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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

Aspuru-Guzik and coworkers theoretically analyze the performance of machine learning models for
molecule design on challenging tasks and show superiority of language inspired models over graph-
based approaches. The design tasks are well chosen to compare the models but their applicability on
actual molecule design problems is at least partly elusive. The study provides useful insights for
those working in the field especially by extending molecule design to very large molecules which
hasn't been done with language models. The practical lessons learned from this study and their
applicability to machine learning based design (apart from language based models being superior)
should be better clarified. The manuscript is quite specialized but deserves publication after a few
points have been addressed as outlined below.

- The problem of validity is exaggerated in the introduction. In fact, language models perform very
well if properly trained and generate more than enough valid and chemically diverse molecules
which has been shown in multiple studies. The study provides useful insights based on other metrics
than validity.

- Page 1 line 32: the authors state that researches have attempted to use language models for de
novo design. This is understated. There have been several practical applications of language models
to design new molecules whose intended activity was experimentally confirmed. The reference cited
here (8) is only one of many examples. It would be appropriate here to describe language models as
validated by several application studies for de novo design and refer to recent progress in fine-
tuning and intrinsic prioritization of designs.

- Language models have been applied to design small drug-like molecules based on SMILES and
peptides based on single-letter amino acid code. The present study now extends to the design of
larger molecules (including peptides) based on the SMILES and SELFIES representation. This is a
strong and novel aspect of this study and it would add value to follow up with further studies. Some
suggestions that - in the opinion of this reviewer - would make interesting analyses: Is a SMILES- or
SELFIES-trained RNN able to conserve the peptide backbone, i.e., can the model design natural
peptides? Does the model conserve natural amino acids? Can a SMILES based RNN be trained to
specifically design cyclic or bi-/tri-/...cyclic peptides? Can such models design peptide mimetics? Such
analysis would also benefit from direct comparisons between templates and designs, and an
evaluation of training strategies.

Reviewer #2 (Remarks to the Author):



The manuscript by Flam-Shepherd et al. argues that generative models of molecules based on
textual representations (aka language models) outperform generative models based on graphical
representations (aka graph generative models). Their argument is based on a benchmark of two
language models (both LSTMs, trained either on SELFIES or SMILES representations) against two
graph generative models: constrained graph VAEs (Liu et al., NeurIPS 2018) and junction tree VAE
(Jin et al., ICML 2018). The authors introduce three new tasks on which to benchmark these four
models: specifically, generating molecules with high logP values, multi-modal property distributions,
or with >100 heavy atoms. They demonstrate that the two language models are better at matching
the target distributions on the first two tasks than either graph-based model.

| don’t think the authors’ results are necessarily novel in the strictest sense, because a handful of
benchmarks have previously identified that language models outperform graph-based models (e.g.,
Mahmood et al., Nat. Commun. 2021). However, this has never really been a major focus of these
analyses and | think it is potentially of enormous benefit for the field to highlight this more directly.
With that being said, the major flaw in the paper is the level of evidence provided for the broad
claim that language models outperform graph-based models. The authors have really only shown
that language models outperform the two specific graph-based models evaluated here. Dozens of
graph-based models have been described, as helpfully reviewed by Mercado et al., Applied Al Lett.
2020, and it is not clear why these specific two were selected (they are claimed to be “state of the
art” but no specific evidence supporting this claim is provided). While | don’t think it is either realistic
or necessary to benchmark every single graph-based model that has ever been described, | don’t
think that the findings presented here convincingly support the more general claim. In my view, that
would require benchmarking several (at least a half dozen) of the other prominent graph-based
models for which source code is publicly available - for example GraphINVENT, MolGAN, GraphVAE,
MolecularRNN, MolMP/MoIRNN, HierVAE, and NeVAE - in order to establish a more general trend.

A second concern is the authors’ argument that their own SELFIES representation “seems to improve
the performance of language models in every task,” as compared to a language model trained on
SMILES. However, on 10 of 10 distribution learning tasks presented in Tables | and Il, SM-RNN
achieves better performance than SF-RNN. Thus, this statement is not supported and in fact is
contradicted by the data presented in the manuscript.

A final issue is the level of detail provided in the Methods section, which is insufficient to reproduce
all the results of the paper - for example, how was random search executed? How were the
parameter grids defined? How were the evaluation metrics calculated? Ideally, the authors would
just provide the source code that was used to execute these searches and evaluate model
performance.



Minor points:

1. The statement in the abstract that graph generative models “typically achieve state of the art
results” is not, to my knowledge, true, and in fact would seem to be contradicted by the results in
this manuscript. It would be nice if the authors could clarify what data supports this claim or else
remove it.

2. Much is made in the introduction of the notion that generation of invalid SMILES makes it difficult
to train and apply language models. | can’t say that | understand why this is a major obstacle, as it
would appear straightforward to filter out the invalid SMILES strings. | wonder if the authors can
articulate some scenarios where it is essential that all generated molecules be valid (i.e. where
filtering out invalid SMILES is not possible).

3. The authors assert that the three new benchmark tasks introduced here are “especially
challenging.” | can see why modelling very large molecules could be challenging, but I’'m not
convinced that modelling especially lipophilic or chemically diverse molecules should present a
particular challenge.

4. A table of Wasserstein metrics for the large scale task is missing.

5. In the Discussion, the authors suggest their results raise the possibility that language models are
overfit to the training data. It was not clear to me exactly what aspects of their results suggested
this. If overfitting is a concern, the framework based on the GDB-13 database presented by Arus-
Pous et al., J. Cheminform. 2019 could be useful to test the generalization capacity of these models.



Dear Reviewers,

Thank you for your reviews. We have conducted a major revision of our paper based on your
feedback.

We list the specific changes below :

1) We revise our introduction (Response 1.1): we add a more detailed discussion of relevant
literature and further expand the discussion on the merits of our study.

2) We present additional analysis and discussion on the potential of language models to design
peptides and cyclic peptides (Response 1.3).

3) We add additional benchmarks using several other prominent graph-based models (Response 2.2)
and we expand the methods section with all implementation details (Response 2.5).

4) We add a more nuanced discussion on the abilities of graph generative models versus language
models— avoiding broad claims (Response 2.2).

Reviewer 1 my response starts here and ends on page 4.
Reviewer 2 please see pages 5-12 for my response.

Dear Reviewer # 1,

Thank you for your suggestions, which have helped us strengthen our paper. Based on your review, we
have revised our paper and conducted additional investigations. We go through each of your concerns as
they arise throughout your review:

Reviewer #1 (Remarks to the Author):

Aspuru-Guzik and coworkers theoretically analyze the performance of machine learning models for
molecule design on challenging tasks and show superiority of language inspired models over graph-based
approaches. The design tasks are well chosen to compare the models but their applicability on actual
molecule design problems is at least partly elusive. The study provides useful insights for those working
in the field especially by extending molecule design to very large molecules which hasn't been done with
language models. The practical lessons learned from this study and their applicability to machine learning
based design (apart from language based models being superior) should be better clarified. The
manuscript is quite specialized but deserves publication after a few points have been addressed as outlined
below.

- The problem of validity is exaggerated in the introduction. In fact, language models perform very well if
properly trained and generate more than enough valid and chemically diverse molecules which has been
shown in multiple studies. The study provides useful insights based on other metrics than validity.

- Page 1 line 32: the authors state that researches have attempted to use language models for de novo
design. This is understated. There have been several practical applications of language models to design
new molecules whose intended activity was experimentally confirmed. The reference cited here (8) is
only one of many examples. It would be appropriate here to describe language models as validated by
several application studies for de novo design and refer to recent progress in fine-tuning and intrinsic
prioritization of designs.



Response 1.1: We have updated the intro to have less emphasis on validity. We also expand on the
motivation and merits of the study. We have added numerous additional references about language models
being used for molecular design including :
1. Ertl, Peter, et al. "In silico generation of novel, drug-like chemical matter using the LSTM neural network."
arXiv preprint arXiv:1712.07449 (2017).
2. Awale, Mahendra, et al. "Drug analogs from fragment-based long short-term memory generative neural
networks." Journal of chemical information and modeling 59.4 (2019): 1347-1356.
3. Meéndez-Lucio, Oscar, et al. "De novo generation of hit-like molecules from gene expression signatures
using artificial intelligence." Nature communications 11.1 (2020): 1-10.
4. Gupta, Anvita, et al. "Generative recurrent networks for de novo drug design." Molecular informatics
37.1-2 (2018): 1700111.
5. Blaschke, Thomas, et al. "Memory-assisted reinforcement learning for diverse molecular de novo design."
Journal of cheminformatics 12.1 (2020): 1-17.
6. Merk, Daniel, et al. "De novo design of bioactive small molecules by artificial intelligence." Molecular
informatics 37.1-2 (2018): 1700153.
7. Grisoni, Francesca, et al. "Combining generative artificial intelligence and on-chip synthesis for de novo
drug design." Science advances 7.24 (2021): eabg3338.
8. Arus-Pous, Josep, et al. "Randomized SMILES strings improve the quality of molecular generative
models." Journal of cheminformatics 11.1 (2019): 1-13.
9. Zheng, Shuangjia, et al. "QBMG: quasi-biogenic molecule generator with deep recurrent neural network."
Journal of cheminformatics 11.1 (2019): 1-12.
The changes are pictured below in red (page 1 column 2):

Language models have been widely applied [21] with
researchers using them for ligand based de novo design
[22]. A few recent uses of language models include :
targeting natural-product-inspired retinoid X receptor
modulators [23], designing liver X receptor agonists [24],
generating hit-like molecules from gene expression sig-
natures [25], designing drug analogs from fragments [26],
composing virtual quasi-biogenic compound libraries [27]
and many others. Additional studies have highlighted
the ability of language models in the low-data regime
[28, 29] with improved performance using data augmen-
tation [30].

Initially the brittleness of the SMILES string repre-
sentation meant a single character could lead to an in-
valid molecules. This problem has been largely solved
with more robust molecular string representations [31
34]. Additionally, with improved training methods, deep
generative models based on RNNs consistently gener-
ate a high proportion of valid molecules using SMILES
[6, 9, 35]. One area that has not been studied is the abil-
ity of language models and generative models to generate
larger more complex molecules, or generate from chemi-
cal spaces with large ranges in size and structure. This
is beneficial because of increased interest in larger more
complex molecules for therapeutics [36].

In order to test the ability of language models, we for-
mulate a series of challenging generative modeling tasks
by constructing training sets of more complex molecules
that exist in standard datasets [3, 35, 37]. In particular,
We focus on the ability of language models to learn the
distributional properties of the target datasets. We train
language models on all tasks and include two baselines:
CGAVE and JTVAE. The results demonstrate that lan-
guage models are powerful generative models and can
learn complex molecular distributions.



- Language models have been applied to design small drug-like molecules based on SMILES and peptides
based on single-letter amino acid code. The present study now extends to the design of larger molecules
(including peptides) based on the SMILES and SELFIES representation. This is a strong and novel aspect

21

23

24

25

26

7

of this study and it would add value to follow up with further studies. Some suggestions that - in the
opinion of this reviewer - would make interesting analyses:

Is a SMILES- or SELFIES-trained RNN able to conserve the peptide backbone, i.e., can the model design

natural peptides? Does the model conserve natural amino acids?
Can a SMILES based RNN be trained to specifically design cyclic or bi-/tri-/...cyclic peptides?
Can such models design peptide mimetics? Such analysis would also benefit from direct comparisons

between templates and designs, and an evaluation of training strategies.

Response 1.3: We thank the reviewer for suggesting these analyses. In response, we add some

investigations on the topic of peptides and cyclic peptides — based on our results, we find that language
models have a lot of potential for the task but would benefit from a more specific dataset for the target
designed by an expert. The details and results are shown below (Figure 6b-d & page 7 columns 1-2):

a7
TABLE II. Wasserstein distance metrics for LogP, SA,
QED, MW, BT and NP between molecules from the training
data and generated by the models for all three tasks. TRAIN -

is an oracle baseline- values closer to it are better.
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and substructures, in FIG. 6a the RNN models ade-
quately learn the distribution of substructures arising in .s
the training molecules. Specifically the distribution for 4
the number of: fragments, single and double atom frag- .,
ments as well as single and multi-rings fragments in cach
molecule. As the training molecules get larger and oc-
cur less, both RNN models still learn to generate these s
molecules (FIG. 5a when molecular weight=>3000).

The dataset in this task contains a number of peptides 4e
and cyclic peptides that arise in PubChem, we visually s
analyze the samples from the RNNs to see if they are st
capable of preserving backbone chain structure and nat- s2
ural amino acids. We find that the RNNs often sample 52
snippets of backbone chains which are usually disjoint— s
broken up with other atoms, bonds and structures. Inss
addition, usually these chains have standard side chains se
from the main amino acid residues but other atypical side s
chains do arise. In Figure 6b we show two examples of ss
peptides with around 20 residues that are generated by s
the SM-RNN and SF-RNN and preserve backbone and e
amino acid structure. While there are many examples &
where both models do not preserve backbone and fan- s2
tasize weird side-chains, it is very likely, that if trained e
entirely on relevant peptides the model could be used for &
peptide design. Even further, since these language mod- s
els are not restricted to generating amino acid sequences
the could be used to design any biochemical structure
that mimic the structure of peptics or even replicate
their biological behaviour. This makes them very ap-
plicable to design modified peptides [50], other peptide e
mimetics and complex natural products [51, 52|. Thees
only requirement wonld be for a domain expert to con- e
struct a training dataset for specific targets. We conduct 7o
an additional study on how well the RNNs learned the »
biomolecular structures in the training data, in Figure
6d we see both RNNs match the distribution of essential

@

amino acid (AA) residues (which we find using a sub-
structure scarch). Lastly, it is also likely that the RNNs
could also be used to design cyclic peptides. To high-
light the promise of langnage models for this task we dis-
play some examples of molecules generated by the RNNs
that have the largest chemical similarity with colistin and
vancomyein (Figure 6¢). The results in this task demon-
strate that language models could be used for designing
more complex biomoleeules, but there is necessary addi-
tional work to be done for training strategies as well as
how to handle templates and designs.

D. Metrics

We also evaluate models on standard metries in the lit-
crature: validity, uniqueness and novelty. Using the same
10K molecules generated from each model for cach task
we compute the following statistics defined in [16] and
store them in TABLE. 11I: 1) validity: the ratio between
the number of valid and generated molecules, 2) unique-
ness: the ratio between the number of unique molecules
(that arc not duplicates) and valid molecules, 3) novelty:
the ratio between unigue molecules that are not in the
training data and the total number of unique molecules.
In the first two tasks (TABLE. I11I), JTVAE and CGVAE
have better metrics with very high validity, uniquencss
and novelty (all elose to 1), here the SMILES and SELF-
IES RNN perform worse but the SELFIES RNN is close
to their performance. The SMILES RNN has the worse
metrics due to its poor grammar but is not substantially
worse than the other models.

II. DISCUSSION

In this work, in effort to test the ability of chemical
language models, we introduce three complex modeling
tasks for deep generative models of molecnles. Langnage
models and graph baselines perform each task, which en-
tails learning to generate molecules from a challenging
datasct to learn. The results demonstrate that langnage
models are very powerful, flexible models that can learn
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FIG. 6. Large Scale Task a Histograms of fragment #, single atom fragment #, double atom fragment #, single ring
fragment #, multi-ring fragment # (all per molecule) from molecules generated by the RNN models or from the training
data b A peptide generated by the SM-RNN - SLFHKKLAVIGAVLKVLTTGLIA (left) and one generated by the SF-RNN -
ERFRAQLGDEGSKEFVEEA (right) ¢ Cyclic peptide-like molecules generated by the SF-RNN and SM-RNN that are closest
in Tanimoto similarity to colistin (left) vancomycin (right). Both are highlighted in grey beside SF-RNN example(s) to the right
and SM-RNN to the left d Histograms of amino acid (AA) # in largest found backbone structure in each molecule generated
by the RNNs or training data.



Reviewer #2 (Remarks to the Author):

The manuscript by Flam-Shepherd et al. argues that generative models of molecules based on textual
representations (aka language models) outperform generative models based on graphical representations
(aka graph generative models). Their argument is based on a benchmark of two language models (both
LSTMs, trained either on SELFIES or SMILES representations) against two graph generative models:
constrained graph VAEs (Liu et al., NeurIPS 2018) and junction tree VAE (Jin et al., ICML 2018). The
authors introduce three new tasks on which to benchmark these four models: specifically, generating
molecules with high logP values, multi-modal property distributions, or with >100 heavy atoms. They
demonstrate that the two language models are better at matching the target distributions on the first two
tasks than either graph-based model.

I don’t think the authors’ results are necessarily novel in the strictest sense, because a handful of
benchmarks have previously identified that language models outperform graph-based models (e.g.,
Mahmood et al., Nat. Commun. 2021). However, this has never really been a major focus of these
analyses and I think it is potentially of enormous benefit for the field to highlight this more directly.

Response 2.1: Thank you we have added this reference, we agree that it is known now that language
models have been shown to perform well and are comparable to other models including graph generative
models. The main contribution of our work is to highlight some more complex molecular distributions
(than standard datasets like ZINC, MOSES, CHEMBL) where language models excel and other widely
used generative models have difficulties.



With that being said, the major flaw in the paper is the level of evidence provided for the broad claim that
language models outperform graph-based models. The authors have really only shown that language
models outperform the two specific graph-based models evaluated here. Dozens of graph-based models
have been described, as helpfully reviewed by Mercado et al., Applied Al Lett. 2020, and it is not clear
why these specific two were selected (they are claimed to be “state of the art” but no specific evidence
supporting this claim is provided). While I don’t think it is either realistic or necessary to benchmark
every single graph-based model that has ever been described, I don’t think that the findings presented here
convincingly support the more general claim. In my view, that would require benchmarking several (at
least a half dozen) of the other prominent graph-based models for which source code is publicly available
- for example GraphINVENT, MolGAN, GraphVAE, MolecularRNN, MoIMP/MolRNN, HierVAE, and
NeVAE - in order to establish a more general trend.

Response 2.2: Thank you for the review article— we have cited it, we also considered the baselines you
mention and a few additional ones. None of the additional baselines perform better than the language
models. The results are shown below (on the next two pages in Action 2) and have been added in the
revision on pages 13-14.

Action 1: We also revise the paper to have a more nuanced discussion on the topic of the ability of
Language Models versus Graph Generative Models. We avoid broad claims and focus on a more specific
discussion comparing the baselines and language models— for instance (page 9 column 1 paragraph 3):

We provide additional comparison with other graph
generative models [8, 12, 17, 19, 54-59] in the supple-
mentary and find that most do not scale to these gen-
crative tasks and for the ones that do— the language
models perform better than those additional baselines
as well. However, most graph generative models have
the more difficult task of generating both the atom and
bond information— while a language model only has to
generate a single sequence. Given this— it is natural that:
language models displays such flexible capacity and the
evaluated graph generative models do not. Outside of
molecular design some graph generative models have at-:
tempted to scale to larger graphs (60, 61| but these mod-:
cls have not been angmented for molecules. The results:
here do highlight the fact that many widely used graph:
generative models are designed only for small drug-like:
[40] molecules and do not scale to larger more complex:
molecules. On the other hand, while language models:
can scale and flexibly generate larger molecules, graph
generative models are more interpretable [54, 58] which:
is important for drug and material discovery.



Action 2: We add a discussion, some metric tables, and distribution plots for the additional baselines
(pages 13-14)

Additional Baselines: We experiment with additional graph generative model baselines on all tasks. These in-
clude Hier VAE [55], GCPN [11], GRAPH AF [68], GENRIC [12], CNF [54], Molecular RNN (MRNN) [56], GRAPH-
VAE [16], NAT-GRAPHVAE [69], MOLGAN (18], GRAPH NVP [58], DGMG [8], MOLMP [57], GRAPHINVENT
[53]. From these models, most of the single shot generative models do not scale [rom MOLGAN, GRAPHVAE,
NAT-GRAPHVAE, GRAPH NVP. None of these models including GCPN were able to acheive better than 1% valid,
unique and novel meaning they are unable to generate molecules from the training distribution. Furthermore, all of
the autoregressive graph generative models (DGMG, MolMP, GRAPH INVENT) were unable to handle the larger
molecules even in the LogP and Multi-distribution tasks. Training on these larger datasets exacerbate the stability
issues [8] these models suffer from making them unable to stably train to completion. The baselines that were able
to train could only handle the LogP and multi-distribution tasks, these include: two discrete normalizing flow models
CNF [54] and GRAPH AF [68], GENRIC which employs a Markov chain, MRNN or Molecular RNN which uses RNNs
to generate atoms and bonds and HIERVAE which extends JTVAE to larger common motifs or substructures. All
baselines have high scoring standard metrics (Table II) but their wasserstein distance metrics are much further from
the Train Oracle than the RNNs (Table I). HIERVAE and MRNN stand out and are higher scoring than GENRIC,
CNF and GRAPH AF HIERVAE even beats the SF-RNN on SA and NI but not the SM-RNN. Indeed, from the
distribution plot in Figure Sla for the LogP task we can see that MRNN and HIERVAE are closer to the training
distribution than the additional baselines but nearly as close as the RNNs. For the multi-distribution task, the closest
are MRNN and CNF, shown in the distribution plot in Figure Sle  where MRNN learns all of the modes (but poorly)
while CNF entirely misses the CEP mode. In contrast the RNNs, perfectly learn all four modes (Figure S1b).

Task|Samples  |LogP SA QED MW BCT NP

TRAIN 0.020 0.0096 0.0029 1.620 7.828 0.013
SM-RNN  [0.095 0.0312 0.0068 3.314 21.12 0.054
SF-RNN 0.177 0.2903 0.0095 6.260 25.00 0.209
%L |HIERVAE | 0.661 0.0464 0.0710 51.73 141.9 0.079
S |MRNN 0.769 1.2321 0.0710 58.27 142.9 0.808
GRAPHAF|3.534 1.8820 0.2413 164.7 664.4 1,206
CNF 2,773 3AT27 01879 3787 174.7 1.456
GENRIC 2764 1.3626 0.1092 81.41 308.0 1.286
TRAIN 0.048 0.0158 0.0020 2,177 14.15 0.010
SM-RNN  [0.081 0.0246 0.0059 5.483 21.19 0.012
SF-RNN 0.286 0.1791 0.0227 11.35 68.81 0.079
.“..3 HIERVALE 2356 0.2151 0.1024 157.7 687.0 0.175
= |MRNN 1.519 0.6644 0.0593 97.92 400.1 0.598
GRAPHAF|3.140 1.9122 0.1174 106.1 971.7 0.723
CNF 2,378 2.0793 0.0991 61.87 436.7 1.070
GENRIC  |1.623 2.0029 0.0827 105.7 445.3 0.787

TABLE 1. Wasserstein distance metrics for LogP, SA, QIED, MW, BT and NP between molecules from the training data
and generated by the additional baselines and RNNs for all three tasks. TRAIN is an oracle baseline- values closer to it are
better.

Tm-‘.k|M(!Lritt |SM-R.NN SF-RNN HIERVALEE MRNN GRAPHAF CNIF GENRIC

o |validity 0.941 L.000 1.000 1.000 L1000 1000 1000
2 |uniqueness| 0.987 1.000 1.000 0.999 0.906 1000 0.886
= |novelty 0.721 0.871 1.000 0.994 1.000 1.000 0.993
= |valid 0.969 1.000 1.000 0.999 1.000 1000 0.997
E uniqueness|  0.996 0.989 0.938 0.999 0.985 1.000 0912
< |novelty 0.937 0.950 1.000 1.000 1.000 1.000  0.998

TABLE II. Standard Metrics of validity, uniqueness and novelly ol molecules generated by all models in every task. Closer
to 1.0 indicates better performance.
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FIG. S1. Additional Baselines a For the LogP task, the histogram and KDE of penalized logP of training molecules along
with KDEs of molecular weight of molecules generated from additional baselines model that could generate samples. b The
Histogram and KDE of molecular weight of training molecules along with KDEs of molecular weight of molecules generated
from the training data and RNNs. ¢ The Histogram and KDE of molecular weight of training molecules along with KDEs of
molecular weight of molecules generated from the training data and from additional baselines.



A second concern is the authors’ argument that their own SELFIES representation “seems to improve the
performance of language models in every task,” as compared to a language model trained on SMILES.
However, on 10 of 10 distribution learning tasks presented in Tables I and II, SM-RNN achieves better
performance than SF-RNN. Thus, this statement is not supported and in fact is contradicted by the data
presented in the manuscript.

Response 2.4: We have revised this paragraph to give a more clear and nuanced evaluation of the results:

Comparison of SELFIES and SMILES. DBoth
the SM-RNN and SF-RNN perform well in all tasks, bet-
ter than the baselines. We notice that the SF-RNN has
better standard metrics (Table III) in every task, but the
SM-RNN has better Wasserstein distance metrics (Table
II). Furthermore, the SF-RNN has better novelty than
the SM-RNN- this may mean that the SELFIES gram-
mar leads to less memorization of the training datase in
chemical language models. This could also help explain
why the SF-RNN has better standard metrics but worse
Wasserstein metrics than the SM-RNN. In addition, data
augmentation and random SMILES [30] could be used to
improve the novelty score of the SM-RNN. In future, it
would be valuable to have a more comprehensive evalua-
tion of the use of SMILES and SELFIES representations

in deep generative models.



A final issue is the level of detail provided in the Methods section, which is insufficient to reproduce all
the results of the paper - for example, how was random search executed? How were the parameter grids
defined? How were the evaluation metrics calculated? Ideally, the authors would just provide the source
code that was used to execute these searches and evaluate model performance.

Response 2.5: We have added additional methods details necessary (page 10 column 1):

Hyper-parameter Optimization. For hyper-
parameter optimization we use the simplest most effec-
tive method— namely random search [62]. We randomly
sample from discrete grids of hyper-parameters with
equal probability of selection for each value. The values
are roughly equally spaced with 3-5 values in each grid.
The upper and lower bounds for each hyper-parameter
are defined as such : learning rate € [0.001,0.0001], hid-
den units € [100, 1000}, layer number € [1,5], dropout
(probability) in [0.0,0.5]. We don’t optimize the number
of epochs— we just use the default value for the baseline
models used during training on other datasets (MOSES,
ZINC or Chembl).

Model Selection Criteria. There are many model
selection criteria possible, for example- the MOSES
benchmark [35] suggest the Frechet Distance, however,
this and other performance metrics have been shown to
have issues [63]. We evaluate and select models using
all metrics employed in combination with the distribu-
tion plots. First we compile the top 10% of models with
highest validity, uniqueness and novelty. Then we plot
distribution plots for the main property of interest (ie
penalized logP for LogP task and molecular weight for
others)— then take the model that has the closest distri-
bution to the training distribution and scores the lowest
on largest number of the six Wasserstein distance met-

rics.

Further Details: Language models are implemented
in Python 3 with PyTorch [64] molecules are processed
and relevant properties are computed using RDkit [38].
Wasserstein distances are computed using SciPy [65]
as scipy.stats.wasserstein distance based on [66]

also known as the earth mover’s distance, it can be
viewed as the minimum amount of distribution weight
that must be moved, multiplied by the distance - in order
to transform samples from one distribution into samples
from the another.

Minor points:

1. The statement in the abstract that graph generative models “typically achieve state of the art results” is
not, to my knowledge, true, and in fact would seem to be contradicted by the results in this manuscript. It
would be nice if the authors could clarify what data supports this claim or else remove it.

We have removed this sentence.



2. Much is made in the introduction of the notion that generation of invalid SMILES makes it difficult to
train and apply language models. I can’t say that I understand why this is a major obstacle, as it would
appear straightforward to filter out the invalid SMILES strings. [ wonder if the authors can articulate
some scenarios where it is essential that all generated molecules be valid (i.e. where filtering out invalid
SMILES is not possible).

Response 2.6: We agree, this is over-emphasized — we have made some changes to the introduction
focusing much less emphasis on this, which is not the focus of this work (page 9 column 1 paragraph 1):

Initially the brittleness of the SMILES string repre-
sentation meant a single character could lead to an in-
valid molecules. This problem has been largely solved
with more robust molecular string representations [31
34]. Additionally, with improved training methods, deep
generative models based on RNNs consistently gener-
ate a high proportion of valid molecules using SMILES
[6, 9. 35]. One area that has not been studied is the abil-
ity of language models and generative models to generate
larger more complex molecules, or generate from chemi-
cal spaces with large ranges in size and structure. This
is beneficial because of increased interest in larger more
complex molecules for therapeutics [36].

3. The authors assert that the three new benchmark tasks introduced here are “especially challenging.”
can see why modelling very large molecules could be challenging, but I’m not convinced that modelling
especially lipophilic or chemically diverse molecules should present a particular challenge.

Response 2.7: Even the LogP and Multi-distribution datasets are fairly larger than standard datasets like
ZINC and MOSES with more atoms and rings. They also have a larger range between the smallest
molecule and the largest molecules. We have added another table highlighting this (page 2 column 1 &
shown below). We also remove the word “especially” to avoid exaggeration.

# Atoms # Rings
Min Mecan Max Min Mean Max
Zinc | 6 23.2 |0 2.8 9 In Table T there are some summary statistics of alom
Moses| 8 21.6 270 2.6 8 and ring number in all datasels compared with two stan
Log p| 12 4.7 ™0 4.2 37 dard dalasets Zinc [I!] and Moses [.'i":_. All Lasks involve
Multi| 7 311 6 0 0.3 23 larger molecules with more substructures and conlain a

Large| 101 140.1 891 0O 1.2 399 larger range of atom and ring number per molecule.

TABLE 1. Datasct Statistics for all three tasks.



4. A table of Wasserstein metrics for the large scale task is missing.

Response 2.8: Thank you— we have consolidated all Wasserstein metrics into one table, including the
metrics from the large scale task (Table II on page 8 column 1):

Task

Samples |L.0g1" SA QED MW BCT NP
TRAIN [0.020 0.0096 0.0029 1.620 T7.828 0.013
SM-RNN|0.095 0.0312 0.0068 3.314 21.12 0.054
SE-RNN [0.177 0.2903 0.0095 6.260 25.00 0.209
JTVAE [0.536 0.2886 0.0811 35.93 76.81 0.164
CGVAE [1.000 2.1201 0.1147 69.26 141.2 1.965

TRAIN [0.048 0.0158 0.0020 2.177 14.149 0.010
SM-RNN|{0.081 0.0246 0.0059 5.483 21.118 0.012

LogP

§ SF-RNN [0.286 0.1791 0.0227 11.35 68.809 0.079
< |JTVAE [0.495 0.2737 0.0343 27.71 171.87 0.109
CGVAE |1.617 1.8019 0.0764 30.31 183.58 1.376
TRAIN [0.293 0.030 0.0003 18.92 85.04 0.005
o |SM-RNN|1.367 0.213 0.0034 124.49 363.0 0.035
2 |SF-RNN [1.095 0.342 0.0099 67.322 457.5 0.111
= |JTVAE | - - - - - -
CGVAE | - - . . . -

TABLE Il. Wasserstein distance metrics for Logl’, SA,
QED, MW, BT and NI’ between molecules from the training
data and generated by the models for all three tasks, TRAIN
is an oracle baseline- values closer to it are better.

5. In the Discussion, the authors suggest their results raise the possibility that language models are overfit
to the training data. It was not clear to me exactly what aspects of their results suggested this. If
overfitting is a concern, the framework based on the GDB-13 database presented by Arus-Pous et al., J.
Cheminform. 2019 could be useful to test the generalization capacity of these models.

Response 2.9: Our concern was the lower novelty score for the RNNs, particularly the SM-RNN.
However, they are only slightly lower and so we have revised this claim and cited your suggested article
as a possible way to improve performance (page 9 column 1 paragraph 1):

IT). Furthermore, the SF-RNN has better novelty than
the SM-RNN- this may mean that the SELFIES gram-
mar leads to less memorization of the training datase in
chemical language models. This could also help explain
why the SF-RNN has better standard metrics but worse
Wasserstein metrics than the SM-RNN. In addition, data
augmentation and random SMILES [30] could be used to
improve the novelty score of the SM-RNN. In future, it
would be valuable to have a more comprehensive evalua-
tion of the use of SMILES and SELFIES representations

in deep generative models.



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

The authors have addressed my suggestions and the manuscript appears suitable for publication.

Reviewer #2 (Remarks to the Author):

The authors have done an excellent job responding to the reviewer comments. | very much
appreciate the extensive benchmarking of other graph-based generative models they have added to
the revised manuscript. This new data substantially strengthens their argument that language
models outperform graph generative models. | think this will be a very impactful paper in the field
and recommend its publication in Nature Communications.

| have only one more suggestion, which is that the authors could consider changing the title to more
clearly reflect what | would consider to be the main result of their manuscript: namely, that language
models are not just able to learn complex molecular distributions, but that they outperform graph
generative models on this task. | think this would also be worth highlighting in the abstract and
introduction. In particular, | am not sure that describing graph-based generative models as
“baselines” does full justice to the authors’ findings, as these models are widely seen - correctly or
not - to be the most advanced methods that are currently available.
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publication.

Reviewer #2 (Remarks to the Author):

The authors have done an excellent job responding to the reviewer comments. | very much
appreciate the extensive benchmarking of other graph-based generative models they have
added to the revised manuscript. This new data substantially strengthens their argument that
language models outperform graph generative models. | think this will be a very impactful paper
in the field and recommend its publication in Nature Communications.

| have only one more suggestion, which is that the authors could consider changing the title to
more clearly reflect what | would consider to be the main result of their manuscript: namely, that
language models are not just able to learn complex molecular distributions, but that they
outperform graph generative models on this task. | think this would also be worth highlighting in
the abstract and introduction. In particular, | am not sure that describing graph-based generative
models as “baselines” does full justice to the authors’ findings, as these models are widely seen
- correctly or not - to be the most advanced methods that are currently available.

We thank the reviewers for their comments. In response to the suggestions of reviewer #2—
we have added more emphasis that language models outperform graph generative models— in
the introduction, abstract, and discussion sections.
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