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Supplementary material 
 
Section 1: QSM pipeline evaluations 
 
1.1 Evaluation of processing algorithms 
 
Quantitative susceptibility mapping (QSM) consists of several steps, including combination 
of phase data from individual channels, unwrapping of channel-combined phase data, 
removal of macroscopic (‘background’) field inhomogeneities, and estimation of voxel-wise 
magnetic susceptibility (χ) through dipole inversion. For each step, many different algorithms 
have been proposed. To ensure the robustness of our QSM pipeline and to select the optimal 
pipeline for the UK Biobank protocol, we carried out extensive evaluations of established 
algorithms (from widely-used and publicly-available toolboxes) for each step using data from 
150 subjects selected to represent the age range of the whole cohort (45-82yo). Visual 
inspections and quantitative analyses (including group mean, cross-subject variance of spatial 
χ maps and IDPs) were used in the evaluations. The details of QSM pipeline evaluations are 
summarized in the Supplementary Table 5: 
 
Supplementary Table 5. Summary of QSM pipeline evaluations 
 

Name of the 
processing step 

No. of subjects 
used 

Algorithms evaluated Evaluation methods 

multi-channel coil-
combination 

150 1. phase difference 
2. MCPC-3D-S 

visual inspections1 

phase unwrapping 150 1. PRELUDE 
2. Laplacian-based 

visual inspections 

background field 
removal 

150 1.V-SHARP 
2. PDF 
3. LBV 
4. iRSHARP 
5. iHARPERELLA 

1. visual inspections 
2. quantitative analyses2 

dipole inversion 150 1. iLSQR 
2. STAR-QSM 
3. MEDI 
4. fast-TFI 

1. visual inspections 
2. quantitative analyses 

referencing 1,368 with repeat 
scans 

1. whole brain  
2. cerebrospinal fluid 
3. a white matter region 
(forceps minor) 

cross-scan consistency 
(correlation) 

1 Visual inspection includes observations of remaining large-scale field inhomogeneities (due to 
incomplete background field removal) and streaking artefacts. 2 quantitative analyses include cross-
subject consistency of both spatial χ maps (in standard space) and χ values in regions of interest 
(subcortical IDPs).  
 
Combination of multi-channel phase data 
 
Robust combination of multi-channel phase data is crucial for performing QSM. Different 
channels have different phase offsets (𝜑!,#) associated with the respective coil-sensitivity field. 
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If left unaccounted for, these offsets will lead to signal cancelation and open-ended fringe lines 
in the resulting coil-combined phase maps. As UK Biobank swMRI protocol collects two 
echoes (TEs = 9.4 and 20 ms) without performing reference scans (for coil sensitivity 
estimation), only a handful of algorithms can be used for coil combination. In this work, we 
compared two different coil combination methods: (1) phase difference and (2) MCPC-3D-S1. 
 
Although MCPC-3D-S is slower than the phase difference method (due to multiple additional 
steps including phase unwrapping, here performed using PRELUDE2), it generates coil-
combined phase data with higher SNR verses the phase difference method, as shown in 
Supplementary Fig. 1. 
 

 
Supplementary Figure 1 Example filtered phase data from a single UK Biobank subject using 
MCPC-3D-S (a) and phase difference (b) channel combination. Overall, MCPC-3D-S (a) generated 
images with higher SNR and fewer imaging artefacts (red arrows) than phase difference (b). 
 
Unwrapping of channel-combined phase 
 
There are a number of algorithms which have been developed for phase unwrapping. In this 
study, we compared a path-based (FSL’s PRELUDE 2) and a Laplacian-based3 (from the STI 
suite toolbox https://people.eecs.berkeley.edu/~chunlei.liu/software.html) algorithm. Overall, 
the Laplacian-based algorithm demonstrated rapid phase unwrapping with smoother phase 
variance in (noisier) regions with large phase jumps verses PRELUDE, as shown in 
Supplementary Fig. 2. Laplacian-based algorithms perform a degree of background field 
removal when unwrapping phase maps, which restricts their use when quantitative phase 
values are required (e.g. the coil-combination step). However, as unwrapped phase data are 
subsequently filtered in QSM (to remove background field contributions), this does not restrict 
their use for generating χ maps. 
 

a

b

MCPC-3D-S

Phase difference 
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Supplementary Figure 2 Unwrapped phase image from an example UK Biobank subject. Red 
arrows indicate boundaries with large phase jumps in the unwrapped phase map using PRELUDE, 
which are not present using the Laplacian-based algorithm.  
 
Phase reliability maps 
 
Unreliable phase estimates can lead to artefacts and large-scale image inhomogeneities on 
resulting χ maps. To address this, a phase reliability map was estimated per subject to identify 
and remove these voxels. As shown in Supplementary Fig. 3a, channel-combined phase images 
were first converted to complex data (assuming unit magnitude values) and convolved with a 
3D spherical kernel. This spherical kernel was normalised to account for the fraction of each 
voxel contained in the kernel, i.e., voxels at the kernel centre have higher intensity while voxels 
at kernel edge have lower intensity.  The phase reliability map was subsequently derived by 
calculating the magnitude of the convolved complex data: regions of strong phase variation 
were indicated by low magnitude values due to phase cancellation from the convolution step, 
while regions with relatively homogeneous phase had magnitude values close to one, as shown 
in Supplementary Fig. 3. The threshold of the phase reliability map for each echo was 
empirically determined (0.6 for first echo and 0.5 for second echo before background field 
removal; 0.7 for first echo and 0.6 for second echo before dipole inversion), to exclude 
unreliable voxels (predominantly in the vicinity of sinus cavities). An additional step was then 
applied to the refined brain mask to fill any isolated holes (in 3D) in the middle of the bran that 
were not connected to the sinus cavities using the MATLAB function “imfill”. The 
performance of phase reliability masking is demonstrated in Supplementary Fig. 3b. Based on 
a similar concept, a recently-proposed approach aims to suppress severe artefacts caused by 
these voxels at brain edges by restoring reliable phase information, rather than removing 
voxels5. 

PRELUDE
(1min)

Laplacian-based
(30s)
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Supplementary Figure 3 (a) Phase reliability map pipeline for each echo in a single UK Biobank 
subject. ⊗ represents convolution in complex space, where phase data (𝜑) were converted to exp	(𝑖 ∙
𝜑). Phase reliability map was calculated as the magnitude (absolute value) of the convolved complex 
data (b) Example χ map generated without (top) and with (bottom) the phase reliability map 
correction. Red arrows indicate regions with strong phase variations that induced large field 
inhomogeneities. The phase reliability correction removes voxels with large phase variations at the 
brain edge, resulting in χ maps with fewer artefacts. 
 
Background field removal and dipole inversion 
 
Removal of background field contributions and subsequent dipole inversion are the final two 
steps required to generate χ maps, with a number of different algorithms proposed for each step. 
Here, we evaluated combinations of these algorithms based on the final χ map. These 
evaluations used both quantitative and qualitative metrics, including the observation of large-
scale inhomogeneities and streaking artefacts on χ maps, and cross-subject consistency of both 
χ maps (in standard space) and χ values in regions of interest (subcortical structures).  
 
We compared 5 different background field removal algorithms (V-SHARP6, PDF7, 
iHARPERELLA8, iRSHARP9 and LBV10), 3 different dipole inversion algorithms (iLSQR11, 
STAR-QSM12 and MEDI13) and 1 single-step background field removal and dipole inversion 
algorithm (fast TFI14) resulting in the evaluation of 16 (3 × 5 + 1) different combinations.  
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Background field removal: 
 
Here we present evaluations using group averaged χ maps over the 150 subjects for the different 
background field removal algorithms. Although evaluations were performed using all of the 
proposed dipole inversion algorithms, for conciseness here we display results using iLSQR 
only. Details of our dipole inversion algorithm evaluations are provided in the following 
section. 
 
Supplementary Fig. 4 compares V-SHARP with PDF, iHARPERELLA, iRSHARP, and LBV. 
Overall, we found that V-SHARP provided the best performance, generating χ maps without 
observable large-scale inhomogeneities and a low cross-subject standard deviation on resulting 
χ maps. 
 

 
Supplementary Figure 4 Group averaged χ maps (left) and standard deviation (stdev) maps (right) 
from 150 subjects. χ maps were produced using V-SHARP/PDF/iHARPERELLA/iRSHARP/LBV 
and iLSQR. Red arrows highlight regions of large-scale inhomogeneity (consistent across subjects) 
and cross-subject variation on resulting χ maps when compared to V-SHARP and iLSQR. Although 
iRSHARP and V-SHARP are derived from the same technique (SHARP), for UK Biobank data the 
V-SHARP implementation was found to remove more field inhomogeneities in brain regions in close 
vicinity to our regions of interest, including the caudate, putamen and pallidum. 
 
Dipole inversion algorithms: 
 
Here we present evaluations using group averaged χ maps over the 150 subjects for the different 
dipole inversion algorithms. Although evaluations were performed using all of the proposed 
background field removal algorithms, again for conciseness here we display results using V-
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SHARP only, which was the method adopted for background field removal (Supplementary 
Fig. 4). Comparisons between V-SHARP + iLSQR, STAR-QSM and MEDI, in addition to the 
single-step fast TFI algorithm are shown in Supplementary Fig. 5. 
 

 
Supplementary Figure 5 Group averaged χ maps (left) and standard deviation (stdev) maps (right) 
from 150 subjects. χ maps were produced using V-SHARP and iLSQR/STAR-QSM/MEDI, in 
addition to the single-step fast TFI algorithm. Red arrows highlight regions of large-scale 
inhomogeneity (consistent across subjects) and cross-subject variation on resulting χ when compared 
to V-SHARP and iLSQR. The group averaged χ maps using iLSQR and STAR-QSM visually 
appeared of very similar quality. 
 
STAR-QSM and iLSQR produced similar appearing χ maps. We therefore carried out an 
expanded comparison using phase data without the phase reliability map correction, to simulate 
the circumstances where voxels with large field variations remained in the dataset. 
Supplementary Fig. 6 demonstrates that iLSQR outperformed STAR-QSM in such a situation. 
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Supplementary Figure 6 Example χ map from a single UK Biobank subject using V-SHARP and 
iLSQR/STAR-QSM without the phase reliability map correction (Fig S3). Overall, iLSQR 
demonstrated improved suppression of streaking artefacts and image inhomogeneities on resulting χ 
maps (top) verses STAR-QSM (middle), important if the phase reliability correction failed to remove 
all voxels with unreliable phase information. Remaining V-SHARP and iLSQR image 
inhomogeneities are subsequently eliminated with the phase reliability correction (bottom).   
 
Finally, we evaluated the different background field and dipole inversion algorithms by 
calculating the median χ in 14 subcortical ROIs (thalamus, caudate, putamen, pallidum, 
hippocampus, amygdala, accumbens, left and right separated) (Supplementary Fig. 7). 
Although different combinations of algorithms showed varying degrees of artefacts on χ maps 
(Supplementary Figs. 4 and 5), median χ measures in the subcortical ROIs are broadly in 
similar ranges. The combination of V-SHARP and iLSQR generally showed the smallest 
within-ROI variance. 
 
Our comparisons determined that the combination of MCPC-3D-S, Laplacian-based phase 
unwrapping, masking with the phase reliability correction, V-SHARP and iLSQR was the 
optimal pipeline for UK Biobank swMRI data. 
 

-150
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V-SHARP + STAR-QSM without phase reliability mapping

V-SHARP + iLSQR with phase reliability mapping
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Supplementary Figure 7 Comparison of median χ values derived from χ maps for 8 combinations of 
algorithms. Here, violin plots are used to visualize the distribution of median χ estimates in 16 ROIs 
of 150 subjects. For each ROI, different combinations generated median χ values covering a broadly 
similar range. The combination of V-SHARP and iLSQR generally showed the smallest within-ROI 
variance. 
 
1.2 evaluations of reference region for χ maps 
 
The ROI masks for cerebrospinal fluid (CSF) and the white matter region (forceps minor) are 
shown in Supplementary Fig. 8. 
 

-100

0

100

200

Hippocampus L Hippocampus R Amygdala L Amygdala R Accumbens L Accumbens R SN L SN R

Thalamus L Thalamus R Caudate L Caudate R Putamen L Putamen R Pallidum L Pallidum R

0

100

200

300

m
ed

ia
n 
!(

pp
b)

m
ed

ia
n 
!(

pp
b)

V-SHARP + iLSQR

iRSHARP + iLSQR

PDF + iLSQR

iHARP + iLSQR

LBV + iLSQR

V-SHARP + MEDI

V-SHARP + STAR

fast TFI



 9 

 
Supplementary Figure 8 Ventricle and forceps minor tract masks used for the CSF and white matter 
reference, overlayed on an example χ map (single subject). Ventricle masks for each subject were 
previously generated as part of UK Biobank, extracted from the T2 FLAIR data using BIANCA16. 
The forceps minor tract mask was derived from the diffusion MRI data using AutoPtx17. 
 
The χ distribution in the ventricle mask used for CSF referencing (Supplementary Fig. 9a) 
contained a bimodal (assuming to be Gaussian and inverse gamma) distribution, which likely 
corresponds to CSF and calcification of the choroid plexus. To extract the CSF component of 
this distribution, we used an in-house mixture modelling algorithm18 (Supplementary Fig. 9b). 
The mean of the central Gaussian distribution was considered to represent CSF voxels, and 
was used as the CSF χ reference. 

 
Supplementary Figure 9 (a) Example ventricle mask overlaid on top of a χ map for a single subject. 
(b) distribution of χ in the ventricle mask. The negative voxels likely correspond to calcification of 

Ventricle mask from BIANCA

Forceps minor tract mask

a

b
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the choroid plexus, resulting in the left “tail” (negative inverse gamma) of the χ distribution. The CSF 
reference χ estimate was measured as the mean of the main Gaussian distribution. 
 
Evaluation of the three reference regions were performed using UK Biobank subjects who had 
undergone scanning at two time points (1,368 subjects in total) with second imaging session 
performed approximately 2 years (2.25±0.12y) after the first imaging session. Specifically, we 
compared cross-scan consistency of χ maps referenced to these three different regions 
(Supplementary Fig. 10) with the assumption that an ideal reference would maximise the 
cross-scan consistency for χ estimates.  
 

 
Supplementary Figure 10 Correlation between QSM IDPs obtained at the first and second imaging 
visit using n=1,368 subjects. (a) Overall, the CSF referenced IDPs yielded the highest Pearson 
correlation r values (most evident in the thalamus and hippocampus), indicating that CSF is the most 
robust reference among the three regions. (b) QSM IDPs typically display higher reproducibility 
verses the T2* IDPs. Note “QSM (ref. whole brain) was calculated by subtracting the mean of whole 
brain from the χ map generated by iLSQR. 
 
 

 
Supplementary Figure 11 Illustration of subcortical ROI masks in T1 space for an example subject. 
Note that mask for substantia nigra was derived from an MNI atlas and the IDP for substantia nigra 
was calculated in MNI space. The mask was transformed to T1 space here for visualisation in a single 
subject. 
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Section 1.3: Effects of age and sex on subcortical QSM IDPs 
 

 
Supplementary Figure 12 Pearson correlations between subcortical QSM IDPs (in ppb, without 
deconfounding) and age using a total of n=35,273 subjects. Putamen showed the strongest association 
with age which is in line with a previous study by Persson et al.19.  
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Supplementary Figure 13 Effect of sex on 16 subcortical QSM IDPs (in ppb) plotted using a violin 
plot (a). Note the QSM IDPs presented here were adjusted for head size (𝜒!"#) which was reported as 
a major confound driving the apparent differences between sexes. The central line represents median, 
the two surrounding lines represent first and third quartiles and the width of the curve corresponds 
with the approximate frequency of data points in each region. Effect sizes (Cohen’s d) and p values 
are reported in (b) for group differences in both raw QSM IDPs and IDPs adjusted for head size. The 
reported p-values are from two-tailed t test using a total of n=35,273 subjects. 
 
Section 2: Additional deconfounding for T2* IDPs 
 
Estimation of a biologically-meaningful T2* reflecting cellular compartments is confounded 
by the presence of macroscopic field gradients induced by air/tissue interfaces or poor magnetic 
field shim quality20. In large-cohort epidemiological studies, this could lead to spurious 
correlations driven by subject-wise variations in field homogeneity (for example, geometry of 
the sinuses, or other anatomical structures outside the brain), rather than cellular phenomena. 
In the presence of macroscopic field gradients, the gradient-echo signal can be modelled as20: 
 

S(TE, 𝑟!) = ∫ 𝑆!
	
%! 𝑒&%'∗())+,𝑒#'-.∆0#())+, ∙ 𝑆𝑅𝐹(𝑟 − 𝑟!)𝑑𝑟                     [5] 
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where S(TE, 𝑟!) is the measured signal at echo time TE and location 𝑟!, 𝑅2∗(𝑟) is the spatial 
distribution of 𝑅2∗ (= 1/𝑇2∗), 𝛾∆𝐵!(𝑟) is the magnetic field offset (in Hz), and 𝑆𝑅𝐹(𝑟 − 𝑟!) 
is the spatial response function (SRF) of a voxel centered at 𝑟!. As spatial resolution along the 
slice direction (z-dimension) is typically lower than the in-plane dimensions, Eq. [5] can be 
simplified as20: 
 

S(TE, 𝑧) = ∫ 𝑆!
	
% 𝑒&%'∗(2)+,𝑒#'-.∆0#(2)+, ∙ 𝑆𝑅𝐹(𝑧 − 𝑧!)𝑑𝑧                     [6] 

 
Here, we describe our approach to estimate and deconfound for the impact of macroscopic field 
gradients on the UK Biobank T2* analysis. 
 
Simulated impact of macroscopic field gradients – 2D and 3D acquisitions: 
 
Simulations are based on the procedure by Hernando et al.20. Assuming a linear through-slice 
field variation (∆𝐵!(𝑧) = ∆𝐵!(𝑧!) + 𝐺[𝑧 − 𝑧!]), for a 2D acquisition the SRF is a boxcar 
function (Supplementary Fig. 14a, first row – left). This leads to: 
 

S(TE, 𝑧) = 𝑆!𝑒&%'
∗+,𝑒#'-.∆0#(2#)+, ∙ ∆𝑧 ∙ 𝑠𝑖𝑛𝑐(𝛾𝐺2∆𝑧𝑇𝐸)                         [7] 

 
where 𝐺2 is the macroscopic field gradient along the slice direction and ∆𝑧 is the slice thickness. 
For 2D acquisitions with an ideal slice profile, the measured signal is thus modulated by 
𝑠𝑖𝑛𝑐(𝛾𝐺∆𝑧𝑇𝐸) (Supplementary Fig. 14a, first row - right), with larger field gradients (G) or 
thicker slices (∆𝑧) leading to faster signal decay. For 3D acquisitions, the SRF is a sinc-like 
function (Supplementary Fig. 14a, second row - left), leading to a measured signal modulated 
by a boxcar-like function (Supplementary Fig. 14a, second row - right).  
 
Simulated impact of macroscopic field gradients – UK Biobank swMRI protocol: 
 
The UK Biobank swMRI protocol is a 3D sequence with 3 mm slice thickness, incorporating 
k-space filtering (windowing) to remove Gibbs ringing and improve SNR. This leads to an 
SRF consisting of a rapidly-decaying sinc-like function (Supplementary Fig. 14a, third row - 
left), with the measured signal modulated by a smoothed boxcar-like function (Supplementary 
Fig. 14a, third row - right). 
 
To estimate the bias on T2* estimates on UK Biobank swMRI data, we first simulated the 
impact of macroscopic field gradients using the UK Biobank swMRI protocol 
(Supplementary Fig. 14a, third row). We subsequently used these simulations to model the 
relationship between estimated R2* (s-1) (as demonstrated by Eq. [5-7], calculation in R2* is 
more straightforward than in T2*) and Gz (Hz/mm) (Supplementary Fig. 14b), using this 
relationship to estimate parameters to inform the UK Biobank T2* deconfounding 
(Supplementary Fig. 14c). 
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Supplementary Figure 14 (a) Simulated signal modulation in the presence of a linearly varying 
macroscopic field gradient (Gz), based on the procedure proposed by Hernando et al.20. On the left, 
the signal amplitude is indicated as a boxcar function (red line, representing a large homogeneous 
object), and the SRF (blue line) is displayed for 3 different imaging scenarios: 2D (10 mm slice – first 
row), 3D (10 mm slice – second row), and the UK Biobank swMRI protocol (3D, 3mm slice with k-
space windowing – third row). One the right, the corresponding signal modulation is displayed as a 
function of TE and Gz. The presence of macroscopic field gradients (Gz > 0) leads to faster signal 
decay. (b) Simulated R2* estimates based on the UK Biobank protocol, as a function of Gz. The R2* 
estimate is dominated by noise when Gz > 8 Hz/mm, arising due to the negligible signal available for 
the second UK Biobank swMRI echo (20ms). (c) Two models were used to fit to the R2*-Gz curve 
over the range [0 8] Hz/m: a*exp(b*x)+c and A*tanh((B+x)/C)+D. Both models yielded similar fitted 
curves with 𝑅$ > 0.99. Here, a = 0.0052, b = 1.384, c = -1.6924; A= 922.45, B = -9.0029, C = 
1.3161, D = 921.23. 
 
Experimental macroscopic field gradient deconfounding: 
 
To reduce the confounding effect of field gradients on the association analyses with T2* IDPs, 
we generated macroscopic field gradient maps along the slice-direction (Supplementary Fig. 
15) for all UK Biobank subjects. Median gradient magnitude values were subsequently 
calculated in each subcortical ROI as a summary measure of the background field gradient, 
used to develop an additional set of confounds when performing our association analysis. The 
distribution of median gradient magnitude (Gmag) for subcortical ROIs is shown in 
Supplementary Fig. 16.  
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To generate the macroscopic field gradient maps, the two-echo coil-combined phase data from 
each subject was unwrapped using PRELUDE and averaged to generate 	𝛾∆𝐵345)3657 . 
PRELUDE was chosen as it does not remove any background field components (which could 
bias field gradient estimates). 𝛾∆𝐵345)3657  was subsequently filtered using V-SHARP,  
𝛾∆𝐵8_:;<%=, with the macroscopic field of each subject estimated as: 
 

𝛾∆𝐵>3?@6)ABC7 = 𝛾∆𝐵345)3657 − 𝛾∆𝐵8_:;<%=                           [8] 
 
Gmag was subsequently generated by taking the gradient magnitude (along the z-direction) of 
𝛾∆𝐵>3?@6)ABC7 (Supplementary Fig. 15).  
 

  
Supplementary Figure 15 Group average T2* map (top) and Gmag (bottom) over 200 randomly 
selected subjects. The sinus cavity and ear canals are the major sources of variations in background 
fields due to air/tissue interfaces. 
 

Group averaged T2* maps in MNI space

Group averaged Gmag maps in MNI space
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Supplementary Figure 16 Histograms of median Gmag in 16 ROIs across all UK Biobank subjects. 
Only the accumbens, amygdala and hippocampus regions contain a wide Gmag distribution exceeding 
2 Hz/mm. 
 
We subsequently modelled the voxelwise relationship between macroscopic field gradients 
(Supplementary Fig. 15) and R2* (1/T2*) (Supplementary Fig. 17) using data from 150 UK 
Biobank subjects with large variances in Gmag, to produce a set of confound to account for the 
background field gradient. To achieve this, we evaluated a series of different models (based on 
the simulations in Supplementary Fig. 14c) to identify the relationship between R2* and 
Gmag, as shown in Supplementary Fig. 17. The tanh model (A*tanh((B+x)/C)+D) model 
showed the best performance, defining B=-6.06 and C=1.87, similar to the fitting parameters 
estimated using the simulated data (Supplementary Fig. 14c, B = -9.00, C = 1.32). We used 
these fitting parameters establish a linear relationship between the R2* and median Gmag 
measures, setting Gmagdeconf = tanh((-6.11+Gmag)/1.87).  
 
Changes in the voxelwise R2* estimates manifest in regions with large macroscopic field 
gradients (Supplementary Fig. 17). From the median subcortical ROI analysis 
(Supplementary Fig. 16), only the accumbens, amygdala and hippocampus are confounded 
by large macroscopic field gradients (Gmag > 2 Hz/mm). Therefore, we only performed 
deconfounding (linear regression) for T2* IDPs in the accumbens, amygdala and hippocampus. 
 
As shown in Supplementary Fig. 18, spurious associations between T2* accumbens IDPs and 
sinus/nasal-related phenotypes (including ICD10 codes related to Nasal polyp and Chronic 
sinusitis) are dramatically reduced after deconfounding for macroscopic field gradients. 
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Supplementary Figure 17 Relationship between R2* and Gmag using voxel-wise data from selected 
150 UK Biobank subjects with large variances in Gmag, fitting with an exponential and tanh model. 
The data scatter displays median R2* measures averaged across Gmag bins, with the colour 
representing the scatter density (blue – low density, green – high density). As the majority of median 
Gmag estimates were in the range 0<Gmag<4 Hz/mm, the exponential model (a*exp(b*x)+c) was fit 
to data in the range of 0<G<4 Hz/mm (green line) and of 0<G<6 Hz/mm (red line). The tanh function 
(A*tanh((B+x)/C)+D) (black line) showed the best performance across the whole range, particularly 
when Gmag > 6 Hz/mm.  
 

 
Supplementary Figure 18 Unadjusted -log10P values calculated in univariate (two-sided) cross-
subject association between T2* accumbens IDPs and sinus/nasal-related phenotypes using n=35,273 
subjects. Dashed horizontal line represents Bonferroni-corrected significance threshold. Here, each 
point represents one association with one unique phenotype. These associations are considered 
spurious as accumbens regions are in the vicinity of the sinus and no previous literature has linked 
T2* in accumbens with sinus conditions. Deconfounding using the “tanh” model was able to 
dramatically reduce these associations to non-significant. 
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No association was found between the macroscopic field gradients and QSM data 
(Supplementary Fig. 19), and thus this particular confound was only applied to T2* data. 
 

 
Supplementary Figure 19 Relationship between χ measures and macroscopic field gradient Gmag. 
(a) χ vs Gmag in voxel-wise data from the same set of 150 subjects as used for R2* vs Gmag in 
Supplementary Fig. 17 and (b) median value in each bin of Gmag in (a). 
 
 
Section 3: comparisons of phenotypic association between QSM and T2* 
IDPs 
 
Supplementary Figures 20-25 are comparisons of univariate (two-sided) phenotypic 
associations with QSM and T2* subcortical IDPs (ROI/phenotype pair shown if unadjusted 
PQSM or PT2* passed the Bonferroni-corrected threshold) using n=35,273 subjects. 
 

 
Supplementary Figure 20 Transformed Bland-Altman plot for the 5 categories that showed 
the smallest number of associations (early life factors, eye test, abdominal measures, 
cognitive phenotypes and mental health). 
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Supplementary Figure 21 Transformed Bland-Altman plot for lifestyle general, lifestyle 
exercise and work, smoking categories. 

 
Supplementary Figure 22 Transformed Bland-Altman plot for the food and drink category. 
 

 
Supplementary Figure 23 Transformed Bland-Altman plot for the physical measures 
(general) category. 
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Supplementary Figure 24 Transformed Bland-Altman plot for bone density and physical 
activity categories. 

 
Supplementary Figure 25 Transformed Bland-Altman plot for the health outcomes 
category. 
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Section 4: χ voxel-wise association maps for example associations in each phenotype 
category 
 

 
Supplementary Figure 26 (a) Voxel-wise correlation map for Total BMD, with r values 
overlaid onto the susceptibility atlas. (b) Susceptibility aging atlas displaying the same slice 
as (a), generated by taking the difference between χ maps from the youngest (< 52yo) and 
oldest (> 75yo) age groups in UK Biobank (each group had around 2000 subjects). Here, 
differences due to aging are largely driven by atrophy, displaying similar contrast to the 
regions of high r values in (a). As brains were skull-stripped in this study, clusters of 
associated voxels at the brain boundary might arise due to atrophy of the whole brain. Note 
that (b) and (d) do not show χ maps themselves, but rather the spatial differences in χ 
between two age groups. For example, the optic radiation appears bright in (b), indicating 
changes in χ (possibly due to atrophy) in this white matter fibre region. (c) Voxel-wise 
correlations maps of BMI also demonstrate similar contrast to regions of brain atrophy, with 
(d) displaying the aging atlas in the same slices as (c).  
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Supplementary Figure 27 Voxel-wise association maps of 6 example phenotypes with χ 
maps (aligned in MNI space) from 35,273 subjects. Pearson correlation r is shown as color 
overlay (red-yellow for positive r and blue for negative r) on the population-average χ map. 
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Section 5: Additional GWAS results for QSM and T2* IDPs 
 

 
Supplementary Figure 28 Comparison of all lead genetic associations identified in GWASs 
of every QSM/T2* IDP (showing two-sided, unadjusted -log10P values for the discovery 
cohort n=19,720). Each circle represents an association between a IDP and a lead genetic 
variant where x-axis showing variant’s position on chromosome and y-axis gives its -log10P 
in discovery cohort. QSM IDPs generally showed more genetic associations and higher -
log10P values compared to T2* IDPs. 
 
 
Manhattan plots (showing two-sided, unadjusted -log10P values for the discovery cohort 
n=19,720) of every GWAS performed for QSM and T2* IDPs are shown below. 
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Section 6: Associations between χ or T2* and genetic variants not directly 
related to myelin, iron and calcium homeostasis  
 
Associations between QSM and variants in genes related to myelin, iron and calcium were 
expected, since they are all known to affect brain tissue constituents21. However, many of the 
associations identified in this study could not be directly related to none of these pathways. A 
few notable examples were associations with genes encoding extracellular matrix proteins, 
transcription factors and proteins related to immune response.   
 
We observed associations with two genes related to the extracellular matrix, COL3A1 and 
VCAN. Both QSM and T2* in the globus pallidum and substantia nigra were associated with 
variants related to the COL3A1 gene (cluster 9, peak variant 
2:189666936_ATTTGACACTCCTGATTCATCAC_A, P=3.07*E-10). COL3A1 encodes the 
type III collagen, a fibrillar-forming collagen that is a major component of the extracellular 
matrix in a variety of organs in adults. It’s also expressed throughout embryogenesis, and is 
considered to play a central role in cerebral cortex development. Patients with mutations in 
COL3A1 have a variety of connective tissue anomalies and can also present profound brain 
anomalies in both grey and white matter22.  
 
T2* in the globus palidus and QSM in the hippocampus were also associated with variants in 
the CD82 gene, including a synonymous exonic variant (cluster 62, rs2303865, P=9.42*E-10). 
CD82 encodes a membrane glycoprotein highly expressed in myelinating oligodendrocytes 
with multiple roles, such as metastasis suppression, immune response, and in the development 
of oligodendrocytes and maturation of oligodendrocyte precursors. It may regulate myelin 
proteins gene transcription or stabilize protein levels23,24. This same variant has been previously 
associated to white matter microstructure measurements 25. Interestingly, in the projected maps, 
genetic variants related to both GFAP and CD82 were associated with QSM in most of the 
white matter tracts. 
 
Surprisingly, T2* and QSM IDPs were associated to many genetic variants related to 
transcription factors. Transcription factors regulate the transcription of DNA to RNA and can 
modulate the expression of multiple genes. It is challenging to anticipate how variants in 
transcription factors would lead to changes in T2* or QSM in the brain. As an example, QSM 
in the putamen and in substantia nigra were associated with a variant in the RUNX2 gene 
(cluster 33, rs9472494, P=1.02*E-13). This gene encodes a transcription factor that plays a 
major role in osteoblastic differentiation and skeletal morphogenesis, but that is expressed in 
many tissues including the brain26. In the nervous system, RUNX2 acts on its development, 
regeneration and repair, regulating multiple mechanisms in neurons and glia27,28, but it can also 
promote ectopic vascular biomineralization29.  Down-regulation of RUNX2 signalling has been 
reported in the dorsolateral prefrontal cortex of patients with schizophrenia30, as well as 
reduced expression of RUNX2 in the hippocampus of patients with bipolar disorder31. In our 
study, the association between QSM and variants in RUNX2 could be a consequence of 
alterations in multiple pathways, such as an increase in vascular calcifications or differences in 
brain development leading to changes in tissue microstructure. 
 
Finally, a high number of associations, including associations with very low p-values, were 
related to the gene MRC1 (or MRC1L1), with seven clusters and 78 associations being related 
to this gene (T2* and QSM in the globus pallidum, caudate, putamen, in addition to QSM in 
the amygdala and WMH; strongest associations in cluster 48, rs544995, P=3.18*E-100). MRC1 
encodes a molecular scavenger protein, also known as CD206, that mediates the endocytosis 
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of glycoproteins and is primarily related to immune response. It acts by clearing harmful 
glycoconjugates, enzymes, hormones, cell membranes, extracellular matrix components, and 
micro-organisms through recognition of their carbohydrate structures32,33.  It mediates many 
roles, including clearance of inflammatory molecules33, remodelling of the extracellular matrix, 
immune response and cavity and scar formation after injury in the CNS34, and is known to be 
expressed by astrocytes and microglia in the brain35. In autism spectrum disorder, MRC1 is 
overexpressed in the white matter36, and the variant rs544995 has been related to sarcoidosis, 
a chronic inflammatory disease37.  
 
How variants in these genes could affect tissue magnetic susceptibility and T2* is not clear. 
Indirect effects via regulation of iron or calcium homeostasis, brain development, plasticity 
and myelination, immune response, regulation of cell cycle, and scavenging of harmful 
molecules, could result in the accumulation of iron and/or calcium or in differences in the brain 
microstructure, for example. 
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Supplementary Figure 29 Voxel-wise correlation maps of 6 top genetic variants using 
n=35,273 subjects, with r values overlaid onto the susceptibility atlas.   
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