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1 Gibbs-Donnan calculation for the osmotic pressure of chromatin
counterions

The limit we consider leads to an upper bound for the osmotic pressure of the chromatin counterions. In
particular, we assume that the counterions are not localized near the chromatin fiber and their concentration
is uniform within the nucleoplasm. Localization and inhomogeneity of the ion concentration lowers their
contribution to the osmotic pressure. In addition, we consider the limiting case where there are no cytoplasmic
confined charges, and the cytoplasm volume is infinitely larger than the nucleoplasm volume; as we show
in the next appendix, this limit, which is appropriate for isolated nuclei, results in an upper bound for the
net outward osmotic pressure of chromatin counterions. The concentrations of the different ions are then
determined by two conditions: (1) Equality of the electrochemical potentials of the ions in the cytoplasm and
nucleus. This potential, in the limit of a dilute solution, is the sum of entropic contribution equal to the log
of the concentration of that ion species and a constant electrostatic term whose contribution is of opposite
sign for positive and negative charges, kBT log

(
c±i v0

)
± eνΦi; where kBT is the thermal energy, c±i is the

concentration of positive/negative monovalent ions in compartment i = c, n (cytoplasm or nucleoplasm), v0
is the ion volume, taken to be the same for cations and anions, e is the electron charge, ν is the valence
of the ion (ν = 1 for monovalent ions), and Φi is the electrostatic potential in compartment i. Equality
of the electrochemical potential is an equilibrium condition, which is appropriate for ions that can freely
diffuse through the NE which has only passive channels connecting the nucleoplasm and cytoplasm and no
ion pumps. (2) The nucleoplasm and the cytoplasm are both electro-neutral. The electrostatic energy cost
of mesoscopically charged cytoplasm or nucleus is very large and thus suppresses such distributions [1].

In our minimal model for osmotic pressure of the counterions, the nucleoplasm comprises three types
of solutes: (1) positive monovalent ions, (2) negative monovalent ions, and (3) chromatin; the cytoplasm,
which lacks confined charges, contains only the ions. We denote the respective concentrations of positive and
negative monovalent ions in the cytoplasm by c+c and c−c and their respective concentrations in the nucleoplasm
by c+n and c−n . The net, negative charge concentration of the chromatin (in units of electron charges) in the
nucleoplasm is written as c−ch. From condition (1) of equality of electrochemical potentials for the two types
of ions, the concentrations of the monovalent ions are related by kBT log (c+c /c

+
n ) = −kBT log (c−c /c

−
n ). This

relation is equivalent to the following, simpler relation, c+c c−c = c+n c
−
n . We note that because the chromatin

cannot cross the NE, it does not reach electrochemical equilibrium and it does not satisfy these equations.
Condition (2) for the overall electro-neutrality of the cytoplasm and nucleoplasm, leads to the following

two equations, c+c = c−c and c+n = c−n + c−ch, for each compartment respectively. As mentioned above, we work
in the limit where the volume of the cytoplasm is much larger than that of the nucleus, so that ion exchange
with the nucleus does not significantly change the ion concentration in the cytoplasm. This simplification
allows us to approximate the cytoplasmic concentrations of the positive and negative ions as the intracellular
salt concentration c+c = c−c ≈ csalt; corrections to this approximation are not expected to change the order of
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magnitude of our pressure estimates. The equations c+c = c−c ≈ csalt, c+n = c−n + c−ch, and c
+
c c

−
c = c+n c

−
n relate

the concentrations of the monovalent ions in the nucleoplasm to the salt concentration and the concentration
of chromatin counterions:

c+n =

√(
c−ch
)2

+ 4c2salt + c−ch

2
(1)

c−n =

√(
c−ch
)2

+ 4c2salt − c
−
ch

2
(2)

In the ideal gas limit, the net contribution of the monovalent ions to the osmotic pressure is simply
the difference between the total concentrations of all the monovalent ions in the nucleoplasm and all the
monovalent ions in the cytoplasm, multiplied by kBT :

pc = kBT
(
c+n + c−n − 2csalt

)
≈ kBT

(
c−ch
)2

4csalt
(3)

where the rightmost expression results from expansion of
√(

c−ch
)2

+ 4c2salt for the biological case that csalt �
c−ch (see main text). Substituting the relation between the net chromatin charge concentration, the net
chromatin charge, and the nuclear volume, c−ch = Nch/Vn, into Eq. 3 results in Eq. 4 in the main text.

We note that our simple model of the nuclear electrostatics that considers only one type of positive,
monovalent ions, one type of negative, monovalent ions, and chromatin, does not capture the true and varied
composition of the cellular cytoplasm and nucleoplasm. The cytoplasm and nucleoplasm contain a multitude
of ion species with various valencies, as well as charged proteins. However, the majority of the positive
and negative ions in the cells are potassium ions and phosphate ions [2], respectively. This justifies our
simplification that the positive and negative ions are all of the same type. Furthermore, while our choice
of approximating all the ions as monovalent may affect the detailed, numerical value of the estimate, it
is not expected to change its order of magnitude. In contrast, the cytoskeleton which is also negatively
charged is not included in our estimate either. Its effect on the osmotic pressure can only lower our upper
bound estimate. This is because the charge of the cytoskeleton is negative and confined to the cytoplasm,
so that its contribution to the osmotic pressure difference between the nucleoplasm and cytoplasm only
reduces our estimated contribution of the negatively charged chromatin that is confined to the nucleus. If the
concentration of the cytoskeletal charge is comparable to that of the chromatin, it may significantly reduce
the osmotic pressure difference. Therefore, the pressure predicted by 3 is an upper bound to the pressure
contributed by the chromatin counterions. This is further explicated in the appendix “Detailed model for
counterions osmotic pressure” below, which focuses on a detailed, numerically-solvable model for the osmotic
pressure of counterions that considers the presence of confined charges in the cytoplasm.

2 Detailed model for counterions osmotic pressure
In this appendix, we estimate the counterion osmotic pressure difference between the nucleoplasm and cyto-
plasm when we consider the finite cytoplasmic volume and confined charges it contains such as the negatively
charged cytoskeletal proteins [3] and membrane phospholipids. Therefore, this appendix complements the
derivation presented in Appendix “Gibbs-Donnan calculation for the osmotic pressure of chromatin coun-
terions” above and discussed in the main text for isolated nuclei (corresponding to an infinite cytoplasmic
volume). The model presented in this Appendix is more detailed than the previous one and results in less
analytically tractable, but nonetheless solvable, set of equations that predict the number of ions in each com-
partment. The theory is based on the Gibbs-Donnan equilibrium [1] whose equations provide an estimate
for the difference of the nuclear and cytoplasmic osmotic pressures of the counterions. In this more detailed
model, we quantitatively show that the case of isolated nuclei presented in the previous Appendix lead to an
even larger estimate of the net, outward counterion pressure. Since we seek an upper bound to this quantity,
the idealization of isolated nuclei, and Eq. 3 that results from this simplification, are appropriate.
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As explained in the previous Appendix, since small ions can cross the NE, the electrochemical potentials of
each of the two charge species of monovalent ions in the two compartments are equal in chemical equilibrium
[1]. This implies that the products of the concentrations of positive and negative monovalent ions in the two
compartments are also equal

N+
c N

−
c

V 2
c

=
N+

n N
−
n

V 2
n

(4)

where Vc and Vn are the respective volumes of the cytoplasm and nucleoplasm, N+
c and N−

c are the number
of positive and negative ions in the cytoplasm, respectively, and similarly, N+

n and N−
n are respectively the

number of positive and negative ions in the nucleoplasm. Furthermore, minimization of the electrostatic
energy indicates that each of the two compartments is approximately electroneutral, which is described by
the following two equations:

N−
n +Nbn = N+

n (5)
N−

c +Nbc = N+
c (6)

where Nbn and Nbc are the net number charges that are confined to the nucleoplasm (e.g., chromatin) and
cytoplasm (e.g., cytoskeleton and lipid bilayers), respectively.

Eqs. 4, 5, and 6 are supplemented by the condition the the number of negative, monovalent ions in both
the nucleus and cytoplasm are conserved

N−
c +N−

n = N− (7)

where N− is the total number of monovalent anions, which is related to the cellular salt concentration csalt,
and total volume of the cell by the following equation

N− = csalt (Vn + Vc) (8)

Importantly, conservation of the total number of cations is automatically satisfied by the conservation of
number of anions (Eq. 7) and the electroneutrality of the two compartments (Eqs. 5 and 6), thus does not
contribute an additional equation.

Since we are interested in the effect that cytoplasmic, confined charges and the finite volume of the
cytoplasm have on the net outward pressure of the counterions, we must consider two additional parameters
compared to the case of isolated nuclei. The first is the nucleoplasm-to-cytoplasm volume ratio α = Vn/Vc;
since the nuclear volume is typically about 8% of the cell volume [4], we consider a range for α between 0.1
and 1. The second parameter we introduce accounts for the number of confined cytoplasmic charges. For
simplicity of presentation, we consider that charge as originating from one protein species, which we choose
to be actin due to its abundance in the cytoplasm. Therefore, the second parameter is the concentration
of actin which typically is in the range of 10-100 µM in non-muscle cells [2, 5]. Since each actin monomer
has a negative charge of Z = 13 electron charges [3], the concentration of actin cactin is related to the total
confined negative charge in the cytoplasm by Nbc = cactinZVc.

To find the net pressure of the counterions for specific values of α and cactin, we numerically solve all the
equations above for the positive and negative ion concentrations in the nucleoplasm and cytoplasm, using the
relations α = Vn/Vc and Nbc = cactinZVc. To compare the estimates of this more detailed model with the
simplified one discussed in the main text, we use the same values for the nuclear volume Vn, nuclear confined
charge Nbn, and intracellular salt concentration csalt we use in the main text for human cells, Vn = 1000 µm3,
Nbn = Nch ≈ 5.8 · 109, and csalt = 200 mM. Then, the numbers of monovalent ions in each compartment,
calculated by solving the equations above, are used to estimate the net outward osmotic pressure of the
counterions, ∆p, in the limit of an ideal solution, by the following formula:

∆p = kBT

(
N−

n +N+
n

Vn
− N−

c +N+
c

Vc

)
(9)
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Figure 1: Net outward pressure of the counterions as predicted by a more detailed model that takes into
account the finite volume of the cytoplasm and the presence of confined charges within it. Here, the volume
of the nucleus Vn ≈ 1000 µm3 and confined nuclear charges Ncn ≈ 5.8 · 109 are appropriate for human nuclei
[2, 6]. As is shown in the figure and indicated in Eq. 9 for ∆p, reducing the number of charges confined to
the cytoplasm (e.g., by decreasing cactin) increases the net outward pressure, as does increasing the volume
of the cytoplasm. Consistent with the arguments presented in the main text, the net outward pressure
predicted by Eq. 3 for isolated nuclei is an upper bound for the net outward pressure for the entire range of
parameters checked; importantly, a similar plot with parameters appropriate for yeast nuclei, Vn ≈ 17 µm3

and Nbn = 2.5 · 107 shows the same trend (data not shown).

Fig. S1 shows the difference of the nuclear and cytoplasmic pressures, ∆p, as a function of the concentra-
tion of confined proteins, cactin, for several values of α as well as the estimate for the case of isolated nuclei
in Eq. 3 above. Indeed, as argued in the main text, we find that Eq. 3 for the case of an infinite cytoplasm
provides an upper bound for the net outward osmotic pressure of the counterions.

3 Localized protein pressure
Studies show that in X. laevis oocytes, most of the cellular proteins are preferentially localized either to the
cytoplasm or to the nucleoplasm [7]. Each of those proteins contributes to the net osmotic pressure of the
compartment to which it is preferentially localized, a contribution proportional to its concentration in the
compartment. This concentration is difficult to measure, since fractionation protocols of nucleoplasm and
cytoplasm many times use detergents which perforate the NE, mixing the proteins of the nucleoplasm and
cytoplasm [7]. For that reason, concentrations of cellular proteins are commonly measured and calculated in
a cell-averaged manner, using total amount of proteins of a specific species in the entire cell and the volume
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of the entire cell. The cell-averaged concentration of a localized protein is lower than its concentration in
the compartment to which it is preferentially-localized and larger than its concentration in the other com-
partment. Therefore, the use of cell-averaged protein concentrations may potentially lead to underestimation
of the net contribution of preferentially-localized proteins to the osmotic pressure. In this Appendix, we
relate the compartment-specific osmotic pressures due to preferentially-localized proteins to the cell-averaged
concentrations of those proteins for the important case discussed in the main text: The NE is relaxed and
the osmotic pressure due to the localized proteins is the dominant contribution to the pressures of the two
compartments.

In the cell, nucleocytoplasmic transport of proteins (and RNA molecules) through the nuclear pore com-
plexes (NPCs) occurs via a shuttling mechanism that is coupled to existing concentration gradients of GDP-
Ran and GTP-Ran across the NE [8, 9, 10]. These gradients are maintained by active enzymatic activity
that differs in the cytoplasm and nucleoplasm. Due to the active nature of these enzymatic activities, the
steady-state of the shuttling mechanism may be out-of-equilibrium, thus violating detailed balance in which
the import and export rates are equal (e.g., due to diffusion that would occur for a passive channel). Thus,
non-equilibrium activity implies that the import rate, ki, is different than the export rate, ke. In steady-state,
in any time interval, the amount of any specific protein species that is imported must be equal to its amount
that is exported. In the framework of first order kinetics, this condition relates the differing import and
export rates to the cytoplasmic, cc, and nucleoplasmic, cn, protein concentrations: kicc = kecn. This implies
that the ratio of the nucleoplasmic and cytoplasmic concentrations of the protein is equal to the ratio of the
import and export rates, cn/cc = ki/ke. Since enzymatic transport activity can result in unequal import and
export rates, the protein will be enriched in one compartment relative to the other.

Different protein species have different affinities to the molecular components involved in the nucleoplasmic
shuttling mechanism, which suggests that each species that is actively transported may have different import
and export rates and thus a different relative enrichment in one of the two compartments [9, 10]. We
denote the relative enrichment of protein i by κi, defined as the ratio of the concentrations of the protein
in the nucleoplasm and in the cytoplasm, κi ≡ ci,n/ci,c; if κi > 1 then protein i is actively transported and
preferentially-localized to the nucleus, if κi < 1, then protein i is actively transported and preferentially-
localized to the cytoplasm. For simplicity, we consider here only proteins that are actively transported to
one of the compartments so that κi, κj 6= 1 for any protein in the summations below.

Using the definition of the relative enrichment, we write the net contribution of the preferentially-localized
proteins to the osmotic pressures of the cytoplasm or the nucleoplasm as pc and pn, respectively; these are
related to the concentrations of the proteins and their relative enrichment by:

pc = kBT
∑
i

(ci,c − ci,n) = kBT
∑
i

(1− κi) ci,c (10)

pn = kBT
∑
j

(cj,n − cj,c) = kBT
∑
j

(κj − 1) cj,c (11)

where the subscript i denotes summation over different protein species preferentially-localized to the cyto-
plasm and the subscript j denotes summation over different protein species preferentially-localized to the
nucleoplasm. We denote the total, cell-averaged concentrations of all the proteins that are preferentially-
localized to the cytoplasm and all the proteins that are preferentially-localized to the nucleoplasm as c̄c and
c̄n, respectively. These total, cell-averaged concentrations are expressed using their compartment-specific
concentrations and the free volumes of the compartments as follows:

c̄c =

∑
i

((Vc − Vc,m) ci,c + (Vn − Vn,m) ci,n)

(Vc − Vc,m) + (Vn − Vn,m)
=

∑
i

(αci,c + ci,n)

α+ 1
=

∑
i

(α+ κi) ci,c

α+ 1
(12)

c̄n =

∑
j

((Vc − Vc,m) cj,c + (Vn − Vn,m) cj,n)

(Vc − Vc,m) + (Vn − Vn,m)
=

∑
j

(αcj,c + cj,n)

α+ 1
=

∑
j

(α+ κj) cj,c

α+ 1
(13)

where as before, subscripts i and j respectively denote summation over protein species that are preferentially-
localized to the cytoplasm and nucleoplasm. The free volumes of the cytoplasm and nucleoplasm are respec-
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tively denoted as Vc − Vc,min and Vn − Vn,min, and α denotes their ratio, α ≡ (Vc − Vc,m) / (Vn − Vn,m).
Using Eqs. 12 and 13, we write the total, cell-averaged concentration of all localized proteins (cytoplasmic
and nucleoplasmic) as

c̄c + c̄n =

∑
i

(κi − 1) ci,c +
∑
j

(κj − 1) cj,c

α+ 1
+
∑
i

ci,c +
∑
j

cj,c (14)

For the case we consider in this Appendix, that the NE is relaxed and the dominant contributions
to the inward and outward pressures originate from localization of proteins, the osmotic pressures of the
preferentially-localized proteins in the two compartments, pc and pn, are equal due to mechanical equilibrium
(see main text). Using Eqs. 10 and 11, and the definition of the relative enrichments, the equality of the two
pressures results in the following two relations:∑

i

(κi − 1) ci,c = −
∑
j

(κj − 1) cj,c (15)

∑
i

ci,n +
∑
j

cj,n =
∑
i

ci,c +
∑
j

cj,c (16)

When Eq. 15 is substituted into Eq. 14 for the total average, cellular concentrations of all localized
proteins (cytoplasmic and nucleoplasmic), we find that c̄c + c̄n =

∑
j

cj,c +
∑
i

ci,c. This indicates that the total,

cell-averaged concentrations of all proteins that are actively transported, is equal to the sum of the cytoplasmic
concentrations of the proteins that are preferentially-localized to the cytoplasm, and the cytoplasmic concen-
trations of the proteins that are preferentially-localized to the nucleoplasm. In turn, Eq. 16 indicates that this
is also equal to the sum of the nucleoplasmic concentrations of the proteins that are preferentially-localized
to the nucleoplasm and the nucleoplasmic concentrations of the proteins that are preferentially-localized to
the cytoplasm. As we now show, this conclusion is also true for the simple case considered in the main
text, where there are N l

c proteins that are completely (rather than preferentially) localized to the cytoplasm
and N l

n that are completely localized to the nucleoplasm. In this case, our conclusion indicates that from
the equality of osmotic pressures of these proteins (for the case that the NE is relaxed), N l

c/ (Vc − Vc,m) =
N l

n/ (Vn − Vn,m), the following two identities follow,
(
N l

c +N l
n

)
/ (Vc − Vc,m + Vn − Vn,m) = N l

n/ (Vn − Vn,m)

and
(
N l

c +N l
n

)
/ (Vc − Vc,m + Vn − Vn,m) = N l

c/ (Vc − Vc,m). These identities are proven by the following
simple algebraic steps:

N l
c

(Vc − Vc,m)
=

N l
n

(Vn − Vn,m)
⇒

N l
c

N l
n

=
(Vc − Vc,m)

(Vn − Vn,m)
⇒

N l
c +N l

n

N l
n

=
(Vc − Vc,m) + (Vn − Vn,m)

(Vn − Vn,m)
⇒

N l
c +N l

n

(Vc − Vc,m) + (Vn − Vn,m)
=

N l
n

(Vn − Vn,m)
=

N l
c

(Vc − Vc,m)

This calculation indicates that if about 80% of the proteins are preferentially-localized to either compart-
ment [7], and the total osmotic pressure of all proteins is about 10 kPa [11], then the osmotic pressures in
the cytoplasm and nucleoplasm due to localization of proteins is of the order of 8 kPa. As explained in detail
in the main text, this 8 kPa estimate is an upper bound for the contribution of the localized proteins to the
net inward and outward pressures.

6



4 Relation to nucleocytoplasmic transport
In this appendix, we generalize the values used in the main text, N l

c and N l
n, which represent the number

of solutes completely localized to the cytoplasm and nucleoplasm, respectively. The main text focuses on
the simple case that there is only one species of macromolecular solute that is found only in the cytoplasm
and another species of solute that is found only in the nucleoplasm. Here, we generalize these values to the
biologically realistic scenario where there are multiple macromolecular solutes (proteins and RNA molecules)
which are preferentially-localized rather than completely-localized. Namely, they are found in both the cyto-
plasm and nucleoplasm, although in different concentrations, which are determined by the characteristics of
the active nucleocytoplasmic transport mechanisms. As explained in the section "Localized protein pressure"
above, the nucleoplasmic and cytoplasmic concentrations of each protein i that is actively transported are
different. This is quantified by the relative enrichment κi, defined as the ratio between the nucleoplasmic
and cytoplasmic concentrations of the protein κi ≡ ci,n/ci,c; if κi > 1 then solute i is actively transported
and is preferentially localized to the nucleus, if κi < 1, then solute i is actively transported and is preferen-
tially localized to the cytoplasm. Here, we consider only solutes that are actively transported to one of the
compartments so that ki 6= 1 for any solute i in the summations below.

In the case that the NE is relaxed, mechanical balance is characterized by Eq. 1 in the main text with
σn = 0, which indicates that the osmotic pressure of all the proteins localized on each of the two sides of
the NE is equal (for the case that these pressures are the dominant contributions to the net inward and
outward pressures). Since the small solutes that are not transported have the same concentration in the
nucleoplasm and cytoplasm, the contribution of each small solute species to the net osmotic pressures of
either compartment is zero. The osmotic pressure balance of the remaining large proteins that are actively
transported is written in the approximation of an ideal solution as:

kBT
∑
i

ci,n = kBT
∑
i

ci,c (17)

where the summation is over all of the proteins that are actively transported so that their concentrations in
the cytoplasm and nucleoplasm are unequal.

In addition to Eq. 17, the number of molecules of each protein species is conserved, so that ci,c and ci,n
satisfy the following relation

Ni = (Vc − Vc,m) ci,c + (Vn − Vn,m) ci,n (18)

where Ni is the total, cellular copy number of protein i, and Vc − Vc,m and Vn − Vn,m are the respective
free volumes of the cytoplasm and nucleoplasm (see main text). We note that over long enough timescales,
proteins are produced and degraded in vivo, thus our use of the conservation of proteins is only appropriate
when the experimental timescales are much shorter than the protein production and degradation timescales
(which are of the order of 10 hours [2, 12]).

Eq. 18, together with the definition of the relative enrichment, κi ≡ ci,n/ci,c, can be used to express
the concentrations of the proteins in the cytoplasm and nucleoplasm using the free volumes of the two
compartments and the total, cellular copy numbers of the different protein species:

ci,c =
Ni

(Vc − Vc,m) + κi (Vn − Vn,m)
(19)

ci,n =
κiNi

(Vc − Vc,m) + κi (Vn − Vn,m)
(20)

Substituting Eqs. 19 and 20 into the condition for the mechanical equilibrium of the relaxed NE,
Eq. 17 and multiplying by Vn − Vn,m, results in an implicit equation for the ratio of the free volumes
(Vc − Vc,m) / (Vn − Vn,m) ∑

i

κiNi

(Vc−Vc,m)
(Vn−Vn,m) + κi

=
∑
i

Ni

(Vc−Vc,m)
(Vn−Vn,m) + κi

(21)
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Solving Eq. 21 to find the ratio between the free volumes (Vc − Vc,m) / (Vn − Vn,m) as an explicit function
of the different copy numbers, Ni and the relative enrichment coefficients, κi, is not possible. However, this
equation implies that this ratio is a constant that is related to the Ni-s and the κi-s. Furthermore, Eq. 21
allows us to derive an important identity that relates the ratio of the free volumes to the total number of
proteins in each compartment (those that are preferentially localized to the compartment and other species
in that compartment that are preferentially localized to the other compartment), N l

c and N l
n; notably, those

correspond to the quantities used in the minimal model presented in the main text. To do this, we first
express N l

c and N l
n as the following functions of the free volumes, protein copy numbers Ni, and relative

enrichment coefficients κi:

N l
c =

∑
i

(Vc − Vc,m) ci,c =
∑
i

(Vc − Vc,m)Ni

(Vc − Vc,m) + κi (Vn − Vn,m)
(22)

N l
n =

∑
i

(Vn − Vn,m) ci,n =
∑
i

κi (Vn − Vn,m)Ni

(Vc − Vc,m) + κi (Vn − Vn,m)
(23)

Multiplication of Eq. 21 by (Vc − Vc,m) / (Vn − Vn,m), followed by substitution of Eqs. 22 and 23 into the
resulting product, results in the relation

Vc − Vc,m
Vn − Vn,m

=
N l

c

N l
n

(24)

This is the same conclusion that we arrived at in the main text, where we used N l
c and N l

n to denote
a simple case where only one species is completely localized in each compartment. Therefore, the detailed
calculations presented in this appendix justify the use of N l

c and N l
n in the minimal model presented in the

main text. The rest of the results presented in the main text all rely on Eq. 24 which we derived here
rigorously, and are thus equally justified.

5 Cytoplasmic and nuclear volumes in the non-ideal limit
In the main text, we solved Eqs. 9 and 10 that represent mechanical equilibrium across the NE and the
plasma membrane, for the ideal solution limit where the minimal volumes of the cytoplasm and nucleoplasm
are negligible compared to their respective volumes and for relaxed NE and plasma membrane (σn = 0 and
σp = 0). This yielded expressions 11 and 12 in the main text that relate the volumes of the cytoplasm and
nucleoplasm to the extra-cellular solute concentration and nubmers of completely-localized and non-localized
solutes. These equations indicated that the ratio between the volume of the nucleoplasm and the cytoplasm
(NC ratio) depends only on the ratio of the numbers of completely-localized proteins in the nucleoplasm and
in the cytoplasm. However, the corrections to the ideal limit which we used to determine the volumes of the
cytoplasm and nucleoplasm may be significant, since the minimal volume of the cell, and presumably the
minimal volumes of the separate compartments, may reach tens of percent of their total volumes [6]. In this
Appendix, we now include the effects of the minimal volumes (steric, excluded volume of the various solutes).
We show that the prediction regarding the NC ratio for σn = 0 and σp = 0 is also valid in the non-ideal
limit, as long as the volumes of the non-diffusive complexes in the compartments are small compared with
the total volumes of the compartments.

In the non-ideal limit, the free volumes of the two compartments, Vc−Vc,m and Vn−Vn,m, replace the total
volumes of the compartments in Eqs. 11 and 12 in the main text, which results in the following equations

Vc − Vc,m =
N l

c

C

(
1 +

N

N l

)
(25)

Vn − Vn,m =
N l

n

C

(
1 +

N

N l

)
(26)
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where N is the total number of non-localized, small solutes in the cell, N l
c and N l

n are the number of solutes
that are completely-localized to the cytoplasm and nucleoplasm, respectively, C is the concentration of solutes
in the extra-cellular environment, and N l = N l

c + N l
n is the total number of localized solutes in the entire

cell.
In experiments, the total volumes of the two compartments, Vn and Vc, are measured rather than their

free volumes, Vn − Vn,m and Vc − Vc,m. This motivates us to express the minimal volumes of the two
compartments using the numbers of different solutes defined above, in order to rewrite Eqs. 25 and 26
as explicit functions of the observables, Vc and Vn. The minimal volumes of the two compartments are
the total volume of all their non-solvent components, including small, non-localized solutes, large, localized
solutes, and non-diffusive structures within each the two compartments (e.g. cytoskeleton and chromatin).
To account in an algebraically simple manner for the different sizes of localized vs. non-localized solutes [13]
in our minimal model, we consider different average volumes for these two types of molecules: The volumes
of the various small, non-localized solutes (including ions and small molecules) are taken to be equal, vs,
while the volumes of the various large, localized solutes are also taken to be equal, v`, where v` > vs. The
average volumes of the different solutes allow us to write the minimal volumes as Vc,m ≈ vsNc + v`N

l
c + Vc,s

and Vn,m ≈ vsNn + v`N
l
n + Vn,s, where respectively: Nc and Nn are the numbers of non-localized solutes

in the cytoplasm and nucleoplasm, N l
c and N l

n are the total numbers of localized solutes in the cytoplasm
and nucleoplasm, and Vc,s and Vn,s are the volumes of the non-diffusive structures in the cytoplasm and
nucleoplasm. Substituting the expressions for the minimal volumes and the ratio of the free volumes (Eq. 10
in the main text) into main-text Eqs. 6 and 7 for Nc and Nn, and the resulting expressions into Eqs. 25 and
26, we derive the following expressions for the cytoplasmic and nuclear volumes, Vc and Vn

Vc = N l
c

(
1 +

N

N l

)(
1

C
+ v̄

)
+ Vc,s (27)

Vn = N l
n

(
1 +

N

N l

)(
1

C
+ v̄

)
+ Vn,s (28)

where N is the total number of non-localized solutes in the cell, N l = N l
c+N l

n is the total number of localized
solutes in the cell, and v̄ =

(
vsN + v`N

l
)
/
(
N +N l

)
is the average volume of a solute in the cell. We observe

that if Vc,s � Vc and Vn,s � Vn, the ratio of the nuclear and cytoplasmic volumes is well-approximated by
the ideal solution limit (see main text) and is again equal to the ratio, N l

n/N
l
c, of the numbers of their

respectively localized proteins. This is the typical biological situation in which the total volumes of the
non-diffusing structures in the cytoplasm and nucleoplasm, Vc,s and Vn,s, are much smaller than the total
volumes of their respective compartments. The volume of the cytoskeleton, which is presumably the largest
non-diffusing structure in the cytoplasm, is only few percent of the volume of the cytoplasm [14]. Similarly,
the calculations below of the total volume fraction of (bare) chromatin in human and S. pombe nuclei, based
on the structural properties of DNA and histone proteins, show that it is of the order of one percent of the
volume of the nucleoplasm.

The volume of chromatin in the nucleus is the sum of the total volumes of the DNA and its associ-
ated proteins. Since the most abundant and largest DNA-binding, protein complexes are the histones, the
total volume of the chromatin is well-approximated by the sum of the DNA and histone volumes. From
crystallographic structural measurements of DNA and histone octamers, the physical dimensions of the two
biomolecules are known: DNA occupies a volume approximated by a cylinder of radius of 1 nanometer whose
contour length is 0.34 nm multiplied by the number of base pairs [15]. This results in a DNA volume which is
about 1 nm3 per base pair. A histone octamer occupies a volume approximated by a cylinder whose diameter
is 6.5 nm and height 6 nm [15], so that the volume of each histone octamer is ~200 nm3. The average density
of histones in a genome is typically one histone octamer per ~200 base pairs [15], which indicates that the
presence of histones contributes about 1 nm3 per base pair of DNA, similar to the contribution of the DNA
itself. Therefore, the total volume of the chromatin (in nm3) of a eukaryotic organism is about twice the size
of its genome in base pairs.

In human cells, the diploid genome is 6.4 · 109 base pairs long [2], which implies that the total volume of
the chromatin is ∼ 12.8 · 109 nm3. In S. pombe cells, the diploid genome is 27.6 · 106 base pairs long [16],
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which similarly implies that the total volume of the chromatin is ∼ 55.2 · 106 nm3. In order to calculate the
volume fraction of chromatin in the nuclei of the two organisms, we divide the chromatin volumes of human
and S. pombe cells by the respective volumes of their typical nuclei, ∼ 1000µm3 [6] and ∼ 17µm3 [17]. We
find that the volume fractions of chromatin in the two species is ∼ 1.3% for humans and ∼ 0.32% for S.
pombe, both are of the order of one percent or less. Of course, this does not include the water of hydration,
screening cloud of counterions or other proteins that might bind to chromatin.

In conclusion, the low volume fractions of the cytoskeleton and chromatin, presumably the largest non-
diffusive cellular structures, allow us to approximate the NC ratio calculated from Eqs. 27 and 28 in the
non-ideal solution limit as the ratio N l

n/N
l
c, similar to the one calculated in the main text for the ideal limit.
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