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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

Aspuru-Guzik and coworkers theoretically analyze the performance of machine learning models for 

molecule design on challenging tasks and show superiority of language inspired models over graph-

based approaches. The design tasks are well chosen to compare the models but their applicability on 

actual molecule design problems is at least partly elusive. The study provides useful insights for 

those working in the field especially by extending molecule design to very large molecules which 

hasn't been done with language models. The practical lessons learned from this study and their 

applicability to machine learning based design (apart from language based models being superior) 

should be better clarified. The manuscript is quite specialized but deserves publication after a few 

points have been addressed as outlined below. 

- The problem of validity is exaggerated in the introduction. In fact, language models perform very 

well if properly trained and generate more than enough valid and chemically diverse molecules 

which has been shown in multiple studies. The study provides useful insights based on other metrics 

than validity. 

- Page 1 line 32: the authors state that researches have attempted to use language models for de 

novo design. This is understated. There have been several practical applications of language models 

to design new molecules whose intended activity was experimentally confirmed. The reference cited 

here (8) is only one of many examples. It would be appropriate here to describe language models as 

validated by several application studies for de novo design and refer to recent progress in fine-

tuning and intrinsic prioritization of designs. 

- Language models have been applied to design small drug-like molecules based on SMILES and 

peptides based on single-letter amino acid code. The present study now extends to the design of 

larger molecules (including peptides) based on the SMILES and SELFIES representation. This is a 

strong and novel aspect of this study and it would add value to follow up with further studies. Some 

suggestions that - in the opinion of this reviewer - would make interesting analyses: Is a SMILES- or 

SELFIES-trained RNN able to conserve the peptide backbone, i.e., can the model design natural 

peptides? Does the model conserve natural amino acids? Can a SMILES based RNN be trained to 

specifically design cyclic or bi-/tri-/…cyclic peptides? Can such models design peptide mimetics? Such 

analysis would also benefit from direct comparisons between templates and designs, and an 

evaluation of training strategies. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 



 

The manuscript by Flam-Shepherd et al. argues that generative models of molecules based on 

textual representations (aka language models) outperform generative models based on graphical 

representations (aka graph generative models). Their argument is based on a benchmark of two 

language models (both LSTMs, trained either on SELFIES or SMILES representations) against two 

graph generative models: constrained graph VAEs (Liu et al., NeurIPS 2018) and junction tree VAE 

(Jin et al., ICML 2018). The authors introduce three new tasks on which to benchmark these four 

models: specifically, generating molecules with high logP values, multi-modal property distributions, 

or with >100 heavy atoms. They demonstrate that the two language models are better at matching 

the target distributions on the first two tasks than either graph-based model. 

 

I don’t think the authors’ results are necessarily novel in the strictest sense, because a handful of 

benchmarks have previously identified that language models outperform graph-based models (e.g., 

Mahmood et al., Nat. Commun. 2021). However, this has never really been a major focus of these 

analyses and I think it is potentially of enormous benefit for the field to highlight this more directly. 

With that being said, the major flaw in the paper is the level of evidence provided for the broad 

claim that language models outperform graph-based models. The authors have really only shown 

that language models outperform the two specific graph-based models evaluated here. Dozens of 

graph-based models have been described, as helpfully reviewed by Mercado et al., Applied AI Lett. 

2020, and it is not clear why these specific two were selected (they are claimed to be “state of the 

art” but no specific evidence supporting this claim is provided). While I don’t think it is either realistic 

or necessary to benchmark every single graph-based model that has ever been described, I don’t 

think that the findings presented here convincingly support the more general claim. In my view, that 

would require benchmarking several (at least a half dozen) of the other prominent graph-based 

models for which source code is publicly available - for example GraphINVENT, MolGAN, GraphVAE, 

MolecularRNN, MolMP/MolRNN, HierVAE, and NeVAE - in order to establish a more general trend. 

 

A second concern is the authors’ argument that their own SELFIES representation “seems to improve 

the performance of language models in every task,” as compared to a language model trained on 

SMILES. However, on 10 of 10 distribution learning tasks presented in Tables I and II, SM-RNN 

achieves better performance than SF-RNN. Thus, this statement is not supported and in fact is 

contradicted by the data presented in the manuscript. 

 

A final issue is the level of detail provided in the Methods section, which is insufficient to reproduce 

all the results of the paper - for example, how was random search executed? How were the 

parameter grids defined? How were the evaluation metrics calculated? Ideally, the authors would 

just provide the source code that was used to execute these searches and evaluate model 

performance. 

 

 



Minor points: 

1. The statement in the abstract that graph generative models “typically achieve state of the art 

results” is not, to my knowledge, true, and in fact would seem to be contradicted by the results in 

this manuscript. It would be nice if the authors could clarify what data supports this claim or else 

remove it. 

2. Much is made in the introduction of the notion that generation of invalid SMILES makes it difficult 

to train and apply language models. I can’t say that I understand why this is a major obstacle, as it 

would appear straightforward to filter out the invalid SMILES strings. I wonder if the authors can 

articulate some scenarios where it is essential that all generated molecules be valid (i.e. where 

filtering out invalid SMILES is not possible). 

3. The authors assert that the three new benchmark tasks introduced here are “especially 

challenging.” I can see why modelling very large molecules could be challenging, but I’m not 

convinced that modelling especially lipophilic or chemically diverse molecules should present a 

particular challenge. 

4. A table of Wasserstein metrics for the large scale task is missing. 

5. In the Discussion, the authors suggest their results raise the possibility that language models are 

overfit to the training data. It was not clear to me exactly what aspects of their results suggested 

this. If overfitting is a concern, the framework based on the GDB-13 database presented by Arus-

Pous et al., J. Cheminform. 2019 could be useful to test the generalization capacity of these models. 

 



Dear Reviewers,

Thank you for your reviews. We have conducted a major revision of our paper based on your
feedback.

We list the specific changes below :
1) We revise our introduction (Response 1.1): we add a more detailed discussion of relevant

literature and further expand the discussion on the merits of our study.
2) We present additional analysis and discussion on the potential of language models to design

peptides and cyclic peptides (Response 1.3).
3) We add additional benchmarks using several other prominent graph-based models (Response 2.2)

and we expand the methods section with all implementation details (Response 2.5).
4) We add a more nuanced discussion on the abilities of graph generative models versus language

models– avoiding broad claims (Response 2.2).

Reviewer 1 my response starts here and ends on page 4.
Reviewer 2 please see pages 5-12  for my response.

Dear Reviewer # 1,
Thank you for your suggestions, which have helped us strengthen our paper. Based on your review, we
have revised our paper and conducted additional investigations. We go through each of your concerns as
they arise throughout your review:

Reviewer #1 (Remarks to the Author):

Aspuru-Guzik and coworkers theoretically analyze the performance of machine learning models for
molecule design on challenging tasks and show superiority of language inspired models over graph-based
approaches. The design tasks are well chosen to compare the models but their applicability on actual
molecule design problems is at least partly elusive. The study provides useful insights for those working
in the field especially by extending molecule design to very large molecules which hasn't been done with
language models. The practical lessons learned from this study and their applicability to machine learning
based design (apart from language based models being superior) should be better clarified. The
manuscript is quite specialized but deserves publication after a few points have been addressed as outlined
below.

- The problem of validity is exaggerated in the introduction. In fact, language models perform very well if
properly trained and generate more than enough valid and chemically diverse molecules which has been
shown in multiple studies. The study provides useful insights based on other metrics than validity.
- Page 1 line 32: the authors state that researches have attempted to use language models for de novo
design. This is understated. There have been several practical applications of language models to design
new molecules whose intended activity was experimentally confirmed. The reference cited here (8) is
only one of many examples. It would be appropriate here to describe language models as validated by
several application studies for de novo design and refer to recent progress in fine-tuning and intrinsic
prioritization of designs.

 



Response 1.1: We have updated the intro to have less emphasis on validity. We also expand on the
motivation and merits of the study. We have added numerous additional references about language models
being used for molecular design including :

1. Ertl, Peter, et al. "In silico generation of novel, drug-like chemical matter using the LSTM neural network."
arXiv preprint arXiv:1712.07449 (2017).

2. Awale, Mahendra, et al. "Drug analogs from fragment-based long short-term memory generative neural
networks." Journal of chemical information and modeling 59.4 (2019): 1347-1356.

3. Méndez-Lucio, Oscar, et al. "De novo generation of hit-like molecules from gene expression signatures
using artificial intelligence." Nature communications 11.1 (2020): 1-10.

4. Gupta, Anvita, et al. "Generative recurrent networks for de novo drug design." Molecular informatics
37.1-2 (2018): 1700111.

5. Blaschke, Thomas, et al. "Memory-assisted reinforcement learning for diverse molecular de novo design."
Journal of cheminformatics 12.1 (2020): 1-17.

6. Merk, Daniel, et al. "De novo design of bioactive small molecules by artificial intelligence." Molecular
informatics 37.1-2 (2018): 1700153.

7. Grisoni, Francesca, et al. "Combining generative artificial intelligence and on-chip synthesis for de novo
drug design." Science advances 7.24 (2021): eabg3338.

8. Arús-Pous, Josep, et al. "Randomized SMILES strings improve the quality of molecular generative
models." Journal of cheminformatics 11.1 (2019): 1-13.

9. Zheng, Shuangjia, et al. "QBMG: quasi-biogenic molecule generator with deep recurrent neural network."
Journal of cheminformatics 11.1 (2019): 1-12.

The changes are pictured below in red (page 1 column 2):

 



- Language models have been applied to design small drug-like molecules based on SMILES and peptides
based on single-letter amino acid code. The present study now extends to the design of larger molecules
(including peptides) based on the SMILES and SELFIES representation. This is a strong and novel aspect
of this study and it would add value to follow up with further studies. Some suggestions that - in the
opinion of this reviewer - would make interesting analyses:
Is a SMILES- or SELFIES-trained RNN able to conserve the peptide backbone, i.e., can the model design
natural peptides? Does the model conserve natural amino acids?
Can a SMILES based RNN be trained to specifically design cyclic or bi-/tri-/…cyclic peptides?
Can such models design peptide mimetics? Such analysis would also benefit from direct comparisons
between templates and designs, and an evaluation of training strategies.

Response 1.3: We thank the reviewer for suggesting these analyses. In response, we add some
investigations on the topic of peptides and cyclic peptides – based on our results, we find that language
models have a lot of potential for the task but would benefit from a more specific dataset for the target
designed by an expert. The details and results are shown below (Figure 6b-d & page 7 columns 1-2):

 



 



Reviewer #2 (Remarks to the Author):

The manuscript by Flam-Shepherd et al. argues that generative models of molecules based on textual
representations (aka language models) outperform generative models based on graphical representations
(aka graph generative models). Their argument is based on a benchmark of two language models (both
LSTMs, trained either on SELFIES or SMILES representations) against two graph generative models:
constrained graph VAEs (Liu et al., NeurIPS 2018) and junction tree VAE (Jin et al., ICML 2018). The
authors introduce three new tasks on which to benchmark these four models: specifically, generating
molecules with high logP values, multi-modal property distributions, or with >100 heavy atoms. They
demonstrate that the two language models are better at matching the target distributions on the first two
tasks than either graph-based model.

I don’t think the authors’ results are necessarily novel in the strictest sense, because a handful of
benchmarks have previously identified that language models outperform graph-based models (e.g.,
Mahmood et al., Nat. Commun. 2021). However, this has never really been a major focus of these
analyses and I think it is potentially of enormous benefit for the field to highlight this more directly.

Response 2.1: Thank you we have added this reference, we agree that it is known now that language
models have been shown to perform well and are comparable to other models including graph generative
models. The main contribution of our work is to highlight some more complex molecular distributions
(than standard datasets like ZINC, MOSES, CHEMBL) where language models excel and other widely
used generative models have difficulties.

 



With that being said, the major flaw in the paper is the level of evidence provided for the broad claim that
language models outperform graph-based models. The authors have really only shown that language
models outperform the two specific graph-based models evaluated here. Dozens of graph-based models
have been described, as helpfully reviewed by Mercado et al., Applied AI Lett. 2020, and it is not clear
why these specific two were selected (they are claimed to be “state of the art” but no specific evidence
supporting this claim is provided). While I don’t think it is either realistic or necessary to benchmark
every single graph-based model that has ever been described, I don’t think that the findings presented here
convincingly support the more general claim. In my view, that would require benchmarking several (at
least a half dozen) of the other prominent graph-based models for which source code is publicly available
- for example GraphINVENT, MolGAN, GraphVAE, MolecularRNN, MolMP/MolRNN, HierVAE, and
NeVAE - in order to establish a more general trend.

Response 2.2: Thank you for the review article– we have cited it,  we also considered the baselines you
mention and a few additional ones. None of the additional baselines perform better than the language
models. The results are shown below (on the next two pages in Action 2) and have been added in the
revision on pages 13-14.

Action 1: We also revise the paper to have a more nuanced discussion on the topic of the ability of
Language Models versus Graph Generative Models. We avoid broad claims and focus on a more specific
discussion comparing the baselines and language models– for instance  (page 9 column 1 paragraph 3):

 



Action 2: We add a discussion, some metric tables, and distribution plots for the additional baselines
(pages 13-14)

 



 



A second concern is the authors’ argument that their own SELFIES representation “seems to improve the
performance of language models in every task,” as compared to a language model trained on SMILES.
However, on 10 of 10 distribution learning tasks presented in Tables I and II, SM-RNN achieves better
performance than SF-RNN. Thus, this statement is not supported and in fact is contradicted by the data
presented in the manuscript.

Response 2.4: We have revised this paragraph to give a more clear and nuanced evaluation of the results:

 



A final issue is the level of detail provided in the Methods section, which is insufficient to reproduce all
the results of the paper - for example, how was random search executed? How were the parameter grids
defined? How were the evaluation metrics calculated? Ideally, the authors would just provide the source
code that was used to execute these searches and evaluate model performance.

Response 2.5: We have added additional methods details necessary (page 10 column 1):

Minor points:
1. The statement in the abstract that graph generative models “typically achieve state of the art results” is
not, to my knowledge, true, and in fact would seem to be contradicted by the results in this manuscript. It
would be nice if the authors could clarify what data supports this claim or else remove it.

We have removed this sentence.

 



2. Much is made in the introduction of the notion that generation of invalid SMILES makes it difficult to
train and apply language models. I can’t say that I understand why this is a major obstacle, as it would
appear straightforward to filter out the invalid SMILES strings. I wonder if the authors can articulate
some scenarios where it is essential that all generated molecules be valid (i.e. where filtering out invalid
SMILES is not possible).

Response 2.6: We agree, this is over-emphasized – we have made some changes to the introduction
focusing much less emphasis on this, which is not the focus of this work (page 9 column 1 paragraph 1):

3. The authors assert that the three new benchmark tasks introduced here are “especially challenging.” I
can see why modelling very large molecules could be challenging, but I’m not convinced that modelling
especially lipophilic or chemically diverse molecules should present a particular challenge.

Response 2.7: Even the LogP and Multi-distribution datasets are fairly larger than standard datasets like
ZINC and MOSES with more atoms and rings. They also have a larger range between the smallest
molecule and the largest molecules.  We have added another table highlighting this (page 2 column 1 &
shown below).  We also remove the word “especially” to avoid exaggeration. 



4. A table of Wasserstein metrics for the large scale task is missing.

Response 2.8: Thank you– we have consolidated all Wasserstein metrics into one table, including the
metrics from the large scale task  (Table II on page 8 column 1):

5. In the Discussion, the authors suggest their results raise the possibility that language models are overfit
to the training data. It was not clear to me exactly what aspects of their results suggested this. If
overfitting is a concern, the framework based on the GDB-13 database presented by Arus-Pous et al., J.
Cheminform. 2019 could be useful to test the generalization capacity of these models.

Response 2.9: Our concern was the lower novelty score for the RNNs, particularly the SM-RNN.
However, they are only slightly lower and so we have revised this claim and cited your suggested article
as a possible way to improve performance (page 9 column 1 paragraph 1): 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have addressed my suggestions and the manuscript appears suitable for publication. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have done an excellent job responding to the reviewer comments. I very much 

appreciate the extensive benchmarking of other graph-based generative models they have added to 

the revised manuscript. This new data substantially strengthens their argument that language 

models outperform graph generative models. I think this will be a very impactful paper in the field 

and recommend its publication in Nature Communications. 

 

I have only one more suggestion, which is that the authors could consider changing the title to more 

clearly reflect what I would consider to be the main result of their manuscript: namely, that language 

models are not just able to learn complex molecular distributions, but that they outperform graph 

generative models on this task. I think this would also be worth highlighting in the abstract and 

introduction. In particular, I am not sure that describing graph-based generative models as 

“baselines” does full justice to the authors’ findings, as these models are widely seen - correctly or 

not - to be the most advanced methods that are currently available.  



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

The authors have addressed my suggestions and the manuscript appears suitable for
publication.

Reviewer #2 (Remarks to the Author):

The authors have done an excellent job responding to the reviewer comments. I very much
appreciate the extensive benchmarking of other graph-based generative models they have
added to the revised manuscript. This new data substantially strengthens their argument that
language models outperform graph generative models. I think this will be a very impactful paper
in the field and recommend its publication in Nature Communications.

I have only one more suggestion, which is that the authors could consider changing the title to
more clearly reflect what I would consider to be the main result of their manuscript: namely, that
language models are not just able to learn complex molecular distributions, but that they
outperform graph generative models on this task. I think this would also be worth highlighting in
the abstract and introduction. In particular, I am not sure that describing graph-based generative
models as “baselines” does full justice to the authors’ findings, as these models are widely seen
- correctly or not - to be the most advanced methods that are currently available.

We thank the reviewers for their comments. In response to the suggestions of reviewer #2–
we have added more emphasis that language models outperform graph generative models– in
the introduction, abstract, and discussion sections. 
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