Single-domain antibodies against ASC disassemble post-pyroptotic inflammasomes and reveal their role in inflammatory diseases

Damien Bertheloot¹, Carlos W. de Souza Wanderley^{2,3}, Ayda Henriques Schneider^{2,3}, Lisa Schiffelers¹, Jennifer D. Wuerth¹, Jan Tödtmann⁴, Salie Maasewerd¹, Ibrahim Hawwari¹, Fraser Duthie¹, Cornelia Rohland¹, Lucas S. Ribeiro¹, Lea Jenster¹, Nathalia Rosero¹, Yonas Mehari Tesfamariam¹, Fernando Q. Cunha^{2,3}, Florian I. Schmidt^{1, 4} and Bernardo S. Franklin¹

Affiliations:

¹Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127 Bonn, NRW, Germany. ²Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Brazil.

³Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil. ⁴Core Facility Nanobodies, Medical Faculty, University of Bonn, 53127 Bonn, Germany Correspondence: <u>d.berthellot@uni-bonn.de</u>, <u>fschmidt@uni-bonn.de</u>, <u>franklin@uni-bonn.de</u>

Running Title: VHH_{ASC} targets extracellular ASC specks.

Appendix Table of Contents

- 1. Appendix Figures S1 VHH_{ASC} disrupts released ASC specks
- 2. **Appendix Figures S2 -** Maximum IL-1β secretion is reached early in inflammasome activation of primary human macrophages
- 3. Appendix Figures S3 VHH_{mASC} ameliorates MSU gouty inflammation
- 4. Appendix Figures S4 Local VHH_{mASC} ameliorates MSU gouty inflammation

Appendix Figure S1. VHH_{Asc} **disrupts released ASC specks** (**A**) Flow cytometry plots representing the method used to analyse GFP⁺ specks from cell-reduced supernatants. Beads of 10, 5 or 2 μ m diameter were used as size "calibrator". (**B**) Example of flow cytomerty analysis of supernatants from PMA-differentiated THP-1 cells expressing ASC-GFP and left untreated, or pre-incubated with VHH_{ASC} (100 μ g ml⁻¹), or VX-765 (50 μ M) for 30 min before activation with PFO (30 ng ml⁻¹) or nigericin (10 μ M) for 3.5h.

Appendix Figure S2. Maximum IL-1 β secretion is reached early in inflammasome activation of primary human macrophages. (A) IL-1 β levels measured in cell-free supernatants of primary human macrophages (hMDMs) at 90 min (90') or 7 hours (7h) of inflammasome activation. Cells were generated by differenciating primary human monocytes with GM-CSF (A) or M-CSF (B) from three blood donors. hMDMs were primed with LPS (10 ng ml⁻¹) for 3 hours, followed by stimulation with nigericin (10 μ M) for the indicated time. In some conditions, CRID3 (2.5 μ M) or VHH_{ASC} (200 μ g ml⁻¹) was added to cells after 90 min of nigericin-stimulation and IL-1 β levels were assessed at 7 hours post stimulation. Data is from two experiment with a total of three blood donors. Each symbol represents one donor. ns, p > 0.05; *, p<0.05; **, p<0.005, One-way ANOVA, multiple comparison (Tukey test).

Appendix Figure S3. VHH_{mASC} **ameliorates MSU gouty inflammation. (A)** Schematic representation of the experimental setting used for the MSU-gout model. Mice were injected intraperitonially (i.p.) with VHH_{mASC} (5 mg/kg) or vehicle (PBS) 1h prior to the intra-articular (i.a) injection of 100 μ g of monosodium urate (MSU) crystals into the knee. Mechanical allodynia threshold (B) was evaluated at 3 and 6 hour post-challenge and edema (C) was evaluated at 6 hour post-challenge. (D) Flow cytometric assessment of infiltrating total leukocytes (CD45⁺), granulocytes (CD45⁺ Ly6G⁺ Ly6C⁻), and inflammatory monocytes (CD45⁺ Ly6G⁻ Ly6C⁺) recovered in the synoival fluid of the knee joints of mice treated as in (A). (E) ELISA of IL-1 β , TNF α and IL-6 in tissue homogenates of knee joints of mice treated as in (A). ns, p > 0.05; *, p<0.05; ***, p<0.005; ***, p<0.0002, One-way ANOVA, multiple comparison (Tukey test). Data with non-normal distribution were tested with Krustal-Wallis test and multiple comparison using Dunn's test. Outliers were determined by the ROUT method and are represented with Δ .

Appendix Figure S4. Local VHH_{mASC} ameliorates MSU gouty inflammation. Wild-type C57BL/6 mice were injected intra-articularly into the knee joint with VHH_{mASC} (2 mg/kg), or Vehicle together with 100 μ g monosodium urate (MSU) crystals dissolved in 10 μ L endotoxin free PBS. Mechanical allodynia threshold (B) was evaluated at 3 and 6 hour post-challenge and edema (C) was evaluated at 6 hour post-challenge. (C) Flow cytometric quantification of total infiltrating leukocytes(CD45⁺), granulocytes (CD45⁺ Ly6G⁺ Ly6C⁻), and inflammatory monocytes (CD45⁺ Ly6G⁻ Ly6C⁺) recovered in the synoival fluid of the knee joints of mice treated as in A-B. (D) Gating strategy used for flow cytometric quantification of infiltrating cells showed in Fig. 5D.