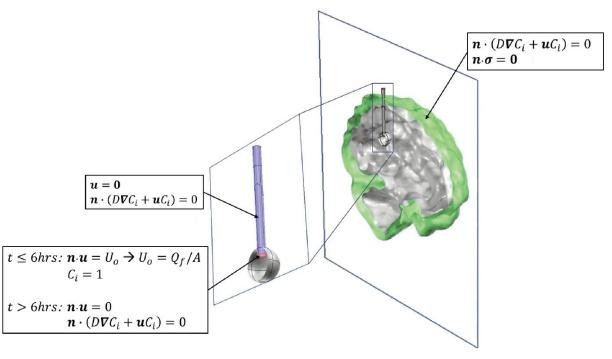
Supplementary Material

Supplementary Table 1: Comparison summary of previous relevant studies with respect to the CED modelling approach of this work.

	(Støverud et al., 2012)	(Zhan and Wang, 2018)	(Brady et al., 2020)	Present Study
Brain tissue model: deformation during CED infusion	 poroelastic model isotropic linear elasticity small deformations 	not included (rigid model)	poroelastic model • isotropic linear elasticity • incompressibility	not included (rigid model)
drug trans- vascular transport through vasculature (tumor/ healthy)	simulated using constant source/sink term for the therapeutic agent (see Eq. (12) therein); adsorption of infused therapeutic agent is neglected.	simulated using constant drainage rate of the free drug from blood vessels (vascular permeability to liposomes/doxorubi cin, microvascular density; see Eq. (6) therein).	simulated using constant rate of the free drug (sum of rates due to capillary loss and to irreversible degradation; see Table 1 therein).	theory for hindered transport of rigid solutes through liquid filled porous; modeled explicitly effect of drug size and vessel walls' pore size (vascular morphology)
CED timescale simulated	during CED infusion (infusion duration: 2 hrs, 12 hrs)	during CED infusion (infusion duration: 24 hrs)	during CED infusion (infusion duration: 24 hrs – 72 hrs)	during and after CED infusion (infusion duration: 6 hrs)
model parameters interrogated in computer simulations	 Tissue permeability Rigid model vs Elastic model Elastic Properties (Young's modulus, Poisson's ratio) 	 Microvascular density Drug diffusivity, and vascular permeability Drug release rate Infusion rate Liposome solution concentration 	 Drug (therapeutic agent or surrogate) size Infusion protocol wrt use of multiple catheters placement Infusion protocol wrt total number of infusions Infusion rate 	 Tissue hydraulic conductivity Pore size of tumor vessels Drug (hydrodynamic) size: Drug diffusivity, and vascular permeability
In vivo investigation	included (DTI data from 4 patients to calibrate tissue permeability)	not included	included (CED protocols based on human clinical trials: MR1-1 and D2C7)	not included

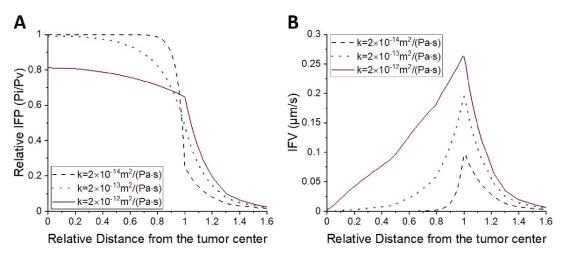
Supplementary Table 2: Reflection coefficient and hydrodynamic coefficient definitions.

The reflection coefficient is defined by the expression: $\sigma_f = 1 - W$, and the vascular permeability of the drug, *P*, is defined by equation (7), where *W* and *H* correspond to the hydrodynamic coefficients for neutral spheres in cylindrical pores: $H = 6 \pi F K_t^{-1}$, and $W = (2 - F) F K_s K_t^{-1}/2$, where *F* is the partition coefficient: $F = (1 - \lambda)^2$, λ is the ratio of the drug size to the vessel wall pore size. Coefficients K_t and K_s are calculated through: $\begin{cases} K_t \\ K_s \end{cases} = \frac{9 \pi^2}{2\sqrt{2}} (1 - \lambda)^{-2.5} + \left[1 + \sum_{n=1}^2 {a_n \\ b_n} \right] (1 - \lambda)^n \right] + \sum_{n=0}^4 {a_{n+3} \\ b_{n+3}} \lambda^n$, where *a* and *b* are constant coefficients (Deen, 1987).

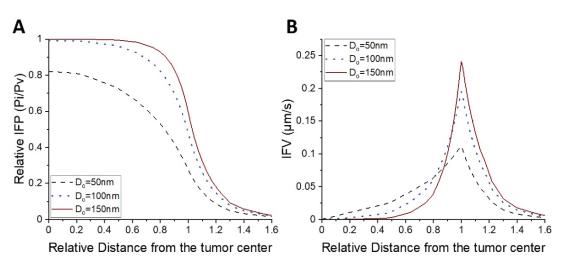

Coefficient *a_n* Value **Coefficient** *b_n* Value -1.2170.117 b_1 a_1 -0.0441.534 b_2 a_2 4.018 -22.508bз aз -3.979 -5.617 b_4 a_4 -1.922-0.336 b_5 a_5 -1.216 b_6 4.392 a_6 1.647 5.006 b_7 a_7

Supplementary Table 3: Values of all parameters used in the CED brain model.

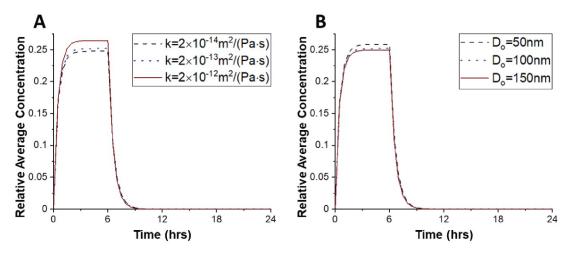
* Normal tissue includes grey and w	white matter of the brain
-------------------------------------	---------------------------


Parameter	Description	Domain	Value	Reference
ľs	Drug radius	-	0.5, 10, 30 nm	(Koo et al., 2006, Allard et al., 2009)
	Vascular wall pore radius	Normal tissue	3.5 nm	(Hobbs et al., 1998, Sarin et al., 2009, Wang et al., 2011)
r _o		Tumor tissue	25, 50, 75 nm	
D_i	Drug diffusion coefficient	All tissues	5.82×10^{-10} m ² /s for 0.5nm drug radius, 9.28×10^{-12} m ² /s for 10nm drug radius, 3.28×10^{-12} m ² /s for 30nm drug radius	(Pluen et al., 2001)
		Grey Matter	$2 \times 10^{-14} \text{ m}^2/(\text{Pa}\cdot\text{s})$	(Netti et al.,
	Hydraulic	White Matter	2×10 ⁻¹³ m ² /(Pa·s)	2000, Angeli and
k	conductivity of	Tumor tissue	$\begin{array}{c} 2\times10^{-14} \text{ m}^2/(\text{Pa}\text{-s}) \\ 2\times10^{-13} \text{ m}^2/(\text{Pa}\text{-s}) \\ 2\times10^{-13} \text{ m}^2/(\text{Pa}\text{-s}) \end{array}$	Stylianopoulos, 2016, Smith and Humphrey, 2007)
	Vascular density of blood vessels	Normal tissue	70 (cm) ⁻¹	(Mpekris et al., 2017, Jain et al., 2007)
S_{v}		Tumor tissue	50 (cm) ⁻¹	
	Permeability of Lymphatics	Normal tissue	2.24×10 ⁻¹¹ m ² ·s/kg	(Scallan and
$L_{pl} S_{vl}$		Tumor tissue	0	Huxley, 2010, Stylianopoulos et al., 2018)
γ	Fraction of vessel wall surface area occupied by pores	All tissues	1×10 ⁻³	(Mpekris et al., 2017)
C_{v}	Vascular drug concentration	All tissues	0	-
p_{v}	Vascular pressure of blood vessels	All tissues	2.0 kPa	(Stylianopoulos et al., 2018)
рі	Vascular pressure of lymphatic vessels	All tissues	0.0 kPa	(Voutouri and Stylianopoulos, 2014)
L_{vw}	Vessel wall thickness	All tissues	5×10 ⁻⁶ m	(Stylianopoulos et al., 2013)
Т	Temperature	All tissues	310 K	(Mpekris et al., 2017)
μ_i	Interstitial fluid viscosity	All tissues	7.8×10 ⁻⁴ Pa·s	(Zhan and Wang, 2018,

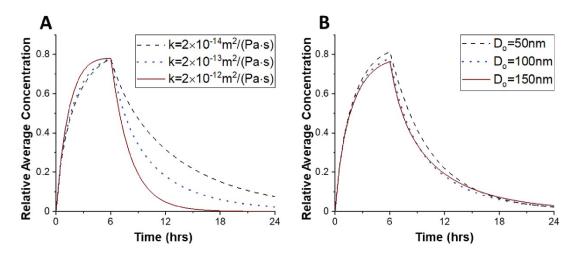
μ	Plasma viscosity	-	1.30×10 ⁻³ Pa·s	Kesmarky et al., 2008)
ρ	Interstitial fluid density	All tissues	1000 kg/m ³	(Zhan and Wang, 2018)
Ер	Tissue porosity	All tissues	0.3	(Linninger et al., 2008)
ka	Drug degradation constant	All tissues	2×10 ⁻⁵ s ⁻¹	(Linninger et al., 2008)
kı	Lymphatic drainage constant	Normal tissue	1×10 ⁻⁴ s ⁻¹	(Zhan et al., 2018)



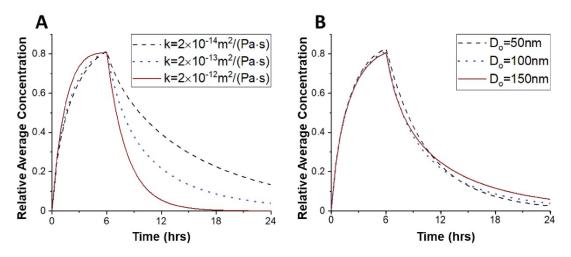
Supplementary Figure 1. Boundary conditions of the 3D model. At the interface between the catheter and tumor the normal inlet velocity (*i.e.*, $U_o = Q_f/A$, A cross section of the catheter) was taken equal to 1.99×10^{-5} m/s and infusion lasted for 6 hours. Also, at the interface of the catheter and tumor tissue, the relative drug concertation was set to unity for the period of the infusion and after completion of infusion, a zero-flux boundary condition was applied (*i.e.*, $n \cdot (D\nabla C_i + u C_i) = 0$, where *n* corresponds to the outward unit normal vector). The normal stresses on the outer brain surfaces were equal to zero (*i.e.*, $n \cdot \sigma = 0$). At


the catheter surfaces, a no-slip boundary condition was applied for fluid velocity (*i.e.*, u=0) and additionally, a zero-flux boundary condition was set for the transport of the drugs. The latter boundary condition was also set at the outer brain surfaces.

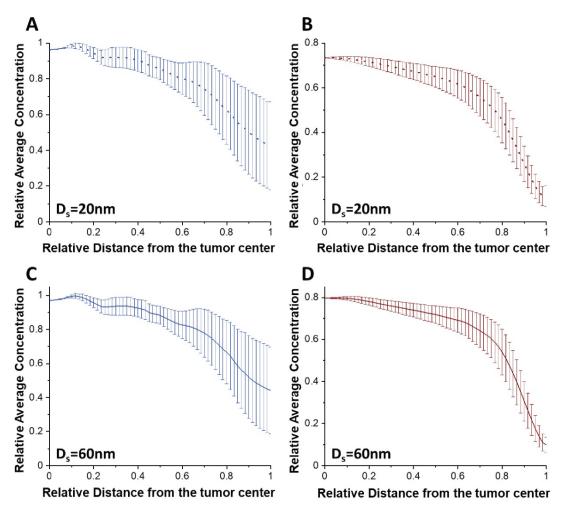
Supplementary Figure 2. IFP and IFV as a function of the distance from the tumor center for baseline value of the vessel wall pore diameter. IFP and IFV as a function of the distance from the tumor center for different hydraulic conductivities of the tumor interstitial space and 100 nm diameter of vascular wall pores. *In silico* predicted (A) relative fluid pressure (p_i/p_v) and (B) velocity magnitude of the tumor interstitial space before CED administration. IFP is normalized by division with the vascular pressure of blood vessels, p_v. Distance is normalized by division with the tumor radius.

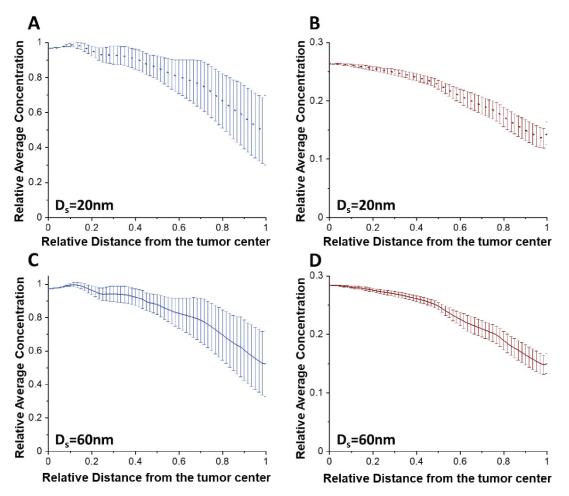


Supplementary Figure 3. IFP and IFV as a function of the distance from the tumor center for baseline value of hydraulic conductivity of the tumor interstitial space. IFP and IFV as a function of the distance from the tumor center for different diameters of vascular wall pores and $2 \times 10^{-13} \text{ m}^2/(\text{Pa}\cdot\text{s})$ hydraulic conductivity of the tumor interstitial space. *In silico* predicted **(A)** relative fluid pressure (p_i/p_v) and **(B)** velocity magnitude of the tumor interstitial space before CED administration. IFP is normalized by division with the vascular pressure of blood vessels, p_v . Distance is normalized by division with the tumor radius.



Supplementary Figure 4. Average concentration in tumor tissue as a function of time for 1 nm diameter of the therapeutic agent. *In silico* predicted average relative concentration: (A) different hydraulic conductivities of the tumor interstitial space and 100 nm diameter of vascular wall pores and (B) different diameters of vascular wall pores and 2×10⁻¹³ m²/(Pa·s)


hydraulic conductivity of the tumor interstitial space. Drug concentration is normalized by division with the reference value entering the catheter.


Supplementary Figure 5. Average concentration in tumor tissue as a function of the time for 20 nm diameter of the therapeutic agent. *In silico* predicted average relative concentration:
 (A) different hydraulic conductivities of the tumor interstitial space and 100 nm diameter of vascular wall pores and (B) different diameters of vascular wall pores and 2×10⁻¹³m²/(Pa·s) hydraulic conductivity of the tumor interstitial space. Drug concentration is normalized by division with the reference value entering the catheter.

Supplementary Figure 6. Average concentration in tumor tissue as a function of the time for 60 nm diameter of the therapeutic agent. *In silico* predicted average relative concentration:
 (A) different hydraulic conductivities of the tumor interstitial space and 100 nm diameter of vascular wall pores and (B) different diameters of vascular wall pores and 2×10⁻¹³ m²/(Pa·s) hydraulic conductivity of the tumor interstitial space. Drug concentration is normalized by division with the reference value entering the catheter.

Supplementary Figure 7. Average drug concentration as a function of the distance from the tumor center plots for the lowest hydraulic conductivity of the tumor interstitial space. Average relative concentration calculated along the four directions as a function of the relative distance from the tumor center (A, C) after 5 hrs and (B, D) after 9 hrs, for 2×10⁻¹⁴ m²/(Pa·s) hydraulic conductivity of the tumor interstitial space, 100 nm different pore diameter of tumor vascular walls, and for different drug diameters: (A, B) 20 nm and (C, D) 60 nm. Drug concentration is normalized by division with the reference value entering the catheter. Distance is normalized by division with the tumor radius.

Supplementary Figure 8. Average drug concentration as a function of the distance from the tumor center plots for the highest hydraulic conductivity of the tumor interstitial space. Average relative concentration calculated along the four directions as a function of the relative distance from the tumor center (A, C) after 5 hrs and (B, D) after 9 hrs, for 2×10⁻¹² m²/(Pa·s) hydraulic conductivity of the tumor interstitial space, 100 nm different pore diameter of tumor vascular walls, and for different drug diameters: (A, B) 20 nm and (C, D) 60 nm. Drug concentration is normalized by division with the reference value entering the catheter. Distance is normalized by division with the tumor radius.

References

- ALLARD, E., PASSIRANI, C. & BENOIT, J. P. 2009. Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. *Biomaterials*, 30, 2302-18.
- ANGELI, S. & STYLIANOPOULOS, T. 2016. Biphasic modeling of brain tumor biomechanics and response to radiation treatment. *J Biomech*.
- BRADY, M., RAGHAVAN, R. & SAMPSON, J. 2020. Determinants of Intraparenchymal Infusion Distributions: Modeling and Analyses of Human Glioblastoma Trials. *Pharmaceutics*, 12.
- DEEN, W. M. 1987. Hindered Transport of Large molecules in Liquid-Filled Pores. *AIChE J*, 33, 1409-1425.
- HOBBS, S. K., MONSKY, W. L., YUAN, F., ROBERTS, W. G., GRIFFITH, L., TORCHILIN, V. P. & JAIN, R. K.
 1998. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. *Proc Natl Acad Sci U S A*, 95, 4607-12.
- JAIN, R. K., TONG, R. T. & MUNN, L. L. 2007. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. *Cancer Res,* 67, 2729-35.
- KESMARKY, G., KENYERES, P., RABAI, M. & TOTH, K. 2008. Plasma viscosity: a forgotten variable. *Clin Hemorheol Microcirc*, 39, 243-6.
- KOO, Y.-E. L., REDDY, G. R., BHOJANI, M., SCHNEIDER, R., PHILBERT, M. A., REHEMTULLA, A., ROSS, B.
 D. & KOPELMAN, R. 2006. Brain cancer diagnosis and therapy with nanoplatforms. *Advanced drug delivery reviews*, 58, 1556-1577.
- LINNINGER, A. A., SOMAYAJI, M. R., MEKARSKI, M. & ZHANG, L. 2008. Prediction of convectionenhanced drug delivery to the human brain. *J Theor Biol*, 250, 125-38.
- MPEKRIS, F., BAISH, J. W., STYLIANOPOULOS, T. & JAIN, R. K. 2017. Role of vascular normalization in benefit from metronomic chemotherapy. *Proc Natl Acad Sci U S A*, 114, 1994-1999.
- NETTI, P. A., BERK, D. A., SWARTZ, M. A., GRODZINSKY, A. J. & JAIN, R. K. 2000. Role of extracellular matrix assembly in interstitial transport in solid tumors. *Cancer Res,* 60, 2497-503.
- PLUEN, A., BOUCHER, Y., RAMANUJAN, S., MCKEE, T. D., GOHONGI, T., DI TOMASO, E., BROWN, E. B., IZUMI, Y., CAMPBELL, R. B., BERK, D. A. & JAIN, R. K. 2001. Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. *Proc Natl Acad Sci* U S A, 98, 4628-33.
- SARIN, H., KANEVSKY, A. S., WU, H., SOUSA, A. A., WILSON, C. M., ARONOVA, M. A., GRIFFITHS, G. L., LEAPMAN, R. D. & VO, H. Q. 2009. Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors. *J Transl Med*, 7, 51.
- SCALLAN, J. P. & HUXLEY, V. H. 2010. In vivo determination of collecting lymphatic vessel permeability to albumin: a role for lymphatics in exchange. *J Physiol*, 588, 243-54.
- SMITH, J. H. & HUMPHREY, J. A. 2007. Interstitial transport and transvascular fluid exchange during infusion into brain and tumor tissue. *Microvasc Res*, 73, 58-73.
- STØVERUD, K. H., DARCIS, M., HELMIG, R. & HASSANIZADEH, S. M. 2012. Modeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissue. *Transport in porous media*, 92, 119-143.
- STYLIANOPOULOS, T., MARTIN, J. D., SNUDERL, M., MPEKRIS, F., JAIN, S. R. & JAIN, R. K. 2013. Coevolution of solid stress and interstitial fluid pressure in tumors during progression: Implications for vascular collapse. *Cancer research*, 73, 3833-3841.
- STYLIANOPOULOS, T., MUNN, L. L. & JAIN, R. K. 2018. Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside. *Trends Cancer*, **4**, 292-319.
- VOUTOURI, C. & STYLIANOPOULOS, T. 2014. Evolution of osmotic pressure in solid tumors. *J Biomech*, 47, 3441-7.
- WANG, J., LU, Z., GAO, Y., WIENTJES, M. G. & AU, J. L. 2011. Improving delivery and efficacy of nanomedicines in solid tumors: role of tumor priming. *Nanomedicine (Lond)*, 6, 1605-20.

- ZHAN, W., ALAMER, M. & XU, X. Y. 2018. Computational modelling of drug delivery to solid tumour: Understanding the interplay between chemotherapeutics and biological system for optimised delivery systems. Adv Drug Deliv Rev, 132, 81-103.
- ZHAN, W. & WANG, C. H. 2018. Convection enhanced delivery of liposome encapsulated doxorubicin for brain tumour therapy. *J Control Release*, 285, 212-229.