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Supplemental Figure S1: Quality control of the integrated cluster analysis. (A) Violin plot 

showing the mitochondrial read percentage per cell in the single cell/nuclei integrated object. (B) 

Violin plot showing the number of genes per cell in the single cell/nuclei integrated object. (C) 

Violin plot showing the number of UMIs per cell in the single cell/nuclei integrated object. To 

exclude potential doublets from the analysis, cells with greater than 5000 genes per cell were 

filtered out. (D) Feature plot showing the expression of UMOD in all cells from the two single cell 

and one single nucleus data from the three tissue interrogation sites. UMOD is one of the highly 

abundant mRNA expressed in loop of Henle that is usually present as ambient mRNA due to 

cell breakage while dissociation. The feature plots show specific high expression of UMOD in 

loop of Henle cells. The ambient mRNA expression of UMOD in other cell types is relatively low.  

(E) Plot showing the proportion of cells in the cell types identified in the two single cell and the 

single nuclei data from the three tissue interrogation sites. (F) Plot showing the proportion of 

cells in the cell types identified in each of the sample studied for single /single nuclei assays. (G) 

Dot plot of cell type specific marker genes. 

 



Absolute  expression for each (cell type/segment + subject + 

technology) combination

Absolute gene/protein expression for each cell type or segment 

of each subject

Pairwise correlation

+ hierarchical clustering

of absolute expression values

Pairwise correlation

+ hierarchical clustering

of log2(fold changes)

Keep only glomerulus/podocyte and proximal 

tubule/tubulointerstitium cell types/segments

to compare only datasets that were generated by all 

technologies.

Calculate log2(fold changes) between glomerular and 

proximal tubule/tubulu-interstitium segments (and vice verse) 

and between podocytes and proximal tubule cell types (and 

vice verse) for each subject

Log2(fc) for each (cell type/segment + subject

+ technology) combination

Log2(fc) for each (cell type/segment + technology) 

combination

Average log2(fold changes) across subjects within

each cell type or segment and technology

Pairwise correlation

between technologies

Average log2(fold changes) across RNASeq

and proteomics technologies

Log2(fc) for each (cell type/segment + RNASeq/proteomics 

technology set) combination

Correlation between

RNASeq and proteomics

A

Supplemental Figure S2



1
2
3
4

5
6

0.684
0.484
0.461
0.446

0.392
0.387

Dendrogram heights

7 0.363
8 0.349

Supplemental Figure S2

D

E

CB

1

2

3

2

3

4

4

5

6

6

5

7

7

8

8



 

Supplemental Figure S2: Cross-platform comparison of gene and protein expression. (A) 
Pipeline for correlation analysis across different omics technologies. See methods for details. 
(B) Clustering dendrogram that was obtained after hierarchical clustering of pairwise correlations 
between all samples based on the log2(fold changes) after removal of those genes and proteins 
that are not consistently detected. Numbers document heights of branches at indicated positions 
in the dendrogram. See figure 2C for associated heatmap. (C) Hierarchical clustering of pairwise 
correlation coefficients between all samples based on the log2(fold changes) without removal of 
those genes and proteins that are not consistently detected across all assays also groups the 
samples by anatomical region and not technology. In contrast, pairwise correlation and 
hierarchical clustering based on logarithmized absolute expression values groups samples by 
technology, (D) with  or (E) without removal of the not consistently detected genes and proteins. 
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Supplemental Figure S3: Comparison of expression across CODEX clusters and mapped 
cell-type specific transcriptomic profiles. For each CODEX cluster, we show its scaled 
average expression profile together with the scaled average expression profile of the mapped 
cell-type specific transcriptomic profile. 
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Supplemental Figure S4: Separated and integrated analysis of sc and sn RNAseq 
datasets generate consistent cell type mapping. Cell types and subtypes identified by the 
separated analyses of the (A) sn and (B) sc RNAseq datasets. Bars indicate the percentage of 
all cells that mapped to a particular cell type or subtype, colors indicate the tissue collection 
method each particular cell was obtained by. Cell type assignments of separate clusters from 
(C) sn and (D) sc RNAseq datasets were compared to those obtained by the integrated analysis. 
Numbers indicate nuclei/cell counts; fields are colored by the percentage of cells within each 
field compared to the row margins. Note that in separated analyses of the sc RNAseq dataset, 
the applied cutoff for mitochondrial gene expression was higher (≤50% instead of ≤20%); 
consequently, some of the cells that were removed in the combined analysis were assigned to 
cell types in the separated analysis. Expression of cell type selective marker genes in cell 
subtypes identified (E) by single nucleus RNAseq and (F) single cell RNAseq. Mapping of the 
(G) nuclei and (H) cells to LMD segments documents that the annotations obtained from the 
separated analyses map to their correct anatomical origin, as observed for the integrated 
analysis. All heatmaps are colored according to the number of cells assigned to each LMD 
subsegment, scaled so each row has mean of 0 and standard deviation of 1. See figure 2A for 
cell type abbreviations. 
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Supplemental Figure S5. Complete results of single-cell/nucleus transcriptomic post hoc 
power analysis. Subject libraries or samples were randomly and progressively removed from 
the sc (24 libraries) and sn (47 libraries) RNAseq to generate at max 100 non-overlapping 
random groups for each number of remaining libraries. (A) Sc and sn datasets were subjected 
to an automated sc/sn data analysis pipeline. (B) Results were averaged for each number of 
subject libraries and compared between the downsampled and complete datasets as indicated. 
Post hoc power results of the (C) sc and (D) sn RNAseq datasets. ‘Cell type detected’: This 
plot documents how often (in percent) a particular cell type was detected in dependence of the 
number of analyzed libraries. ‘Significance of cell type’: To assign cell types to each cluster 
we subjected cluster specific marker genes to enrichment analysis using Fisher’s Exact test and 
a list of literature curated cell-type specific essential genes. For each cluster predicted cell types 
were ranked by significance and the top ranked cell type was assigned to that cluster. The plot 
shows the -log10(p-values) of the first (i.e. the selected) and the second ranked cell type. 
Comparison of both p-values allows an estimation of the reliability of a particular cell type 
assignment. The larger the difference between both -log10(p-values), the more certain is that 
particular cell type assignment. ‘element/not element of Reference cluster’: Cells/nuclei that 
were assigned to the same (above abscise, positive values, full circles) or to a different cell type 
(below abscise, negative values, open circles) as in the full dataset were counted in each 
downsampled dataset.  ‘element/not element of indicated LMD subsegment’: Using cell and 
nuclei mappings presented in Suppl. Figure 4E/F we counted how many cells/nuclei of a 
particular cell type mapped to the indicated LMD subsegment (above abscise, positive values, 
full circles) or to a different LMD subsegment (below abscise, negative values, open circles). 
‘DEGs log(fc)’: Correlation between the log fold changes of cell type specific markers obtained 
for the downsampled and complete dataset. Notify that all comparisons were only done, if a 
particular cell type was detected (as indicated in the first diagram). See figure 2A for cell type 
abbreviations. 



Supplemental Figure S6

Added after curation of metabolites:  Carnitine shuttle
Carnitine biosynthesis and transport

0 1 2 3

Fructose and mannose metabolism
Linoleic acid metabolism

Phenylalanine, tyrosine and tryptophan biosynthesis
D-Arginine and D-ornithine metabolism

Glycolysis / Gluconeogenesis
Purine metabolism

Glycerophospholipid metabolism
Galactose metabolism

-log10(p)

Non-glomerular metabolite pathways

0 1 2 3

Arachidonic acid metabolism
Sphingolipid metabolism

Glycosylphosphatidylinositol (GPI)-anchor biosynthesis
alpha-Linolenic acid metabolism

Linoleic acid metabolism
Glycerophospholipid metabolism

-log10(p)

Glomerular metabolite pathways

A

B



 

Supplemental Figure S6: Pathway enrichment analysis of spatial metabolomics data. All 
(A) Non-glomerular and (B) glomerular metabolites obtained from the three nephrectomy 
samples were subjected to pathway enrichment analysis using MetaboAnalyst. Some pathways 
were predicted from metabolites that are general precursors for the synthesis of multiple 
products and participate in multiple pathways. To exclude such unspecific and consequently 
uncertain pathway predictions, we focused only on those pathways that were predicted from a 
pathway specific metabolite (see methods for details). To merge the metabolic pathways with 
the MBCO SCP-networks, we mapped the MetaboAnalyst pathways 
‘Glycolysis/Gluconeogenesis’ and ‘Glycerophospholipid metabolism’ to the MBCP SCPs 
‘Glycolysis and Gluconeogenesis’ and to ‘Phosphoglyceride biosynthesis’, respectively. Based 
on identified metabolites, we added the MBCO SCPs “Carnitine shuttle” and “Carnitine 
biosynthesis and transport” to the predicted MetaboAnalyst pathways (see methods for details). 
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Supplemental Figure S7: Mapping of tubulointerstitial SCPs to cell types. SCPs predicted 
by dynamic enrichment analysis for the tubulointerstitial segment by the LMD Proteomics and 
spatial metabolomics assays were mapped to one of three detected glomerular cell types, 
because they were either detected in that cell type as well or related to SCPs detected for that 
cell type. Numbers indicate at which rank a particular SCP was detected. Notify that dynamic 
enrichment analysis can predict single SCPs or combinations of up to three SCPs, and 
consequently the same rank can be given to multiple SCPs. When an SCP was predicted by 
multiple cell subtypes, the highest rank is visualized in this figure. 
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Supplemental Figure S8: Enrichment analysis of differentially expressed genes and 
proteins in proximal tubule cells and subsegments. See Figure 5 for details. SCPs that were 
among the top seven predictions based on dynamic enrichment analysis of PT DEGs and DEPs 
and were removed from the main figure for space reasons. 
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Supplemental Figure S9: Enrichment analysis for glomerular datasets. (A) Marker genes 
and proteins identified by LMD RNAseq and Proteomics and NSC Proteomics were subjected 
to dynamic enrichment analysis. (B) Predicted glomerular SCPs were mapped to one of four 
detected glomerular cell types, because they were either detected in that cell type as well or 
related to SCPs detected for that cell type. Numbers indicate at which rank a particular SCP was 
detected. Notify that dynamic enrichment analysis can predict single SCPs or combinations of 
up to three SCPs, and consequently the same rank can be given to multiple SCPs. (C) SCP 
networks predicted for podocytes based on the sn and sc RNAseq datasets were merged with 
the podocyte mapped SCPs identified in B. (D) Podocyte specific modules were generated by 
combined analysis of the podocyte sc and sn marker genes and all glomerular marker genes 
and proteins. SCP networks predicted for (E) mesangial cells, (F) glomerular endothelial cells 
and (G) parietal epithelial cells based on sn and sc RNAseq datasets were merged with the 
SCPs that were mapped to these cell types in (B). 
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Supplemental Figure S10: Enrichment analysis for the Loop of Henle. Descending limb cell 
specific marker genes were subjected to (A) dynamic enrichment and (B) humanbase module 
analysis. (C) Dynamic enrichment and (D) module analysis results of thin ascending limb cell 
marker genes. (E) Dynamic enrichment and (F) module analysis results of thick ascending limb 
cell marker genes.  
 



Ion reabsorption
A

B

Supplemental Figure S11

ECM

Vesicle traffic

D
IS

TA
L 

C
O

N
VO

LU
TE

D
 T

U
B

U
LE

D
IS

TA
L 

C
O

N
VO

LU
TE

D
 T

U
B

U
LE



 

Supplemental Figure S11: Enrichment analysis for the distal convoluted tubule. Distal 
convoluted tubule cell and segment specific DEGs were subjected to (A) dynamic enrichment 
and (B) module analysis. 
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Supplemental Figure S12: Enrichment analysis for the collecting duct. Connecting tubule 
cell specific DEGs were subjected to (A) dynamic enrichment and (B) module analysis. Principal 
cell and collecting duct specific DEGs were subjected to (C) dynamic enrichment and (D) module 
analysis. Intercalated cell and collecting duct specific DEGs were subjected to (E) dynamic 
enrichment and (F) module analysis. (G) Enrichment analysis of the marker genes for 4 different 
intercalated cell subtypes from sn and sc RNAseq using Gene Ontology Biological Processes 
identifies the pathways ‘Phagosome acidification’ and ‘Phagosome maturation’. 
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Supplemental Figure S13: Enrichment analysis for vascular cells. (A) Endothelial cell 
specific DEGs were subjected to dynamic enrichment. (B) Similarly, vascular smooth muscle 
cell specific DEGs were subjected to dynamic enrichment analysis. 
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Supplemental Figure S14: Enrichment analysis for interstitial cells. Interstitial fibroblast cell 
and segment specific DEGs were subjected to dynamic enrichment analysis. 
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Supplemental Figure S15: Enrichment analysis for immune cells. (A) 
Macrophage/Monocyte, (B) Natural Killer cell, (C) B-cell, and (D) T-cell specific DEGs were 
subjected to dynamic enrichment analysis. 



Supplemental Figure S16



 

Supplemental Figure S16: Expression of immune related genes in the kidney cell types. 
Using all genes that are assigned to the Gene Ontology Biological Process “immune system 
process” or any of its children processes based on the “is_a” or “part_of” relationships, we 
documented the percentage of immune system related genes (orange) in all cell type, subtype 
and segment-specific marker genes and proteins. See figure 2A for cell type abbreviations. 
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Supplemental Figure S17: Cellular key functions are most consistently predicted by 
downsampled sc and sn RNAseq datasets. To analyze the reliability of predicted cell type-
specific biology we subjected the top 300 cell-type specific marker genes that were obtained 
from the full or down-sampled sc and sn RNAseq datasets (Suppl. Figure 5C and 5D, 
respectively) to dynamic enrichment analysis. SCPs that were among the top seven predictions 
for the complete sc and sn RNAseq were identified. We identified the dynamic enrichment ranks 
of these SCPs in the down-sampled datasets and averaged them across all datasets with the 
same number of libraries. Color scale ranges from 1 (dark green/orange/purple) to 21 or higher 
(white). Notify that SCPs predicted for the complete datasets are not necessarily the same as 
the one documented in figure 6. The 2124, 4447 and 721 individual complete and downsampled 
datasets were analyzed using our automated pipeline that did not allow manual ad hoc 
optimization and merged all clusters annotated to the same cell type instead of annotating each 
cluster to a cell subtype. The first set of subfigures shows the predicted SCPs identified from the 
sc RNAseq dataset for (A) proximal tubule cells, (B) glomerular cell types, (C) cell types of the 
Loop of Henle, (D) of the distal convoluted tubule, (E) of the collecting duct, (F) vascular cells 
and (G) non-immune and immune interstitial cells. The second set of subfigures shows the 
predicted SCPs identified from the sn RNAseq dataset for (H) proximal tubule cells, (I) 
glomerular cell types, (J) proximal tubule/descending limb cell, (K) cell types of the Loop of 
Henle, (L) of the distal convoluted tubule, (M) of the collecting duct and (N) vascular cells. 
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Supplemental Figure S18: Prediction of cellular dependencies on aerobic and anaerobic 
metabolic pathway activities. (A) We designed a small ontology that allows distinguishing 
between aerobic and anaerobic as well as catabolic and anabolic reactions. Shown is the 
annotated pathway hierarchy. Colored pathways indicate parent and child pathway pairs, where 
the child contains only enzymes that are specifically involved in the function of its parent and of 
any other parent. Pathways were populated with genes by literature curation. Parents are 
populated with all genes of the child pathways. (B) Top 500 cell type, cell subtype and 
subsegment specific marker genes and proteins were subjected to enrichment analysis using 
the leaf pathways shown in A. Initial enrichment results determined with pathways were used for 
the analysis shown in figure 6. For each cell type, subtype and subsegment we only considered 
a higher level pathway, if the child pathway that contains the enzymes specifically involved in 
the higher level pathway activity was also predicted (as indicated by the colored pathway pairs 
in A). Cell types that contain many cells obtained from medullary samples are marked. See figure 
2A for cell type abbreviations. 
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Supplemental figure S19: Prediction of transmembrane ion and molecule 
movements. (A) Flow chart documenting the steps involved in the generation of the 
ontology for transmembrane sodium and glucose transport. Shown are example 
transporters (gray) involved in (B) sodium and glucose lumen-to-blood (L2B) and (C) 
sodium blood to lumen (B2L) transport and how they integrate into the hierarchy to finally 
converge on sodium and glucose L2B and B2L transport. Symporter mechanisms are 
colored in orange, antiporter mechanisms in blue. (D) Net reabsorption capacities for 
sodium (colored bars) were determined as describe in figure legend 7 and compared to 
experimentally determined total sodium reabsorption. (E) Comparison between 
experimentally measured total and transcellular sodium reabsorption profiles and 
reabsorption capacities that were predicted from the three sn RNAseq datasets used in 
figure 7 and the KPMP sc RNAseq dataset. See figure 7 for details. (F) Sodium 
reabsorption mechanisms were predicted based on all four datasets (three single nucleus 
and one single cell RNAseq datasets). See figure 2A for cell type abbreviations. (G) 
Reabsorption capacities for glucose transmembrane transport were calculated using the 
three sn RNAseq datasets as described in figure 7 and compared to experimentally 
determined glucose reabsorption profiles. Since only one physiology textbook 
documented the glucose reabsorption profiles, there is no standard error for the 
experimental values. Facilitated glucose transporters were excluded. (H) As for sodium, 
we analyzed the transport mechanisms involved in glucose reabsorption. (I) We 
compared the reabsorption capacities that were calculated using the three sn and the sc 
RNAseq datasets with the experimental reabsorption profiles, (J) followed by visualization 
of the individual transport mechanisms for glucose. 
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Supplemental Figure S20: Expression of genes involved in sphingomyelin synthesis and 
sphingosine metabolism in all kidney cell types and segments. Expression of curated 
enzymes was detected in the indicated cell types/segments. Genes were ranked by significance 
and ranks were added to the figure.  
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SUPPLEMENTAL INFORMATION 
Cells of the kidney  
Proximal tubular cells 

Merged proximal tubule SCP networks predict a high level of metabolic activity dependent 
on β-oxidation of lipids, ammonium metabolism as well as absorption of ions, ion-dependent 
glucose reabsorption and detoxification mechanisms (Fig. 4A). These SCPs, as shown by the 
different colors, are inferred from multiple technologies. The size of the SCP circle reflects the 
number of technology types that support the prediction of the SCP, while pie slices represent 
the individual technologies. In some physiology functions, cases of multiple pie slices are shown 
for the same technology indicating that this technology predicts the same SCP for multiple 
subtypes of the PT cells. The solid lines indicate connections between SCPs predicted by MBCO 
relationships and the dashed lines indicate additional well-known relationships between SCPs. 
Typically, these edges can represent functional relationships such as enzyme-substrate 
relationships or cotransport of molecules by symporters. It should be noted that most SCPs 
consist of multiple gene/gene products/metabolites of which only some are experimentally 
determined. Both the LMD proteomics and spatial metabolomics assays only distinguish 
between glomerular and tubulointerstitial regions in the kidney. SCPs that were predicted by 
these two assays either overlapped with or described similar functions as the SCPs that were 
identified by the proximal tubule cell or segment-specific datasets (fig. S7). This agrees with the 
observation that most tubulointerstitial cells were proximal tubule cells (fig. S4A/B). 
Consequently, we added all SCPs identified by LMD proteomics and spatial metabolomics to 
the proximal tubule network as well. The identified predictions are in agreement with the well-
established physiological functions of PT cells that include ATP-dependent reabsorption of ions, 
glucose and other small molecules like amino acids and mono- and dicarboxylates (e.g., lactate 
or oxalate) (69). The pathways also highlight the important role of PT cells in ammonium 
excretion, drug clearance (70) and iron homeostasis pathways (71). The latter  - among other 
functions - mitigate kidney damage during AKI (72). The prediction of glucose, fructose and 
glutamine metabolism from integration of transcriptomic, proteomic and metabolomics assays is 
in agreement with the high levels of PT gluconeogenesis activity (73, 74). Beta-oxidation, which 
is the central pathway for energy generation in the PT cells (75, 76), is predicted by four out of 
six technologies. The identified genes and proteins document involvement of both mitochondrial 
and peroxisomal beta- oxidation (table S7). These findings support the notion that peroxisomes 
could be a target in kidney injury. 

Both proteomic datasets of the PT subsegments highlight mitochondrial carnitine shuttle 
pathway that describes a central transport mechanism involved in both peroxisomal (77) and 
mitochondrial (78) beta-oxidation. We identify by spatial metabolomics the central carrier 
molecule carnitine, as well as acetyl-carnitine and palmitoyl-carnitine that are involved in 
transport processes during peroxisomal and mitochondrial beta-oxidation, respectively. The 
identification of carnitine biosynthesis and the carnitine precursor 3-Dehydroxycarnitine  predicts 
that adult kidney - besides apical reabsorption of carnitine - also has the biosynthetic capacity 
for local carnitine production. Loss of beta-oxidation and consequently ATP synthesis is a 
significant contributor to tubulointerstitial fibrosis (79).  Hence mapping of the variations in these 
pathways in different patient populations can provide a basis for molecular stratification of kidney 
fibrosis. Our data indicate the importance of beta-oxidation for proximal tubule function, since 
the prediction of local carnitine synthesis suggests an alternative carnitine source to dietary 
carnitine intake that might gain importance under a strictly vegetarian diet (80). Prediction of high 
levels of ATP generation and turnover rate is supported by the spatial metabolites that enrich for 



2 

 

a pathway involved in the biosynthesis and degradation of adenine nucleotides. The ability of 
proximal tubule cells to significantly contribute to gluconeogenesis, especially in states of 
starvation  is documented by the identification of many enzymes involved in gluconeogenesis in 
our datasets. Glycolysis-specific enzymes were not detected, as described by others and in 
agreement with the low potential for glycolysis in the proximal tubule (74). Only a few pathways 
describing general cell biological functions (such as ECM dynamics, cell adhesion and 
translation) were predicted by one technology (fig. S8). 

Consequently, our analyses show that the different technologies describe the same biology, 
even though they might detect different genes or proteins and analyzed samples from the 
overlapping and non-overlapping participants (table S1). 

Community clustering of PT marker genes in a kidney-specific functional network (Fig. 4B) 
identifies four modules enriched for functions including translation (M2), cellular response to 
metal ion (M4), mitochondrial organization (M1), brush border assembly (M3), and anion 
transport (M3). The marker genes were identified across five distinct technologies (sc/sn/LMD 
transcriptomics, and two independent proteomics datasets), and include genes with a corrected 
p-value of less than 0.01 in each technology. Genes are shaded per number of technologies 
identifying each marker. Five genes (ALDH2, ANPEP, LRP2, PDZK1, and SHMT1) were 
identified as PT markers across all five technologies. Fifty-four genes were identified as PT 
markers by four of the five technologies, and 106 genes were identified as PT markers by three 
of the five technologies. Functional enrichments in module clustering provide a picture consistent 
with the SCP enrichments: key processes enriched in network modules and also identified in 
SCP enrichments include fatty acid beta-oxidation (M1, M4), ammonium ion metabolic process 
(M3), glucose metabolic process (M3), detoxification (M1), anion transport (M3), and cellular 
response to metal ion (M4). While we did not separate between male and female samples in this 
study, sex specific differences in proximal tubule cells have been described recently (5). 
 
Glomerular cells 

In agreement with a previous study focusing on human and mouse glomerular cells (4) we 
detected all four different glomerular cell types, podocytes, mesangial cells, endothelial cells and 
parietal epithelial cells.  The sc and sn transcriptomic datasets (Fig. 2) lead to four glomerular 
cell type specific SCP-networks. We separately analyzed the LMD transcriptomic and LMD and 
NSC proteomics and spatial metabolomics datasets (that were obtained from the whole 
glomerulus thus lacking cell type specificity) and identified glomerular SCP networks (fig. S9A). 
Analyzing the overlap between the glomerular SCP networks with each of the three cell-type 
specific SCP-networks allows us to assign glomerular SCPs to podocytes, mesangial cells or 
glomerular endothelial cells (fig. S9B). Ten of the 19 glomerular SCPs are also predicted for at 
least one glomerular cell-type based on the sc/sn transcriptomic datasets. Seven other SCPs 
we identified map to particular cell types per functional relationships predicted from the sc/sn 
RNAseq datasets. These SCPs were added to each of the individual cell type specific SCP-
networks. Podocyte SCPs (fig. S9C) focus on cell-cell/cell-matrix adhesion, glomerular 
basement membrane (GBM) and extracellular matrix (ECM) dynamics as well as actin dynamics. 
All these pathways are required for foot process maintenance and formation of the glomerular 
filtration barrier (81).  Metabolomics data identify sphingolipid metabolism that could be involved 
in cell-cell adhesions as shown in other cell types (52, 82). LMD segmental proteomics and 
transcriptomics identified key pathways involved in actin dynamics as well as cell-cell and cell-
matrix adhesion. Multiple technologies identify tight junction organization, focal adhesion 
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organization and lamellipodia organization. The glomerular slit diaphragm between mature 
podocytes develops from epithelial tight and adherens junctions (53). It contains many of these 
junctional protein components and was suggested to be a specialized form of either tight 
junctions (26) or adherens junctions (27). This explains the prediction of these two structures 
from our data, thought they are not morphologically observed in healthy podocytes. We show 
WNT signaling as a central modulator of podocyte function (83). The pathway “Retinol 
metabolism” was predicted for both sc and sn RNAseq dataset as a regulator of tight junction 
similar structures. In agreement, retinoic acid has a regulatory effect on tight junctions in the 
epidermis  and plays a significant role in mitigating podocyte apoptosis and dedifferentiation 
during podocyte injury (84).  

 
Community clustering of podocyte marker genes in a kidney-specific functional network 

identifies six modules (fig. S9D). Functional enrichments in these modules included glomerulus 
development (M4), vasculature development (M3), cell-substrate adhesion (M1), cell-cell 
adhesion (M1), and actin cytoskeleton organization (M1). Thirteen genes (AHNAK, CLIC5, 
FERMIT2, GOLIM4, IQGAP2, NES, NPHS2, PDLIM5, PODXL, PTPRO, SLK, SYNPO, and 
TJP1) were identified as podocyte markers by all five technologies surveyed. Forty-one genes 
were identified by four of the five technologies and 108 genes were identified by three of the five 
technologies. 

 
Our datasets identify one mesangial and one transitional mesangial/VSMC cell type from the 

sn and sc RNASeq assays, respectively (Fig. 2). LMD transcriptomics and proteomics and NSC 
proteomics along with sc and sn transcriptomics data identify SCPs involved in actin 
cytoskeleton dynamics, ECM dynamics, cell adhesion and amyloid plaque generation in these 
mesangial cells (fig. S9E). Our results are in agreement with their well-known function in blood 
vessel contraction and ECM support (85). In addition, one glomerular endothelial cell type was 
identified by the sc RNAseq data (Fig. 2). Its SCP-network derived from integration of LMD 
proteomics and transcriptomics and NSC transcriptomics along with sc transcriptomic data 
identify cytoskeletal, trans-endothelial immune cell migration and antigen presentation pathways 
(fig. S9F). The assignment of “integrin-mediated leukocyte rolling” to endothelial cells is 
supported by the presence of the related “leukocyte transmigration through endothelium” SCP 
by sc and LMD RNA transcriptomics. Sn and sc RNAseq assays identified one parietal epithelial 
and one parietal epithelial cell type that also shows characteristics of loop of Henle cells, 
respectively (Fig. 2). Parietal epithelial SCP networks contain pathways involved in cell-cell and 
cell-matrix adhesion and intermediate filament dynamics (fig. S9G). 
 
Loop of Henle 

We identified one descending limb cell subtype by each sc and sn RNAseq assay (Fig. 2A). 
SCP networks from sc and sn RNAseq data for the descending limb cells identify cell adhesion 
functions and cytoskeleton dynamics (fig. S10A). The presence of “tight junction organization” 
is in agreement with barrier formation in the descending limb that can allow for paracellular water 
reabsorption (86) but not for reabsorption of ions such as sodium or chloride (87). Community 
clustering of descending limb marker genes in a kidney-specific functional network identifies six 
modules enriched in functions including cell-cell adhesion (M6), epithelium development (M3), 
tube development (M3), response to endoplasmic reticulum stress (M5), and water homeostasis 
(M6) (fig. S10B). 
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 Three thin ascending limb (ATL) cell subtypes are identified by sn RNAseq although only 
one type was identified by sc RNAseq (fig. 2A). SCP-networks obtained for ATL cells from these 
two technologies describe functions such as cell adhesion, cytoskeleton dynamics and 
translation (fig. S10C). Overall, these SCP networks agree with the known functions of these 
cells that initiate the formation of dilute urine by the establishment of a water impermeable barrier 
that is permeable to low levels of ions (88). Community clustering of ATL marker genes in a 
kidney-specific functional network identifies seven modules enriched in functions including 
translation (M1), kidney morphogenesis (M6), and cell-cell adhesion (M4) (fig. S10D). 

 
Sc and sn transcriptomics identified one and two thick ascending limb (TAL) cell subtypes, 

respectively (Fig. 2A). TAL cell SCPs indicate sodium, potassium and chloride transport 
capabilities as detected by sc, sn and LMD transcriptomic technologies (fig. S10E). 
Tubulointerstitial SCPs identified by the LMD Proteomics and Spatial Metabolomics assays 
provide evidence for functional capabilities of the SCPs networks (fig. S7). These findings are in 
agreement with the known transcellular reabsorption of sodium and chloride that is initiated by 
the furosemide sensitive sodium chloride potassium symporter NKCC2 and supported by apical 
potassium recycling (36). The “tight junction organization” SCP is involved in the establishment 
of a physical barrier that makes this region impermeable to water and thus allows the dilution of 
urine (32). Among the tight junction associated genes are CLDN10 and CLDN16 that are 
involved in the paracellular reabsorption of sodium or calcium/magnesium (36, 40), respectively, 
which supports the well-known physiology of this nephron segment. Involvement of “retinol 
metabolism” suggests that retinol regulated transcription can play an important role in TAL tight 
junction maintenance, similarly to its contribution to podocyte integrity. SCPs involved in the late 
secretory and early endocytic pathway support the known morphologic observation of vesicles 
below the plasma membrane that contain the furosemide sensitive NKCC2 (36, 89) allowing its 
mobilization and retrieval on demand (37). 

The high energy demand of the TAL cells is reflected by the identification of SCPs involved 
in mitochondrial energy generation from LMD transcriptomics and proteomics. Spatial 
metabolomics that identify purine metabolites in the tubulointerstitium also support this 
conclusion. Community clustering of TAL marker genes in a kidney-specific functional network 
(fig. S10F) identifies six modules enriched in functions including regulation of ion transport (M6), 
calcium ion import (M6), sodium ion transport (M6), translation (M1), and mitochondrion 
organization (M2). 
 
Distal convoluted tubules 

One distal convoluted (DCT) cell subtype was identified based on each of sc and sn RNAseq 
assays (Fig. 2A). Predicted SCPs for the DCT cells from sc, sn and LMD transcriptomics 
converge on sodium and chloride transmembrane transport (fig. S11A). Our results agree with 
the well-known sodium and chloride reabsorption by this cell type via the thiazide sensitive 
sodium chloride symporter NCC (90). Additionally, sc/sn transcriptomics highlight reabsorption 
of calcium, potassium, bicarbonate and phosphate. Community clustering of DCT marker genes 
in a kidney-specific functional network (fig. S11B) identifies three modules enriched in functions 
including regulation of ion transport (M3) and metal ion homeostasis (M2). A recent study 
focusing on the cells in the distal nephron purified by FACS-enrichment of mouse kidney cells 
further classifies the DCT cells into multiple subtypes (2). 
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Connecting tubules 
Each sn and sc assay identified one connecting tubule (CNT) subtype (Fig. 2A). Both sn and 

sc transcriptomic datasets for CNT cells indicate that SCPs for sodium, potassium and calcium 
transmembrane transport activities are enriched (fig. S12A), supporting its function in fine tuning 
electrolyte balances (91). Other SCPs indicate signaling, endoplasmic reticulum and energy 
functions in this cell type. Community clustering of CNT marker genes in a kidney-specific 
functional network (fig. S12B) identifies three modules enriched in functions including ion 
transport (M2), receptor-mediated endocytosis (M3), and mitochondrion organization (M1). 
 
Collecting duct 

Sc and sn RNAseq show two and three principal cell subtypes, respectively (Fig. 2A). The 
principal cell SCP networks were obtained by merging the principal cell specific SCPs predicted 
from sc and sn transcriptomics with the collecting duct (CD) specific SCPs predicted from LMD 
transcriptomics (fig. S12C). Overlapping or functionally related SCPs identified by LMD 
Proteomics and Spatial Metabolomics were added as well (fig. S7). Both sc and sn technologies 
identified “Potassium-“ as well as “Sodium-transmembrane transport” SCPs for the principal 
cells. The SCP “Water transmembrane transport” was identified by both sn and sc RNAseq 
assays as well, though with a lower rank for sn RNASeq assays that did not pass our applied 
cutoff. The LMD transcriptomics and proteomics data identified the energy generation SCPs 
required for the various transport SCPs identified by the sc and sn transcriptomic data. The 
spatial metabolomics data sets provided support for energy generation pathways identified by 
the LMD technologies.  

 Principal cells play an important role in fine tuning ion and water reabsorption and thereby 
regulate systemic electrolyte and water balance (91). The anti-diuretic hormone working with 
prostaglandins regulates the levels of AQP2 on the apical plasma membrane (92) stimulating 
water reabsorption by the principal cell. Apically reabsorbed water is exported by basal water 
transporters AQP3 and AQP4. We detect both AQP2 and AQP3 in our datasets. Sodium 
reabsorption is regulated by the amiloride-sensitive sodium channel EnaC whose expression 
and protein turnover is regulated by aldosterone (93). The aldosterone-stimulated reabsorption 
of sodium is coupled with secretion of potassium , as highlighted by our data. Additionally, we 
show calcium transmembrane transport for one cell subtype by both sn and sc RNAseq assays. 
Both sc and sn technologies identify SCPs involved in drug and toxin transmembrane movement 
in one of the subtypes of the principal cell, although drug excretion is generally described to 
occur in the proximal tubule (70). Furthermore, community clustering of PC marker genes in a 
kidney-specific functional network (fig. S12D) identifies seven modules enriched in functions 
including ion transport and homeostasis (M7), regulation of vesicle-mediated transport (M4), and 
water homeostasis (M6).  

We identified multiple subclusters of intercalated cells that could be assigned to IC-A, IC-B 
and one transitionary subtype, tPC-IC, as well as IC-A1, IC-A2 and IC-B in the sc and sn 
transcriptomic datasets, respectively (Fig. 2A). SCPs networks were identified by merging sc 
and sn transcriptomic data with LMD transcriptomic data obtained from the collecting duct (fig. 
S12E). Additionally we added overlapping or functionally related SCPs predicted by LMD 
Proteomics and Spatial Metabolomics (fig. S7). We find the SCP “Bicarbonate transmembrane 
transport” in all three sc subtypes and one sn subtype (fig. S12E), documenting the importance 
of the intercalated cells in the regulation of systemic acid-base homeostasis (94). Apical and 
basolateral bicarbonate transport is driven by exchange for chloride (94), as indicated by the 



6 

 

“Chloride transmembrane transport” SCP identified for one subtype in both sn and sc RNAseq 
datasets. Community clustering of IC marker genes in a kidney-specific functional network (fig. 
S12F) identifies six modules enriched in functions including regulation of body fluid levels (M3), 
translation (M1), mitochondrion organization (M2), bicarbonate transport (M5), and cell-cell 
adhesion (M4). Enrichment analysis using Gene Ontology predicts phagocytic activity 
(phagosome maturation and acidification) based on subunits of the vacuolar H+ATPase (94) (fig. 
S12G). In combination with the prediction of SCP involved in actin cytoskeleton our data 
supports the recent observation of phagocytic activity of the intercalated cells (95). 
 
Interstitium and the vasculature 

Endothelial Cells: We find four types of endothelial cells by sn transcriptomics and two by sc 
transcriptomics, in addition to glomerular endothelial cell identified sc transcriptomics (Fig. 2A). 
SCP networks for endothelial cells identified from sc and sn transcriptomic data sets contain 
pathways involved in cellular adhesion, trans-endothelial migration, actin cytoskeleton 
dynamics, caveolin-mediated endocytosis, signaling and antigen presentation (fig. S13A). 

 
Vascular smooth muscle cells: We identified a single type of VSMC by sn RNAseq assay 

(Fig. 2A). The sc transcriptomic technology identified a variant of mesangial cells that has VSMC 
markers. We classified this subtype as a glomerular cell subtype. SCP networks from sn 
technology highlight cell contraction capabilities for the VSMC (fig. S13B).  

 
Fibroblasts: We identified a single type of fibroblast from sc and sn RNAseq assays (Fig. 2). 

SCPs in fibroblasts identified from sc, sn and LMD transcriptomics data describe pathways 
related to ECM dynamics, cell adhesion, cytoskeleton dynamics and the complement pathways 
(fig. S14). The proteomic assays did not detect ECM components related SCPS among the 
highly ranked pathways. 

  
Immune cells: Four types of immune cells are detected by sc or sn RNAseq technologies.  

These include natural killer cells, three types of T-cells, B-Cells and three types of macrophages 
and monocytes (Fig. 2A). SCP-networks for macrophages contains pathways involved in antigen 
presentation, actin cytoskeleton dynamics and translation (fig. S15A). Connection of the SCPs 
involved in actin cytoskeleton dynamics to the SCP ‘Macrophage migration inhibitory factor (MIF) 
signaling pathway indicates the potential for chemotactic activity. Macrophage migration is 
driven by rearrangements in the actin cytoskeleton that are activated by stimulation of the MIF 
receptor proteins CD74 and CXCR4 (96, 97) as identified in our data. 

 The SCP ‘Cellular iron uptake and export’ documents the central role of macrophages in 
iron homeostasis . It is predicted based on SLC39A8, a transmembrane transporter involved in 
transport of multiple divalent metal ions including iron (98) and the scavenger receptor CD163 
that is also involved in removing hemoglobin or haptoglobin-hemoglobin complexes by splenic 
red pulp macrophages and Kupffer cells (99). This SCP and the SCPs involved in actin dynamics 
are also identified by LMD transcriptomics of the interstitium. SCPs in the natural killer cells 
identify antigen presentation, cell migration and actin cytoskeleton dynamics (fig. S15B). 
Similarly, SCP-networks predicted for B-cells and T-cells contain pathways involved in antigen 
presentation and the immunoproteasome and translation (fig. S15C and S15D, respectively). A 
detailed study of immune cell zonation of the human kidney has been published (8), while 
another single cell sequencing study characterized twelve myeloid cell subtypes associated with 
progression and regression of kidney disease in an animal injury model (3). 
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Since immune activity was documented for all cell types along the nephron (8), we analyzed 
the fraction of cell type and subtype specific marker genes and proteins that were annotated to 
immune pathways in Gene Ontology. In agreement with the indicated study, about 5-15% of all 
marker genes participate in immune cell functions (fig. S16). We want to emphasize that in the 
immune zonation study (14) the highest immune activity was predicted for epithelial cells of the 
pelvis, while our samples do not contain tissue from the pelvis. 
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