
Supplementary Information: Language Models can learn Complex Molecular
Distributions

D. Flam-Shepherd et al.



2

Supplementary Discussion We experiment with additional graph generative model baselines on all tasks. These
include HierVAE [1], GCPN [2], GRAPH AF [3], GENRIC [4], CNF [5], Molecular RNN (MRNN) [6], GRAPHVAE [7], NAT-
GRAPHVAE [8], MOLGAN [9], GRAPH NVP [10], DGMG [11], MOLMP [12], GRAPHINVENT [13]. From these models,
most of the single shot generative models do not scale– from MOLGAN, GRAPHVAE, NAT-GRAPHVAE, GRAPH NVP.
None of these models including GCPN were able to acheive better than 1% valid, unique and novel– meaning they are unable
to generate molecules from the training distribution. Furthermore, all of the autoregressive graph generative models (DGMG,
MOLMP, GRAPH INVENT) were unable to handle the larger molecules– even in the LogP and Multi-distribution tasks.
Training on these larger datasets exacerbate the stability issues [11] these models suffer from– making them unable to stably
train to completion. The baselines that were able to train could only handle the LogP and multi-distribution tasks, these
include: two discrete normalizing flow models CNF [5] and GRAPH AF [3], GENRIC which employs a Markov chain, MRNN
or Molecular RNN which uses RNNs to generate atoms and bonds and HIERVAE which extends JTVAE to larger common
motifs or substructures. All baselines have high scoring standard metrics (Table II) but their wasserstein distance metrics are
much further from the Train Oracle than the RNNs (Table I). HIERVAE and MRNN stand out and are higher scoring than
GENRIC, CNF and GRAPH AF– HIERVAE even beats the SF-RNN on SA and NP but not the SM-RNN. Indeed, from the
distribution plot in Figure 1a for the LogP task we can see that MRNN and HIERVAE are closer to the training distribution
than the additional baselines but nearly as close as the RNNs. For the multi-distribution task, the closest are MRNN and
CNF, shown in the distribution plot in Supplementary Fig. 1c– where MRNN learns all of the modes (but poorly) while CNF
entirely misses the CEP mode. In contrast the RNNs, perfectly learn all four modes (Supplementary Fig. 1b).

Task Samples LogP SA QED MW BCT NP

L
o
g
P

TRAIN 0.020 0.0096 0.0029 1.620 7.828 0.013
SM-RNN 0.095 0.0312 0.0068 3.314 21.12 0.054
SF-RNN 0.177 0.2903 0.0095 6.260 25.00 0.209
HIERVAE 0.661 0.0464 0.0710 51.73 141.9 0.079
MRNN 0.769 1.2321 0.0710 58.27 142.9 0.898
GRAPHAF 3.534 1.8820 0.2413 164.7 664.4 1.206
CNF 2.773 3.4727 0.1879 37.87 174.7 1.456
GENRIC 2.764 1.3626 0.1092 81.41 308.0 1.286

M
u
lt
i

TRAIN 0.048 0.0158 0.0020 2.177 14.15 0.010
SM-RNN 0.081 0.0246 0.0059 5.483 21.19 0.012
SF-RNN 0.286 0.1791 0.0227 11.35 68.81 0.079
HIERVAE 2.356 0.2151 0.1024 157.7 687.0 0.175
MRNN 1.519 0.6644 0.0593 97.92 400.1 0.598
GRAPHAF 3.140 1.9122 0.1174 106.1 971.7 0.723
CNF 2.378 2.0793 0.0991 61.87 436.7 1.070
GENRIC 1.623 2.0029 0.0827 105.7 445.3 0.787

Supplementary Table I. Wasserstein distance metrics for LogP, SA, QED, MW, BT and NP between molecules from the
training data and generated by the additional baselines and RNNs for all three tasks. Values closer to TRAIN are better.

Task Metric SM-RNN SF-RNN HIERVAE MRNN GRAPHAF CNF GENRIC

L
o
g
P validity 0.941 1.000 1.000 1.000 1.000 1.000 1.000

unique 0.987 1.000 1.000 0.999 0.906 1.000 0.886
novelty 0.721 0.871 1.000 0.994 1.000 1.000 0.993

M
u
lt
i valid 0.969 1.000 1.000 0.999 1.000 1.000 0.997

unique 0.996 0.989 0.938 0.999 0.985 1.000 0.912
novelty 0.937 0.950 1.000 1.000 1.000 1.000 0.998

Supplementary Table II. Standard Metrics. From molecules generated by all models (Closer to 1.0 is better).
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Supplementary Fig. 1. Additional Baselines a For the LogP task, the histogram and KDE of penalized logP of training
molecules along with KDEs of molecular weight of molecules generated from additional baselines model that could generate
samples. b The histogram and KDE of molecular weight of training molecules along with KDEs of molecular weight of molecules
generated from the training data and RNNs. c The histogram and KDE of molecular weight of training molecules along with
KDEs of molecular weight of molecules generated from the training data and from additional baselines.
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a Molecules with 4 ≤ penalized LogP ≤ 5.

b Molecules with 5 ≤ penalized LogP ≤ 6.

c Molecules with 6 ≤ penalized LogP ≤ 8.

d Molecules with penalized LogP ≥ 8.

e Molecules with more than 10 rings.

Supplementary Fig. 2. Penalized LogP Task a-e Training molecules with different properties.
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Supplementary Table III. Penalized LogP Task Molecules generated from each model.
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models.
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Supplementary Table IV. Multi-distribution Task Model generated molecules. Each sub-row is from a specific molecular
mode.
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Supplementary Fig. 4. Large Scale Task Training molecules.
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Supplementary Fig. 5. Large Scale Task Generated molecules from the SMILES RNN.
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Supplementary Fig. 6. Large Scale Task Generated molecules from the SELFIES RNN.
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a Molecules from the SELFIES RNN.

b Molecules from the SMILES RNN.

Supplementary Fig. 7. Large Scale Task a-b Generated molecules with less than 100 heavy atoms from the RNN models.
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a Molecules from the mode with lower LogP values.
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Supplementary Fig. 8. Large Scale Task a-b Training molecules from each LogP mode.
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