
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Fig. S1. Olfactometer setup (A) Schematic representation of Kobal’s switching principle used in the olfactometer 
(OL022; Burghart Messtechnik GmbH). This switching principle allows odor presentation without tactile stimulation, 
which has been recommended for OERP measurement. In this switching principle, both odor and control lines were 
active throughout the experimental session, and the switching between lines occurred at the outlet of the olfactometer 
by vacuuming either odorized air (during inter-stimulus period) or control air (during the stimulus period). (B) Expansion 
of OL022. A set of manifolds and valves, shown in the red dotted box, were inserted into the upper stream of the outlet 
to represent 10 different odors without affecting the Kobal’s switching principle. Presentation of different odors was 
achieved by opening one of the valves (valves O1-O10) placed downstream of line-b. Five seconds before odor onset, 
valve-b was opened to allow airflow in line-b, which joined the odor line after passing one of the odor bins. After the 
odor presentation period, valve-b was closed, while valve-a was opened, and airflow from line-a joined the odor line 
after passing the manifold and rinsing it. Importantly, the olfactometer’s original function, which is based on Kobal’s
switching principle, was used for switching between the control and odor lines at the nose outlet. (C) The performance 
of the modified olfactometer was examined by measuring the odor onset time and odor rise time and their variability 
across odor channels and trials using a fast-response photo-ionization detector (mini-PID Model 200B, Aurora Scientific 
Inc., Ontario, Canada), as described previously (39). A time course of PID signals from a representative trial is shown. 
Timing of valve switching was defined as the onset of the transistor-transistor logic (TTL) signal that triggered valve 
switching. The odor onset time was defined as the time point at which the PID value was above 10% of the maximum 
value, and the rise-time was defined as the time elapsed from 10% to 70% of the maximum value. The TTL and PID 
signals were recorded at a sampling rate of 1000 Hz using a data acquisition system (MP150, BIOPAC Systems, Inc., 
Goleta, Calif, USA). The setting of the olfactometer was the same as that in the EEG session (flow rates, 7.5 L/min for 
both baseline and odor air flows; odor duration, 1000 ms, ISIs; 17 s), and the number of trials for each channel was 10. 
The mean odor onset time across channels was 59.6±0.4 ms, and the rise-time was 38.6±2.3 ms. The mean of the 
S.D. of odor onset time across trials was 1.1±0.3 ms and that of rise-time was 2.6±0.8 ms. These results were 
compatible with those of the original olfactometer and met the recommendations for OERP measurements (40). 

11



Cz

Fz

Pz

C4C3

Ally

Fru

Cit

Lin

Van

Ace

Hex

Pin

Cyc

4Pe

A

L R

P
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Fig. S3. Multi-class (10-class) decoding with multinomial logistic regression classifier. The number of cross-validations 
and features used for decoding analysis were the same as those of pairwise decoding (Fig. 2; see SI method for 
details). The grand mean accuracy of subject-wise decoding (A) and cross-subject decoding (C) averaged across 10 
odors. Bottom horizontal lines indicate statistical significance (one-sided, one-sample Student’s t-test, p < 0.05, 
Bonferroni–Holm corrected), with numbers indicating their onsets. Shaded areas indicate 95% confidential intervals 
across subjects (A) or across outer loop CV (C). Confusion matrices for subject-wise decoding (B) and cross-subject 
decoding (D) at 300 ms after odor onset, when the grand mean accuracies reached maxima. Rows represent actual 
class, and columns represent predicted class. The diagonal and off-diagonal cells correspond to correct and incorrect 
classifications, respectively. For each row, the color of each cell indicates the percentage of trials that were classified to 
the given predicted class over the total number of trials for the corresponding actual class, so that sum of cells for each 
row equals 100%. Abbreviations of odors are shown at the left and bottom (see Methods for full names).
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Fig. S4. Sensor-level tRSA based on subject-wise (A–D), and cross-subject decoding (E–G). (A) The remaining results 
of sensor-level tRSA presented in Fig. 3B. Sensor-level brain representational dissimilarity vectors (RDVs) computed 
as shown in Fig. 3A were rank correlated with each of the 4 RDVs computed based on perceptual scores: intensity 
ratings, pleasantness ratings obtained during EEG recordings, similarity ratings, and performances on the trigeminal 
test. The bottom horizontal lines indicate statistical significance (permutation test, 10,000 permutations, p < 0.05, 
Bonferroni-Holm corrected), with numbers indicating their onsets. (B–D) To confirm that a small number of subjects did 
not bias the RDVs, every RDV was rank-transformed before averaging across subjects. This made the RDV of each 
subject a vector consisting of numbers 1 to 45. In this way, all subjects contributed equally to averaged RDVs. The 
remaining processes used for (C) (zero-order correlation) and (D) (partial correlation) were the same as those used for 
Fig. 3B and Fig. 3C, respectively. (E-G) To examine whether neural representations of odor perception that are 
common across subjects exist, we also conducted tRSA based on the decoding accuracies obtained by the cross-
subject decoding models and inter-subject mean perceptual scores. (E) Procedures for conducing tRSA based on 
cross-subject decoding. The brain RDVs were constructed based on pairwise cross-subject decoding accuracies, and 
the perceptual RDVs were constructed by computing the inter-subject mean pairwise Euclidean distances of the given 
perceptual score for all odor pairs. Then, the Spearman’s rank correlation between the brain and the perceptual RDVs 
were computed. Results of tRSA with zero-order correlation (F) and with partial correlation (G). For unipolar 
pleasantness and unpleasantness, the intensity was partialled out, and for quality, intensity, unipolar pleasantness and 
unpleasantness were partialled out. The bottom horizontal lines indicate statistical significance (permutation test, 
10,000 permutations, p < 0.05, Bonferroni-Holm corrected), with numbers indicating their onsets. Ple, unipolar 
pleasantness; unp, unipolar unpleasantness; qua, quality; int, intensity.
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Fig. S5. Results of source-level tRSA for all the time-points. Results for tRSA relating to representational structure 
based on source activities with that of sensor-level decoding accuracies (source-sensor tRSA; (A)) and quality ratings 
as a metric of perceptual dissimilarities in the whole olfactory perceptual space (source-quality tRSA; (B)), unipolar 
pleasantness while partialling out intensity (C), unipolar unpleasantness while partialling out intensity (D), and quality 
while partialling out intensity, unipolar pleasantness, and unipolar unpleasantness (E). tRSA was conducted as 
described in Fig. 4A. Significant voxels were colored according to the color bar (permutation test, 10,000 permutations, 
p < 0.05, FDR corrected for all voxels and time-points). Colors indicate correlation coefficients (A–B) or partial 
correlation coefficients (C–E). Ple, unipolar pleasantness; unp, unipolar unpleasantness; qua, quality; int, intensity; L, 
left hemisphere; R, right hemisphere; B, bottom view. 15



Fig. S6. Significant voxels in the source-sensor tRSA at 100 ms (Permutation test, 10,000 permutations, p < 0.05, 
FDR corrected for all the voxels and time-points). (A) From left to right, axial, sagittal, and coronal slices that go 
through the POA. Colors indicate correlation coefficients. Only significant voxels are colored. (B) List of significant 
voxels with MNI coordinates (X, Y and Z), correlation coefficients (rho), p-values, hemispheres (HS), lobes, Brodmann
areas (BA) and anatomical structures. Anatomical information was obtained using the sLORETA software. Yellow 
highlights indicate voxels that are in the POA (either piriform cortex, anterior olfactory nucleus or olfactory tubercle). 
Location of the POA was determined based on a previous study that reported MNI coordinates of the POA (see SI 
method for details). A, anterior; P, posterior; L, left hemisphere; R, right hemisphere; C, center; F, frontal lobe; Lim, 
limbic lobe; P, parietal lobe; S, sub-lobar; MedFG, medial frontal gyrus; IFG, inferior frontal gyrus; MidFG, middle 
frontal gyrus; OrbitalG, orbital gyrus; RectalG, rectal gyrus; SFG, superior frontal gyrus; Subcallosal, subcallosal 
gyrus; ACC, anterior cingulate cortex; PHG, parahippocampal gyrus; IPL, inferior parietal lobule.

A

X Y Z rho p HS Lobe BA Structure
-10 40 -10 0.48 0.042 L F 10 MedFG
-10 40 -5 0.54 0.010 L F 10 MedFG
-10 50 -5 0.58 0.001 L F 10 MedFG
-5 45 -10 0.52 0.019 L F 10 MedFG
-5 50 -5 0.51 0.022 L F 10 MedFG
-5 55 0 0.48 0.042 L F 10 MedFG

-25 35 -25 0.50 0.030 L F 11 IFG
-25 35 -20 0.58 0.002 L F 11 IFG
-20 35 -20 0.51 0.020 L F 11 IFG
-15 30 -25 0.50 0.028 L F 11 IFG
-15 35 -25 0.54 0.012 L F 11 IFG
-15 35 -20 0.58 0.001 L F 11 IFG
-15 40 -20 0.52 0.019 L F 11 IFG
-5 25 -15 0.48 0.042 L F 11 MedFG
-5 30 -15 0.48 0.045 L F 11 MedFG
-5 50 -10 0.55 0.005 L F 11 MedFG

-25 35 -15 0.51 0.022 L F 11 MidFG
-25 40 -20 0.49 0.032 L F 11 MidFG
-25 40 -15 0.49 0.037 L F 11 MidFG
-25 40 -10 0.51 0.022 L F 11 MidFG
-25 40 -5 0.52 0.018 L F 11 MidFG
-20 40 -15 0.51 0.026 L F 11 MidFG
-15 40 -25 0.50 0.028 L F 11 OrbitalG
-15 45 -25 0.51 0.024 L F 11 OrbitalG
-10 25 -30 0.48 0.042 L F 11 RectalG
-10 30 -25 0.56 0.004 L F 11 RectalG
-10 35 -25 0.59 0.000 L F 11 RectalG
-10 35 -20 0.49 0.033 L F 11 RectalG
-5 15 -25 0.48 0.047 L F 11 RectalG
-5 20 -25 0.52 0.019 L F 11 RectalG
-5 25 -25 0.58 0.001 L F 11 RectalG
-5 30 -25 0.55 0.007 L F 11 RectalG

-20 40 -20 0.56 0.004 L F 11 SFG
-15 60 -10 0.51 0.022 L F 11 SFG
-10 10 -20 0.62 0.000 L F 25 MedFG
-10 25 -20 0.53 0.013 L F 25 MedFG
-10 30 -15 0.48 0.042 L F 25 MedFG
-5 10 -20 0.51 0.021 L F 25 MedFG
-5 25 -20 0.51 0.025 L F 25 MedFG
-5 30 -20 0.49 0.032 L F 25 MedFG
-5 5 -15 0.54 0.012 L F 25 Subcallosal
-5 15 -15 0.50 0.032 L F 25 Subcallosal

-20 5 -15 0.50 0.032 L F 34 Subcallosal
-10 5 -15 0.54 0.011 L F 34 Subcallosal
-35 20 -5 0.48 0.046 L F 47 IFG
-30 20 -25 0.51 0.023 L F 47 IFG
-25 30 -10 0.49 0.039 L F 47 IFG
-25 35 -10 0.55 0.007 L F 47 IFG
-25 35 -5 0.53 0.015 L F 47 IFG
-20 20 -25 0.48 0.043 L F 47 IFG
-20 30 -10 0.53 0.015 L F 47 IFG
-20 30 -5 0.64 0.000 L F 47 IFG
-20 35 -25 0.52 0.017 L F 47 OrbitalG
-5 25 15 0.56 0.002 L Lim 24 ACC
-5 25 20 0.54 0.013 L Lim 24 ACC
-5 30 -5 0.52 0.016 L Lim 24 ACC
-5 30 0 0.57 0.002 L Lim 24 ACC
-5 30 15 0.59 0.000 L Lim 24 ACC
-5 35 5 0.59 0.000 L Lim 24 ACC
-5 35 10 0.53 0.015 L Lim 24 ACC
-5 15 -10 0.50 0.028 L Lim 25 ACC
-5 20 -5 0.52 0.019 L Lim 25 ACC

-15 -10 -15 0.62 0.000 L Lim 28 PHG
-15 -5 -15 0.58 0.001 L Lim 28 PHG

X Y Z rho p HS Lobe BA Structure
-20 5 -30 0.50 0.032 L Lim 28 Uncus
-15 0 -30 0.63 0.000 L Lim 28 Uncus
-10 35 -10 0.56 0.002 L Lim 32 ACC
-10 35 -5 0.62 0.000 L Lim 32 ACC
-10 45 -5 0.53 0.015 L Lim 32 ACC
-10 45 0 0.53 0.013 L Lim 32 ACC
-10 45 5 0.61 0.000 L Lim 32 ACC
-5 25 -10 0.55 0.008 L Lim 32 ACC
-5 30 -10 0.56 0.002 L Lim 32 ACC
-5 35 -5 0.60 0.000 L Lim 32 ACC
-5 35 0 0.62 0.000 L Lim 32 ACC
-5 40 -10 0.61 0.000 L Lim 32 ACC
-5 40 -5 0.67 0.000 L Lim 32 ACC
-5 40 0 0.61 0.000 L Lim 32 ACC
-5 40 5 0.48 0.042 L Lim 32 ACC
-5 45 -5 0.60 0.000 L Lim 32 ACC
-5 45 0 0.54 0.011 L Lim 32 ACC
-5 10 25 0.52 0.016 L Lim 33 ACC
-5 20 20 0.50 0.027 L Lim 33 ACC

-20 0 -15 0.53 0.013 L Lim 34 PHG
-20 5 -20 0.50 0.028 L Lim 34 PHG
-15 -5 -20 0.56 0.004 L Lim 34 PHG
-15 0 -20 0.57 0.002 L Lim 34 PHG
-15 0 -15 0.62 0.000 L Lim 34 PHG
-15 -5 -25 0.53 0.015 L Lim 34 Uncus
-15 0 -25 0.61 0.000 L Lim 34 Uncus
-15 5 -25 0.52 0.017 L Lim 34 Uncus
-25 -50 50 0.50 0.032 L P 7 Precuneus
-35 -55 45 0.50 0.031 L P 40 IPL
-40 -45 20 0.56 0.002 L S 13 Insula
-40 0 5 0.49 0.034 L S 13 Insula
-40 0 10 0.48 0.044 L S 13 Insula
-40 0 15 0.55 0.008 L S 13 Insula
-40 5 15 0.54 0.013 L S 13 Insula
0 5 -15 0.52 0.019 C F 25 Subcallosal
0 10 -15 0.51 0.025 C F 25 Subcallosal
0 0 -5 0.58 0.000 C Lim 25 ACC
0 5 -10 0.51 0.022 C Lim 25 ACC
0 10 -10 0.48 0.046 C Lim 25 ACC
0 10 -5 0.51 0.025 C Lim 25 ACC
0 15 -10 0.48 0.045 C Lim 25 ACC
0 45 0 0.49 0.037 C Lim 32 ACC

30 -30 60 0.49 0.040 R F 4 Precentral
15 35 -25 0.56 0.002 R F 11 IFG
15 35 -20 0.51 0.022 R F 11 IFG
15 40 -25 0.48 0.042 R F 11 OrbitalG
10 15 -20 0.48 0.046 R F 11 RectalG
20 45 -20 0.49 0.034 R F 11 SFG
15 15 -15 0.49 0.032 R F 13 Subcallosal
10 10 -20 0.48 0.042 R F 25 MedFG
15 15 -20 0.53 0.015 R F 25 MedFG
5 10 -15 0.48 0.045 R F 25 Subcallosal
5 15 -15 0.47 0.048 R F 25 Subcallosal

10 5 -15 0.51 0.024 R F 34 Subcallosal
5 5 -5 0.55 0.005 R Lim 25 ACC

15 -5 -15 0.54 0.012 R Lim 28 PHG
5 45 0 0.52 0.016 R Lim 32 ACC

15 -10 -20 0.53 0.015 R Lim 34 PHG
15 -5 -20 0.50 0.028 R Lim 34 PHG
20 -10 -20 0.51 0.021 R Lim 34 PHG
15 -5 -25 0.53 0.015 R Lim 34 Uncus
15 0 -25 0.54 0.013 R Lim 34 Uncus
20 -5 -35 0.53 0.015 R Lim 36 Uncus
25 -35 55 0.52 0.019 R P 3 Postcentral

Z = -15 X = -20 Y = 0

0
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Fig. S7. Rank-transformed source-level tRSA. To confirm that a small number of subjects did not bias the RDVs, 
every RDV was rank-transformed before averaging across subjects for each voxel (see Fig. S4B for the procedure). 
The remaining processes used for (A) zero-order correlation and (B–D) partial correlation were the same as those 
used for Fig. 4B and Fig. 4C–E, respectively. (E) Correlation between results of tRSA with and without rank-
transformation (i.e., results shown in Fig. S7 and Fig. 4). Pearson’s correlation coefficients were obtained using a pair 
of vectors comprised of Spearman’s correlation coefficients for all the 6239 voxels, and p-values were Bonfferoni-
Holm corrected for the number of time points. Significant strong positive correlations indicated that the spatiotemporal 
patterns of rank-transformed tRSA were highly similar with those without rank-transformation. Ple, unipolar 
pleasantness; unp, unipolar unpleasantness; qua, quality; int, intensity; R, right hemisphere; L, left hemisphere.
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Table S1. Perceptual rating and trigeminal scores. 
 

 intensity pleasantness trigeminal  
All 3.3 (0.5) 3.4 (0.7) 57.3 (20.1) 

Fru 3.1 (0.6) 2.8 (0.8) 60.4 (18.4) 
Cit 2.9 (0.5) 3.5 (0.6) 51.4 (19.0) 
Lin 2.9 (0.7) 3.2 (0.5) 51.7 (17.5) 

Van 3.2 (0.5) 2.9 (0.7) 59.0 (19.8) 
Ace 3.3 (0.8) 2.9 (0.9) 57.3 (19.4) 
Hex 3.1 (0.8) 2.6 (0.7) 56.1 (19.5) 
Pin 3.4 (0.7) 3.0 (0.8) 62.0 (19.8) 

Cyc 4.5 (0.7) 1.4 (0.5) 53.6 (17.0) 
4Pe 3.7 (0.8) 2.0 (0.8) 54.1 (17.5) 

 
Inter-subject means and standard deviations (S.D.) of the intensity ratings were obtained using a 
5-point scale (1 = odorless; 5 = extremely strong), pleasantness ratings were obtained using a bi-
polar 5-point scale (1 = very unpleasant; 5 = very pleasant), and accuracies were obtained using 
the trigeminal test (% of correct trials). The pleasantness ratings shown here were obtained 
during the EEG recordings (Fig. 1). 
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Table S2. Similarity rating scores. 
 

 Ally Fru Cit Lin Van Ace Hex Pin Cyc 4Pe 

Ally － － － － － － － － － － 

Fru 
66.4 

(19.4) 
－ － － － － － － － － 

Cit 
65.3 

(13.4) 
60.5 

(18.6) 
－ － － － － － － － 

Lin 
59.4 

(14.7) 
54.5 

(17.0) 
63.5 

(19.7) 
－ － － － － － － 

Van 
50.5 

(21.6) 
53.7 

(20.2) 
53.0 

(15.3) 
53.7 

(20.1) 
－ － － － － － 

Ace 
58.5 

(19.7) 
48.3 

(16.5) 
53.6 

(16.1) 
47.9 

(21.1) 
48.8 

(16.0) 
－ － － － － 

Hex 
55.3 

(18.8) 
61.0 

(16.4) 
52.2 

(16.1) 
48.8 

(16.8) 
55.5 

(15.8) 
47.8 

(22.3) 
－ － － － 

Pin 
48.9 

(21.5) 
54.3 

(21.5) 
56.8 

(21.3) 
50.9 

(18.1) 
42.2 

(16.9) 
54.7 

(18.4) 
45.8 

(15.9) 
－ － － 

Cyc 
14.2 

(13.6) 
21.2 

(17.8) 
18.5 

(18.1) 
24.3 

(18.2) 
22.0 

(18.4) 
24.1 

(18.1) 
21.5 

(18.4) 
18.5 

(14.7) 
－ － 

4Pe 
42.7 

(30.8) 
40.6 

(22.0) 
39.4 

(22.5) 
37.5 

(19.6) 
37.3 

(19.7) 
36.6 

(19.7) 
38.3 

(18.5) 
33.1 

(17.5) 
44.3 

(21.7) 
－ 

 
Inter-subject means and standard deviations (S.D.) of similarity ratings were obtained using a 
visual analogue scale (0, dissimilar; 100, similar). 
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Table S3. Correlational matrix for perceptual RDVs. 
 

 intensity ple unp quality similarity trigeminal pleasantness 
(during EEG) 

intensity ʷ ʷ ʷ ʷ ʷ ʷ ʷ 

ple 0.15  
 p = 0.07 ʷ ʷ ʷ ʷ ʷ ʷ 

unp 0.29  
 p < 0.05 

0.43  
 p < 0.05 ʷ ʷ ʷ ʷ ʷ 

quality 0.28  
 p < 0.05 

0.48  
 p < 0.05 

0.64  
 p < 0.05 ʷ ʷ ʷ ʷ 

similarity 0.29  
 p < 0.05 

0.20  
 p < 0.05 

0.48  
 p < 0.05 

0.50  
 p < 0.05 ʷ ʷ ʷ 

trigeminal 0.03  
 p = 2.24 

0.04  
 p = 2.51 

0.01  
 p = 2.61 

-0.03  
 p = 2.30 

0.01  
 p = 3.19 ʷ ʷ 

pleasantness 
(during EEG) 

0.29  
 p < 0.05 

0.45  
 p < 0.05 

0.53  
 p < 0.05 

0.52  
 p < 0.05 

0.38  
 p < 0.05 

0.01  
 p = 3.19 ʷ 

 
To examine the relationships among perceptual variables, we computed pairwise correlations 
between perceptual representational dissimilarity vectors (RDVs). For each subject and for each 
perceptual test, an RDV was constructed by computing the pairwise Euclidean distances of the 
corresponding perceptual scores for all the possible 45 odor pairs. Then, for each subject for 
each pair of perceptual RDVs, the Spearman’s rank correlation was computed, and group-level 
statistical significance was examined using the Wilcoxon signed-rank test (one-sided, Bonferroni-
Holm corrected). The resulting p values and inter-subject mean correlation coefficients are 
presented. Ple, unipolar pleasantness; unp, unipolar unpleasantness. 
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Table S4. number of valid trials for each subject and each odors 
 

 Ally Fru Cit Lin Van Ace Hex Pin Cyc 4Pe 

sub01 30 29 29 30 30 30 30 30 26 28 

sub02 27 28 25 28 28 26 27 22 21 25 

sub03 30 30 28 26 29 30 29 27 30 29 

sub04 30 30 30 30 30 30 30 30 30 30 

sub05 24 23 21 22 21 18 26 25 25 23 

sub06 27 27 30 29 27 30 28 27 30 29 

sub07 21 26 20 20 21 19 19 22 18 23 

sub08 30 30 30 30 29 29 30 29 30 30 

sub09 30 30 29 30 30 29 29 30 30 30 

sub10 28 26 29 23 25 26 22 28 26 26 

sub11 28 29 30 27 29 27 28 29 30 28 

sub12 30 30 30 30 30 30 30 30 30 29 

sub13 30 29 29 30 29 30 30 29 30 30 

sub14 30 30 30 30 30 30 29 30 30 30 

sub15 29 29 29 29 29 30 24 30 29 27 

sub16 30 30 29 30 29 30 30 29 30 29 

sub17 29 25 29 27 30 30 23 30 29 30 

sub18 30 30 30 30 30 30 29 30 30 29 

sub19 30 30 25 29 30 29 30 28 30 30 

sub20 30 30 29 30 30 30 29 30 29 30 

sub21 30 30 30 30 30 30 29 30 30 30 

sub22 30 30 29 29 27 30 30 29 30 30 

 
For decoding analyses, we used a nested cross-validation (CV) procedure, where an inner loop 
CV responsible for tuning the cost parameter was nested in an outer loop CV, which was 
responsible for model evaluation. For example, in the case of subject-wise, pairwise decoding for 
Ally vs Cys for subject 01, the number of trials used for each CV was as follows: 
 
1. In each outer CV, 4 trials of Ally were randomly discarded to match the number of trials with 
that of Cys.  
2. For both odors, 90% of the remaining 26 trials (=23 trials) were used as training data, and the 
other three trials were used as test data. If the resulting numbers were not integers, the number 
of trials for the training data was rounded down, and that of the test data was rounded up. 
3. The training data were further split into 10 sets for the inner loop, 10-fold CV (23 trials divided 
by 10), which resulted in 2 or 3 trials for test data, and 21 or 22 training data. 
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