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Supplementary Table 1: Clinicopathologic characteristics of the matched primary and recurrent 
PDAC cohort (Figure 1a). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

* P value by Chi-square test 

Characteristic 

Short-term 
survivors (STSs) 

(n = 6) 
n (%) 

Long-term 
survivors (LTSs) 

(n = 9) 
n (%) 

P 
value* 

 
  

 
Sex 
 Male 
 Female 

 
3 (50) 
3 (50) 

 
4 (44) 
5 (56) 

 
 

0.83 
 

Age (y) 
 Median (range) 

 
63 (54-74) 

 

           
           60 (44-71) 

          

 
0.37 

Tumor Location 
 Head 
 Body/tail 

 
6 (100) 

0 (0) 

 
6 (67) 
3 (33) 

 

 
 

0.11 

Surgery for primary tumor 
 Distal pancreatectomy 
 Pancreaticoduodenectomy 

 
0 (0) 

6 (100) 

 
3 (33) 
6 (67) 

 

 
   0.11 

Pathological stage at diagnosis 
 I 
 II 
 III 
 IV 

 
0 (0) 

5 (83) 
1 (17) 
0 (0) 

 
3 (33) 
5 (56) 
1 (11) 
0 (0) 

 

 
 
 
 

0.28 

Margin 
 Positive 
 Negative 

 
1 (17) 
5 (83) 

 
3 (33) 
6 (67) 

 

 
 

0.71 

Adjuvant chemotherapy 
 Yes 
 No 

 
6 (100) 

0 (0) 

 
8 (89) 
1 (11) 

 

 
 

0.39 

Chemotherapy on recurrence 
           Yes 
           No 
 

 
5 (83) 
1 (16) 

 
6 (67) 
3 (33) 

 
0.47 

Metastasectomy   
   
Site of metastasectomy 
        Lung 
        Ovary 

0 (0) 
 
 

NA 

6 (67) 
 
 

4 (44) 
2 (22) 

0.0009 
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Supplementary Table 2: This table is provided in Excel format file, and contains a 
comprehensive list of all neopeptide sequences and HLA alleles with predicted neopeptide 
binding. 
 
 
Supplementary Table 3: This table is provided in Excel format file, and contains a 
comprehensive list of all human infectious derived, class-I restricted peptide sequences with 
positive immune assays derived from the Immune Epitope Database used in this study. 
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Methods

Patient Samples

We collected matched primary and recurrent PDACs through surgical resection at Memorial Sloan Kettering

Cancer Center (MSK) (n = 5/9 LTS), and the Garvan Institute of Medical Research (n = 1/9 LTS) (Supplementary

Table 1). Additional matched primary and recurrent PDACs were previously obtained through the Gastrointestinal

Cancer Rapid Medical Donation Program at The Johns Hopkins Hospital (JHH) (n = 3/9 LTS, 6/6 STS) and

have been previously described19 (Supplementary Table 1) under Institutional Review Board-approved study

protocols. Cohorts of primary only PDAC were collected at MSK (MSK primary PDAC cohort), the International

Cancer Genome Consortium (ICGC primary PDAC cohort), and The Cancer Genome Atlas (TCGA) through

surgical resection as previously described.5,33 We obtained informed consent from all patients. We performed the

study in strict compliance with all institutional ethical regulations and institutional review boards. All tumor samples

were PDACs. We excluded adenocarcinomas in cystic pancreatic neoplasms and neuroendocrine tumors. We

defined LTS and STS consistent with our previous work.5 We identified all tumors through histopathologic evaluation

following surgery or at autopsy. We conservatively estimated that patients had 100 recurrent tumors when the

number of tumors were too numerous to count.

Nucleic acid extraction, whole exome sequencing and mutation identification

We previously described methods to extract DNA and sequence samples collected at MSK, Garvan Medical

Center,5 and JHH.19 All samples from MSK, Garvan, and JHH were examined by an expert GI pathologist and

confirmed to have at least 20% neoplastic cellularity and preserved tissue quality. We macrodissected samples

meeting these criteria from serial unstained sections, and extracted genomic DNA as previously described.5,19

500 ng of genomic DNA was then fragmented to a target size of 150-200 bp on a LE220 ultrasonicator (Covaris).

Barcoded libraries (Kapa Biosystems) were subjected to exon capture by hybridization using the SureSelect

HumanAll Exon 51MB V3 (JHH samples) or V4 (all other samples) kits (Agilent). DNA libraries were subsequently

sequenced on a HiSeq 2500 (JHH samples) or 4000 (all other samples) (Illumina) in paired end 100/100 reads,

using the TruSeq SBS Kit v3 (Illumina) with target coverage of 150-250X for tumor samples and 70X for matched

normal. Sequence data were demultiplexed using Illumina CASAVAsoftware. After removal of adapter sequences

using BIC,34 reads were aligned to the reference human genome (hg19) using the Burrows-WheelerAlignment tool

(bwamem v0.7.17) and samtools (v1.6). Duplicates weremarked with picard-2.11.0MarkDuplicates (http://broadi-

nstitute.github.io/picard). Indel realignments were done with the Genome Analysis toolkit (GenomeAnalysisTK-

3.8-1-0-gf15c1c3ef) RealignerTargetCreator and IndelRealigner35 using 1000 genome phase1 indel (1000G_pha-

se1.indels.b37.vcf) and Mills indel calls (Mills_and_1000G_gold_standard.indels.b37.vcf) as references. Base

calls were recalibrated with BaseRecalibrator35 and dbSNP version 138. Average unique sequence coverages of

207X, 152X, 212X, and 221Xwere achieved for STS primary, LTS primary, STS recurrent, and LTS recurrent tumor

samples respectively, and 88X and 84X were achieved for STS normal and LTS normal samples, respectively.

MuTect 1.1.735 and Strelka 1.0.1536 were used to call SNVs and indels on pre-processed sequencing data. For

the MuTect calls, dbSNP 138 and CosmicCodingMuts.vcf version 8637 were used as reference files. For the

Strelka calls, we set “isSkipDepthFilters = 1” to prevent filtering-out of mutation calls from exome sequencing due

to exome-sequencing mapping breadth. Unbiased normal/tumor read counts for each SNV and indel call were

then assigned with the bam-readcount software 0.8.0 (https://github.com/genome/bam-readcount). A minimum

base quality filter was set with the “-b 15” flag. The reads were counted in an insertion-centric way with the “-i”

flag, so that reads overlapping with insertions were not included in the per-base read counts. We then use the

normal/tumor read counts to filter mutations. Filtering criteria are 1) total coverage for tumor ≥10, 2) variant
allele frequency (VAF) for tumor ≥4%, 3) number of reads with alternative allele ≥ 9 for tumor, 4) total coverage

for normal ≥7, and 5) VAF for normal ≤1% at a given mutation. These filters exist for all mutations except for

mutations in the KRAS gene.

In order to avoid missing possible KRAS driver mutations, common mutations in KRAS known to be pathogenic

were manually curated if the sample did not already contain a KRAS mutation. Using IGV Viewer 2.4.19,38 we

inspected the top ten coding mutations in KRAS denoted in the Genomic Data Commons Database39 at the

following positions on chromosome 12; bases 25378562(C>T), 25380275(T>G), 25398281(C>T),
25398282(C>A), 25398284(C>A, T, or G), and 25398285(C>A, T, or G). One mutation was selected at most
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based on the number of reads containing the alternative allele at the position. In total, six additional KRAS

mutations were added for the STS samples, and six were added to the LTS samples.

HLA typing

HLA-I typing for PDAC patients was performed in silico with the OptiType version 1.3.3 tool40 using non-tumor

sequencing reads.

Neoantigen prediction

Putative neoantigens were identified in silico. In brief, all wild-type (WT) and mutant genomic sequences

corresponding to coding mutations were translated to an amino acid sequence consistent with the GRCh37

reference genome (GRCh37.75) using the snpEff.v4.3t software41 with options set as

“-noStats -strict -hgvs1LetterAa -hgvs -canon -fastaProt [fasta file name]”. Only annotations without “WARNING”

or “ERROR” were kept and themost deleterious missensemutation was prioritized in mapping a genomic mutation

to a gene. Missense mutations were centrally located in a peptide of up to 17 amino acids long, which depended

on the location of the missense mutation within a protein. This corresponded to nine 9-mers in a left-to-right

sliding fashion, each containing the mutant amino acid in a different position. Predictions of MHC class-I binding

for both the WT peptide (pWT) and mutant peptide (pMT) were estimated using the NetMHC 3.4 software42,43 with

patient-specific HLA-I types. All pMTs with predicted IC50 affinities below 500 nM to a patient-specific HLA-I type

were defined as neoantigens.

Cell lines and cell culture

We purified peripheral blood mononuclear cells (PBMCs) from healthy donor buffy coats (New York Blood Center,

New York, USA) and isolated T cells using a Pan-T cell isolation kit (Miltenyi). We activated T cells with CD3/CD28

beads (Thermo Fisher, MA, USA) with IL-7 (3000 IU/mL) and IL-15 (100 IU/mL) (Miltenyi Biotec, Germany), and

transduced T cells on day 2 post activation. Virus-producing cell lines (H29 and RD114-envelope producers)

were previously described.44,45 We cultured T cells or HLA-transduced K562 cells and T2 cells in RPMI media

supplemented with 10% fetal bovine serum (FBS, Nucleus Biologics), 100 U/ml Penicillin/Streptomycin (Gibco),

and 2 mM Glutamine (Gibco). We cultured virus-producing cell lines in DMEM media supplemented with 10%

FBS (Nucleus Biologics), 100 U/ml Penicillin/Streptomycin (Gibco), and 2 mM Glutamine (Gibco).

TCR cloning, transduction, and peptide stimulation

We constructed TCR fragments as previously described.46 Briefly, we fused epitope specific TRB V-D-J and TRA

V-J sequences to mouse constant TRB and TRAchain sequences respectively (kind gift of Alena Gros), to prevent

mispairing of transduced TCRswith the endogenous TCRs.47 Weusedmodifiedmouse constant regions to further

improve pairing and increase cell surface TCR expression as previously described (mTCR).46 We joined the TRB

and TRA chains with a furin SGSG P2A linker, cloned the TCR constructs into an SFG γ-retroviral vector,48 and
sequence-verified all plasmids (Genewiz). We transfected retrovirus vectors into H29 cells (gpg29 fibroblasts)

using calcium phosphate to produce VSV-G pseudo-typed retroviruses.44 We next used Polybrene (Sigma)

and viral-containing supernatants to generate stable RD114-enveloped producer cell lines.45 We collected and

concentrated virus-containing supernatants using Retro-X™ Concentrator (Takara). For T cell transductions, we

coated non-tissue culture treated 6-well plates with Retronectin (Takara) as per the manufacturer’s protocol.

We plated a titrated viral quantity to 3×106 activated T cells per well, and centrifuged cells for 1 hour at room

temperature at 300g, and used transduced T cells either between day 7-14 post transduction or cryopreserved

them for future use. We used mock-transduced T cells as controls.

To stimulate transduced T cells with peptide, we used T2 cells as antigen presenting cells (APCs). All peptide

panels were commercially custom synthesized by Genscript (Piscataway, NJ), and were >95% pure. Briefly,

we pulsed 5×104 T2 cells per well in a 96-well U-bottom plate for 1 hour at 37◦C with the indicated peptide

at the indicated concentrations. After 1 hour, we washed out the peptide by centrifugation, and added 5×104
TCR-transduced T cells per well. We used an equivalent number of mock transduced total T cells, and irrelevant

peptides as controls. We measured CD137 (4-1BB) expression on CD8+ mTCR+ T cells 24 hours later.

Flow cytometry

We defined TCR transduced CD8+ T cells as live, CD3+, CD8+, mTCR+ cells (Extended Data Figure 4b). We

purchased antibodies from Biolegend (CD3 - clone SK-7, PE-Cy7; CD8 - clone SK1, Alexa Fluor 700; mTRB -

clone H57-597, PE-Cy5; and CD137 - clone 4B4-1, PE), and viability dye (DAPI solution) from BD Biosciences.
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We stained cells using antibody cocktails in the dark at 4◦C according to manufacturer’s instructions, washed,

and analyzed on a FACS LSR Fortessa (BD Biosciences). Flow cytometric data were collected using FACSDiva

(BD Biosciences, version 8.0.1). We diluted reagents according to manufacturer’s instructions. We used Flowjo

(version 10, Tree Star) to perform our analyses.

Neoantigen quality model: Q
We consider 9-amino-acid long peptides containing a single point mutation as potential neoantigens if they are

a predicted binder to a patient specific HLA allele. For a given neoantigen with a peptide sequence pMT (with

corresponding wildtype peptide sequence denoted as pWT), and an HLA allele h, we define the neoantigen quality
Q as:

Q(pMT, h) = R(pMT)×D(pMT,pWT, h) . (1)

The non-self recognition component R quantifies the recognition probability of peptide pMT by comparison to

validated non-self epitopes from infectious diseases and it has been introduced previously.4,5 The self discrimination

component, D, expands on the previously proposed measure based only on MHC-presentation4,5 by including a

new measure of cross-reactivity distance, C, between pMT and pWT. Below we briefly describe R and derive D.

Non-selfness: R
To estimate the “non-selfness” of a peptide we calculate the similarity of a given peptide to epitopes which have

been previously recognized as non-self. To do so we estimate a recognition probability R of a peptide with

sequence p based on its sequence similarity to a dataset of recognizable epitopes e. Here similarity is measured

using a gapless alignment with BLOSUM62, though this can be easily generalized. We use a thermodynamically

motivated model,4,5

R(p) ≡ R(p, a, k) = Z(p, a, k)−1
∑
e

exp (−k(a− |p,e|)) , (2)

where Z(p, a, k) = 1 +
∑

e exp (−k(a− |p,e|)) is the normalization constant, |p,e| is a local alignment score

between p and e, and free parameters a and k represent the horizontal displacement of the binding curve and

the slope of the curve. In our case, recognizable epitopes come from the Immune Epitope Database (IEDB),49

and we restrict our search to all human infectious disease class-I restricted targets with positive immune assays.

As the peptides in IEDB can change over time, we use the current version of IEDB and list the positive epitopes

used (Supplementary Table 3). The parameters of the model are set to optimize the separation of survival curves

(detailed description of parameter training is included in later sections). To find the set of IEDB epitope sequences

with sequence similarity to neoantigens in our cohort, we used the blastp algorithm with the BLOSUM62 matrix

(gap opening penalty=-11, gap extention penalty=-1). We calculated alignment scores with the Biopython Bio.pairwise2

package (http://biopython.org) for all alignments identified with blastp.

Cross-reactivity distance: C
To model a cross-reactivity distance we measure and analyze TCR-pMHC avidity curves, by which we mean

activation of a monoclonal T cell population as a function of pulsed exogenous peptide concentration. We define

the cross-reactivity distance C between the two peptides as ratio of the EC50 of the two avidity curves to a T cell

clone that is specific to at least one of the peptides. If the EC50 shift between the two avidity curves is small this

reflects that the TCR is specific and highly cross-reactive to both peptides; consequently the peptides have a low
cross-reactivity distance C. The reverse, a large shift in the EC50, indicates a lack in reactivity against one of the

peptides, low cross-reactivity, and thus a large cross-reactivity distance C. Formally, this quantity could depend
on the TCR and the HLA allele, however we fit a minimal model for peptides that are one amino acid substitution

from each other with the intention of extracting coarse grain features that are sufficiently robust for our application.

Fitting avidity curves

To fit our model we measured avidity curves (Figure 3c, Extended Data Figure 4c-e) corresponding to seven

different peptide-TCR combinations: 3 TCRs specific to a CMV epitope (NLVPMVATV), 3 TCRs specific to a

gp100 epitope (IMDQVPFSV), and 1 TCR specific to a neoantigen arising from a mutation in the RHBDF2 gene

(GRLKALCQR). For each peptide-TCR combination we measured the avidity curves for the wildtype peptide

along with all 171 peptides one amino acid substitution away from the wildtype peptide (1204 total TCR-pMHC

combinations)(Extended Data Figure 5a-c). For each peptide we extract the EC50 from the TCR-pMHC reactivity
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curve by fitting a generalized Hill function:

V (c) =
V∞

1 +
(
EC50
c

)n . (3)

This function has 3 parameters: the maximum amplitude V∞, the cooperativity n, and, the term to be inferred, the

EC50. As we have 3 concentration points for each peptide, regularization is key to a robust fit of these curves. To

motivate the regularization, we use the priors that V∞ ≈ 1 (i.e. at infinite peptide concentration, TCR reactivity

approaches 100%) and n ≈ 1 (cooperativity of 1 is for the case of simple binding reactions of 2 molecules). Finally,
we enforce a slight regularization on the EC50 if it extends outside of the measured concentration region. We use

an L2 cost and regularization to fit, yielding a cost function to minimize:∑
c

(V (c)− Vmeas (c))
2 + rV (1− V∞)2 + rn (n− 1)2 + rEC50

d(EC50, [0.01, 100])
2. (4)

Where d(EC50, [0.01, 100]) indicates the log distance to themeasured concentration range of [0.01µg/mL,100µg/mL]
(i.e. d(EC50, [0.01, 100]) = max(0, log(EC50)− log(100), log(0.01)− log(EC50)). The regularization constants used
were rV = 0.01, rn = 0.01, and rEC50

= 0.001. Parameters were then fit using standard least squares. The inferred
EC50’s were further clipped to the range of 10

−4 µg/mL to 104 µg/mL.

Cross-reactivity distance model

Tomodel the effect of a single amino acid substitution on an avidity curve’s EC50, we assume that there is a position

independent amino acid substitution matrix M that is rescaled by a position dependent factor di. Together this
yields a model of the following form for the cross-reactivity distance C between two peptides, pA and pB, which

differ only by a single mismatched amino acid in position i:∣∣∣log(C(pA,pB)
)∣∣∣ = ∣∣∣∣log(EC50(p

B)

EC50(pA)

)∣∣∣∣ = diM(pAi , p
B
i ). (5)

This form of the model for C has more parameters than can be reliably be inferred from our experimentally

measured TCR-pMHC avidity curves - the distance weight di has 9 parameters, and the substitution matrix M
has 380 free parameters (190 if we assume a symmetric matrix).

To ameliorate this problem, we implement twomodifications to reduce the effective number of parameters - first, we

embed the 20 amino acids into a bounded 2D region (a 20×20 square) and define the values of the substitution
matrix M as the Euclidean distance between the positions of each embedded amino acid. This reduces the

number of free parameters for M from 190 to 40 and allows for clear visualization of amino acid clustering.

Second, we introduce the BLOSUM62 substitution matrix as a prior (we find a model inference performed without

this assumption shows that the inferred substitution matrix correlates significantly to BLOSUM62). We define

a cost function that includes not only the differences between the measured and modeled distances but also a

regularization term that reflects how well a linear transformation of the BLOSUM62 matrix matches the inferred

substitution matrix (we exclude the diagonal terms from this fit as those terms are not fit under the model). The

full expression is:

1∣∣{pA,pB}∣∣ ∑
{pA,pB}

(∣∣∣log(Cmodel(p
A,pB)

)∣∣∣− ∣∣∣log(Cmeas(p
A,pB)

)∣∣∣)2
+ rbl62RSSbl62 , (6)

where we sum over pairs of measured peptides {pA,pB} and RSSbl62 is the sum of the square residuals of the

optimal linear regression between M and BLOSUM62.

We used a value of rbl62 = 0.01 for the constant that controls the relative weighting of the fit to the measured data
or the fit to BLOSUM62. We then use the dual annealing method to minimize the cost function and fit the model

parameters.

This model is inferred using the measured log distance between the EC50 of two peptides to the same TCR. We

restrict the peptide pairs we consider in our inference by requiring both that the peptides are a single amino acid
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substitution away from each other and that there is some minimal reactivity to at least one of the peptides to the

associated TCR. We set this reactivity threshold as the criteria that the EC50 of at least one of the peptides must

be less than 0.1µg/mL. This criteria will include all pairs that include one of the wildtype peptides (NLVPMVATV,
IMDQVPFSV, or GRLKALCQR), but may also include pairs of mutants that have substitutions in the same position

in the wildtype (e.g. NLVMMVATV and NLVKMVATV). Including these additional combinations allows us to more

accurately resolve amino acid substitutions not observed from the original 3 wildtype peptides.

Cross-reactivity model validation

To validate the cross reactivity model C, we inferred a model using peptide pairs only from the NLV and gp100

TCRs (6 TCRs in total) (Extended Data Figure 7a, b) and predicted on the remaining RHBDF2 neoantigen

peptide pairs (with the same minimum reactivity restrictions as described above for the inference). The NLV and

gp100 peptides are presented on HLA-A02:01 whereas the RHBDF2 neoantigen is predicted to be presented

on HLA-B27:05, so the validation dataset stems from not only a different wildtype peptide-TCR combination, but

also a wholly different HLA allele. We find that the model learned on the NLV and gp100 TCRs provides highly

significant predictive power for the peptide pairs from the RHBDF2 neoantigen (Figure 3f).

Self discrimination: D
The self discrimination component quantifies how easily pMT and pWT can be distinguished from each other as a

result of negative selection, and is a sum of terms relating to both the MHC presentation and our experimentally

derived cross-reactivity distanceC. For a givenHLAallele h, we calculate the peptide-MHC-I dissociation constants,50

KMT
d ≡ Kd(p

MT, h) andKWT
d ≡ Kd(p

WT, h) for both peptides. We consider the relative MHC dissociation constants

between pMT and its pWT counterpart, as the ratio of their inferred MHC-I binding affinities.

We define the combined self discrimination D of a neoantigen as:

D(pMT,pWT, h) = (1− w) log
Kd(p

WT, h)

Kd(pMT, h)
+ w log

EC50(p
MT)

EC50(pWT)
. (7)

Each term represents an affinity difference, or discrimination energy, between pMT and pWT either for MHC

presentation or for T cell activation. The self discriminationD therefore increases if either the underlying mutation

leads to an increased presentation probability, or if it results in a peptide not cross-reactive with the wildtype

and thus recognized by a collection of TCRs distinct from those that recognize the wildtype peptide. Parameter

w ∈ [0, 1], sets the relative weight between the two terms: MHC presentation and T cell activation.

Amino acid clustering and subsequent ordering

The dendogram and the amino acid ordering in Figure 3gwere computed by unsupervised agglomerative clustering

using the sklearn package with 0 distance thresholding (sklearn.cluster.AgglomerativeClustering). The distances

used for the clustering were the Euclidean distances arising from the 2D embedding of the amino acids in Figure

3g.

Mutation and neoantigen distributions

The substitution frequency scatter plots (Figure 3h) are generated by determining all nonsynonymous mutations.

We determine the corresponding amino acid substitution frequencies by binning the mutation substitutions (e.g.

leucine to isoleucine, L→I) for each nonsynonymous mutation and then normalizing by the total number. Each

substitution has a particular score from our inferred amino acid substitution matrixM, which we use as the x-axis.

The linear fits are done using least squares regression and Pearson correlations are computed. Unseen amino

acid substitutions (generally arising from requiring at least 2 nucleotide mutations) are excluded from the analysis.

The cumulative probability distributions (Figure 3i) are computed by determining the total fraction of neoantigens

in the defined cohort that have a C or D larger than and or equal to the value on the x-axis.

Clonal structure of tumors

Tumor clones are reconstructed using the PhyloWGS algorithm.28 We use multisample reconstruction, combining

all primary and recurrent samples from a given patient. The algorithm returns a family of 10000 trees, each

associated with a likelihood, (Ti, Li). When appropriate, our tree-based statistics for a tumor sample will be

reported as averages over the top scoring trees, with weight of the i tree defined as wi = Li/
∑5

j=1 Lj , the
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averaging operator will be denoted as 〈.〉T . We empirically checked that the the full set of results are consistent

with those that use only the 5 top scoring trees.

A given tree T provides a common clone topology for all samples in the patient, with clone definitions informed

by clustering of mutations across all the samples. For a given clone α ∈ T , the algorithm estimates the maximum

likelihood clone frequency, Xα ≡ Xα(T ), which is equivalent to the cellular cancer fraction (CCF) associated with
that clone in that sample. We refer to these frequencies as the inclusive clone frequencies. Based on the clone

definitions, we additionally define the exclusive clone frequencies,

xα = Xα −
∑

β∈D(α)

Xβ . (8)

Here D (α) is the set of clones that are direct descendants of clone α, as defined by the tree T . By this definition,
xα is a probability distribution, with

∑
α x

α = 1. We denote by x the ensemble of cluster size distributions for each

of the phylogenies for a given tumor sample.

Genetic heterogeneity of tumor samples. We compute the heterogeneity of a tumor sample as the entropy of the

clone frequency distribution,

S =

〈
−

∑
α∈T

xα logxα

〉
T

. (9)

A higher entropy indicates a more diverse and less clonal tumor composition.

Distance between time points. The amount of evolution between the paired primary and recurrent tumor samples

can be computed as the Kullback-Leibler divergence, which quantifies the amount of changes between the clones

sizes between time points,

DKL(xrec‖xprim) =

〈∑
α∈T

xαrec log
xαrec
xα
prim

〉
T

. (10)

To account for predictable evolution, i.e. concerning the fate of the clones present in the primary tumor, we

disregard all clones α with inclusive clone frequency Xα < 0.03; we observed that such clones are more likely

to contain mutations with unobserved reads in the primary tumor and are introduced to the topology by the

reconstruction algorithm by support of mutations in the recurrent tumors.

We define the clone frequencies of these shared clones shared between primary and recurrent tumors as:

x̃α =

{
xα/Z̃, if Xα

prim ≥ 0.03

0, otherwise,
(11)

where Z̃ =
∑

α∈T :Xα
prim

≥0.03 x
α is the normalization constant.

Fitness model for tumor clones

A fitness model is used to quantify the growth rates of clones. Here we propose a two-component model, which

accounts for balancing selective pressures.

Immune fitness component. We quantify the negative selection on tumor clones imposed by the T cell recognition

based on the neoantigen quality model as defined in eq. (1)

Fα
I = max

(pMT, h)∈N (α)
Q(pMT, h) , (12)

where N (α) is the set of neoantigens in clone α and their associated HLA alleles.

Driver gene component. We quantify selective advantage due to mutations in the recognized PDAC oncogenes,

O = {KRAS,TP53,CDKN2A,SMAD4} by awarding each mutation from one of these genes,

Fα
P = |G(α) ∩ O| , (13)

where G(α) is the set of genes mutated in clone α (including genes mutated in clones ancestral to α).
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Combined fitness model. To account for negative selection due to immune recognition and positive selection of

mutated oncogenes, we define an additive combined fitness model as

Fα(σI , σP ) = F0 − σIF
α
I + σPF

α
P , (14)

where σI ≥ 0 and σP ≥ 0 are weights assigning the amplitude to their respective fitness components; they also
determine the total amplitude of selection described by the fitness model. Constant F0 ≡ F0(T , σI , σP ) is a tree
specific and clone independent constant determined by the normalization of clone frequencies for a given tumor

sample and tree T , ∑
α∈T

xα exp (Fα(σI , σP )) = 1, (15)

giving F0 = − log
(∑

α∈T xα exp (−σIF
α
I + σPF

α
P ))

)
.

Tumor immune cost

For a given tumor, we compute its total immune fitness cost as the negative average of fitness, over clones in a

given tree, and over the possible reconstructed trees,

F̄I =

〈∑
α∈T

xαFα
I

〉
T

. (16)

To evaluate the fitness of the new clones in the recurrent tumors, we compute an analogous average only over

the clones that were not present in the primary tumor. As before, we use a 3% threshold on clone frequency,

F̄ new
I =

〈∑
α∈T :Xα

prim
<0.03 x

α
recF

α
I∑

α∈T :Xα
prim

<0.03 x
α
rec

〉
T

. (17)

Recurrent tumor clone composition predictions

For each primary and recurrent tumor pair, we predict the distribution of clone sizes in the recurrent tumor by

fitness model projections from the primary tumor. In our model we combine the probability that a given clone in

the primary tumor seeds a recurrence, together with a selective pressure as given by the fitness model. For a

given clone α with a fitness Fα, the predicted exclusive clone frequency is

x̂αrec(σI , σP ) = x̃αprim exp (F
α(σI , σP )) , (18)

and the inclusive frequency is

X̂α
rec(σI , σP ) =

∑
β∈Tα

x̃β
prim

exp
(
F β(σI , σP )

)
, (19)

where β iterates over all subclones of α (Tα being a subtree of the tumor clone tree, rooted at clone α). We restrict

predictions to clones that have been observed in the primary tumor, and we will use the shared clone frequency

distributions as defined in eq. (11), both for the primary and recurrent tumors.

Neoantigen quality model fitting and model selection

The free parameters of the neoantigen quality model, Θ = {a, k, w}, are trained on an independent cohort of

58 pancreatic cancer patients,5 to optimize survival analysis log-rank score.4,5 This cohort comprises samples

from short and long term survivors and we have previously shown that the long-term survivors are likely to have

increased immune activity in their tumors. We use our fitness model for tumor clones (14) to predict tumor growth

in the pancreatic cancer patients. For each patient sample in the cohort we compute

n̂(σI , σP ,Θ) =
∑
α

xαprim exp(Fα(σI , σP )), (20)

the predicted tumor population size. To limit the number of parameters, we fixed the slope parameter of the R

component, k = 1.5 The survival analysis is performed by splitting the patient cohort by the median value of
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n(σI , σP ,Θ) into high and low fitness groups and evaluation of the log-rank score, S(σI , σP ,Θ) (multivariate log
rank test from python package lifelines.statistics).

We computed the optimal parameters σ̂I , σ̂P , Θ̂ as an average 〈(σI , σP ,Θ)〉ρ over ρ, the probability distribution

defined by the log-rank test score landscape for the cohort,

ρ(σI , σP ,Θ) = Z−1
ρ exp(S(σI , σP ,Θ)) (21)

withZρ the normalization constant assuring ρ is a probability distribution over the parameters with significant score,
{(σI , σP ,Θ) : p(S(σI , σP ,Θ)) < 0.01}(p-values are computed with χ2 test). This smoothing procedure is applied

to select optimal parameters while preventing over-fitting on a potentially rugged score landscape. If no choice of

parameters meets the significance threshold, we average the parameters that have the maximum observed value

of the score.

The optimal value of parameter a, the midpoint of the logistic binding function R, is at a = 22.9 and the relative

weight parameter for the two terms in component D eq. (7) is w = 0.22 (Extended Data Table 1). These are the

parameter values we use to compute neoantigen qualities in the recurrent tumors cohort used in this study.

Model selection

Along with parameter training we performed amodel selection effort to justify that all components of the fitness and

neoantigen quality models are informative. We considered a variety of partial models and repeated the parameter

training procedure via maximization of the the log-rank test score. We considered clone fitness model of single

components only, namely the driver gene component- and the immune component-only,

Fα(σP ) = F0 + σPF
α
P , (22)

Fα(σI) = F0 − σIF
α
I . (23)

Further we decomposed the immune fitness component by considering various variants of the neoantigen quality

model:

Q(pMT, h) = D(pMT,pWT, h) , (24)

Q(pMT, h) = R(pMT) . (25)

To compare the performance of the models of different complexities (number of fitted parameters), we computed

the BIC34 and AIC values (Extended Data Table 1). According to these criteria, the best performing model is our

full clone fitness model with both the driver gene- and immune components, and the full neoantigen quality model.

Fitness model fitting and model selection

For a given pair of primary-recurrent tumor samples from a given patient, we fit the fitness model parameters,

σI , σP , to minimize the Kullback-Leibler divergence between the predicted clone composition and the observed

clone composition of the recurrent tumor sample,

DKL(x̃rec‖x̂rec) = min
σI ,σP≥0

〈∑
α∈T

x̃αrec log
x̃αrec

x̂αrec(σI , σP )

〉
T

. (26)

The likelihood that the observed distributions are samples of populations with the predicted clone frequencies

takes the form (by Sanov’s theorem51)

L ∼ exp (−nDKL(x̃rec‖x̂rec)) , (27)

where n is a factor standing for the effective population size of the cells in the recurrent tumor sample, from which

the clone frequencies were inferred. The effective population size reflects the sampling error and our ability to

correctly estimate clone frequencies from the bulk sequencing data. It depends on multiple factors, such as the

sequencing depth, the purity of the sample, and the phylogeny reconstruction algorithm. We estimate the effective

population size for each sample, as described in a following section.
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We evaluate the likelihood L0 under the null model of neutral evolution, which assigns fitness values Fα
N = 0 to

all clones and predicts clade frequencies x̂rec = x̃prim. The likelihood of the data under this model is, analogously

to (27), given by

L0 ∼ exp
(
−nDKL(x̃prim‖x̃rec)

)
. (28)

To compare models of varying complexity, we compute the Bayesian Information Criterion (BIC),34

BIC(L) = |Θ| log(n)− 2 log(L) , (29)

where Θ is the set of optimized parameters, |Θ| = 2, arriving at an adjusted log-likelihood,

log(Ladj) ∼ −BIC(L)/2 = log(L)− log(n) . (30)

To assess the predictive power of individual fitness model components, we consider partial models and their

corresponding optimized likelihoods: the immune component only model Fα
I (σI) ≡ Fα(σI , σP = 0), with likelihood

LI ; and the driver gene component only model Fα
P (σP ) ≡ Fα(σI = 0, σP ) with likelihood LP . Each of these

models has one free parameter, we apply the BIC-based correction (30) to compute the adjusted log-likelihoods

log(Ladj
I ) = log(LI)− log(n)/2 and log(Ladj

P ) = log(LP )− log(n)/2.

In general, to compare fitting of alternative models F1 and F2 on a cohort S, for each sample s in the cohort we
compute the log-likelhood score, ∆`(s, F1, F2) = log(Ladj

1 (s)) − log(Ladj
2 (s)). We also evaluate the aggregated

score over samples in cohort S,
∆LS(F1, F2) =

∑
s∈S

∆`(s, F1, F2) , (31)

where s iterates over samples in the cohort. Positive scores favor model L1 over model L2.

Effective cancer cell population size n
To account for sampling error which affects clone frequency inference, we estimate the error of mutation frequencies

for each of the tumor samples in our data. We evaluate frequencies for each mutationm in a given sample s, with
the frequencies from the individual trees T , given by x(m) = Xα wherem originates in clone α ∈ T . The variance
is computed over the 5 trees reconstructed for that sample, σ2(xm) = 〈x(m)2〉T − 〈x(m)〉2T . The effective size n
for a given sample scales proportionally with the inverse of variance, giving our estimate of n as

n(s) ∼ 1

〈σ2(xm)〉m∈s
. (32)

For the patients with multiple samples the variance of mutation frequencies from tree reconstruction is reduced

due to information from other samples; to account for this effect we divide n(s) by the total number of additional
samples. The estimated effective cancer population sizes vary from 79.79 to 1189.60, with a mean of 187.23 and

median 244.6.

Clone fitness model selection

We compute the log-likelihood score for the alternative models for each recurrent tumor sample (Extended Data

Table 1). In particular, we observe that 19 out of 22 LTS samples (86%) and 17 our of 33 (52%) are better

described by the model with selection, F , rather than the null model, FN ≡ 0 (giving∆`(s, F, FN ) > 0). Evaluating
the aggregated log-likelihood score on the LTS and STS cohorts, we observe evidence for the model with selection

in both cohorts, ∆LLTS(F, FN ) = 1241 nats and ∆LSTS(F, FN ) = 198 nats , with a mean of 56.42 nats and 6.01

nats respectively. The fit, and therefore the predictive power of model F , is relatively stronger in the LTS cohort.

We assess that the oncogenic selection, described by the driver gene component model FP , provides predictive

signal on its own, with 14 out of 22 LTS samples (64%) and 13 out of 33 STS samples (39%) having positive

log-likelihood score, ∆`(s, FP , FN ) > 0. Evaluating the aggregated log-likelihood score on the LTS and STS

cohorts, we observe evidence for the model with oncogenic selection in both cohorts, ∆LLTS(FP , FN ) = 1041

nats and ∆LSTS(FP , FN ) = 223 nats, with a mean of 47.34 nats and 6.77 nats respectively. Again, the fit of

the partial model is stronger in the LTS cohort. This effect could be explained indirectly by the negative immune

selection, which reduces tumor heterogeneity and facilitates clonal composition predictions in the LTS cohort.
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The immune component FI on its own has less predictive power, with positive log-likelihood score ∆`(s, FI , FN )
for 11 out of 22 LTS samples (50%) and only 4 out of 33 STS samples (12%). The aggregated log-likelihood score

values are ∆LLTS(FI , FN ) = 579 nats (mean of 26.31 nats) and ∆LSTS(FI , FN ) = 91 nats (mean of 2.75 nats).

The full model with both components provides an improvement to the driver-gene component-only model for 11

out of 22 LTS samples (50%) but only 5 out of 33 STS samples (15%), as quantified by ∆`(s, F, FP ) > 0. The
aggregated log-likelihood score on the LTS and STS cohorts are ∆LLTS(F, FP ) = 200 nats and ∆LSTS(F, FP ) =
−25 nats respectively. This results means that inclusion of the immune component directly improves prediction of
clone dynamics in the LTS cohort, but it does not for the STS cohort. All these results are reported in Extended

Data Table 1b and in Extended Data Figure 9.

Accuracy of clone growth fitting

We consider the observed and model fitted clone frequency changes,Xα
rec/X

α
prim and X̂α

rec/X
α
prim across all clones

in all tumors in the cohorts. For a given cohort we define the accuracy of a model as the fraction of clones for

which the direction of change is the same, i.e. (Xα
rec/X

α
prim > 1 and X̂α

rec/X
α
prim > 1) or (Xα

rec/X
α
prim < 1 and

X̂α
rec/X

α
prim < 1) or (Xα

rec/X
α
prim = 1 and X̂α

rec/X
α
prim = 1). We consider all clones with frequency larger than 0.03

in the primary tumor, from the top scoring trees for each patient. We obtain accuracy of 71% over 243 clones in

the LTS cohort, and 58% over 389 clones in the STS cohort. The Pearson correlation coefficients are rLTS = 0.57
and rSTS = 0.35 (as computed on log-transformed frequency changes, logXα

rec/X
α
prim and log X̂α

rec/X
α
prim) and

Spearman rank coefficients are ρLTS = 0.65 and ρSTS = 0.28 (Extended Data Table 1b).

TCR beta (TCRB) sequencing

Weextracted genomic DNAfrom n = 23 primary and recurrent STS and LTSPDACs according to themanufacturer’s

instructions (QIAsymphony, Qiagen). We verified the quantity and quality of extracted DNA before sequencing.

We then used a standard quantity of input DNA, amplified and sequenced the CDR3β regions using the survey

multiplexed PCR ImmunoSeq assay (Adaptive Biotechnologies). The ImmunoSeq platform combines multiplex

PCR with high-throughput sequencing to selectively amplify the rearranged complementarity-determining region

3 (CDR3β) of the TCR, producing fragments sufficiently long to identify the VDJ region spanning each unique

CDR3β. After correcting for sequencing coverage, PCR bias, primer bias, and sequencing errors, we define a T

cell clone as a T cell with a unique TCRB CDR3β amino acid sequence.

Dissimilarity index to estimate antigen-specificity in a T cell repertoire

To estimate the antigen-specificity of a T cell repertoire, for each repertoire, we apply a sequence based probabilistic

model called a Restricted BoltzmannMachine (RBM).18 TheRBMmodel assigns a probabilistic score of an antigen

specific response to each T cell clone in a sample, based on the frequency and the CDR3β sequence similarity

of the top 25 ranking clones. Based on these RBM scores for each clone, we estimate for each repertoire, a TCR

dissimilarity index DI = 1
f where:

f =
1

T

∑
i<j

e
−
(

d(σi,σj)

δ

)2

(33)

where T is the total number of terms in the sum (T = M(M−1)/2),M = 25 (the top 25 clones in the repertoire with
the highest RBM scores), and d(σi, σj) is a distance obtained from the global pairwise alignment score between

the CDR3β amino acid sequences σi and σj . This score is computed using the BLOSUM62 matrix corrected with
an offset such that all its weights are positive, −S(A,B) +maxA,B(S(A,B)) ≥ 0, where S(A,B) are the usual
BLOSUM62 matrix elements. The parameter δ represents a typical scale of the BLOSUM-weighted distance d

and it is set to δ=9.37, the average distance d between reported epitope-specific CDR3β sequences (we use an

influenza-specific repertoire21). As a control, we calculate this TCR dissimilarity index between the top 25 clones

in the repertoire based on clone size (TCR dissimilarity index− clone size), and not the RBM computed probability

(Extended Data Figure 1c).

To verify that the difference in the TCR dissimilarity index between LTSs and STSs is robust, we randomly

subsample the repertoire down to a few hundred clones and repeat the RBM training, score assignment, and

TCR dissimilarity index estimation 10 times (Extended Data Figure 1b).

Statistics
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Survival curves were compared using log-rank test (Mantel-Cox). Comparison between two groups was performed

using unpaired two-tailed Mann-Whitney test, or Wald’s test for gene expression analyses to correct for multiple

comparison testing. Correlation between two variables was performed using two-tailed Pearson correlation.

Categorical variables were compared using chi-square test. Probability distributions were compared using two-sided

Kolmogorov-Smirnov (KS) test. All comparison groups had equivalent variances. P < 0.05 was considered to be

statistically significant. Data analysis was performed using statistical software (Prism 7.0, GraphPad Software

v.9.1.0 and Python v.3.4).
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