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Supplementary Methods 

Assessing the predictive performance of clonal growth predictions 

Using an additional time-point (phase 6) available for 11 individuals with mutations in CBL 

(c.2434+1G>A), DNMT3A (P385fs, R882H, W330X), GNB1 (K57E), JAK2 (V617F), PPM1D (Q524X), 

SF3B1 (K666N, K700E, R625L), SRSF2 (P95H, P95L), TET2 (Q1542X) and U2AF1 (Q157P, Q157R). Using 

the model described in the “Hierarchical modelling of clone trajectories through time” section of the 

Methods and conditioning on the previous timepoints, we predict the additional time-point and assess 

the predictive performance through the mean absolute error (MAE) to the true VAF value. 

Validating the dynamic coefficient and age at onset inference with 

Wright-Fisher simulations 

We use Wright-Fisher simulations 1–3 with a fixed population of 200,000 cells and 50 possible drivers, 

a range of fitness advantages (0.001 − 0.030) and a range of mutation rates (1.0 ∗ 10−10 − 4.0 ∗

10−9). These ranges were estimated to cover the values inferred and mentioned in considering that 

one should expect there to be approximately 13 generations of HSC per year and a population size of 

200,000 HSC 4.  

To simulate the conditions under which the experimental data was obtained, we fit Gamma 

distributions to the observed coverage and observed age at first time-point truncated at the minimum 

and maximum values for each. For each simulation we sample from these distributions the first 

timepoint, a random number of subsequent timepoints (between 2 and 4) from a uniform distribution 

and the coverage for each driver at each timepoint. We simulate the sequencing process as drawing 

samples from a beta-binomial distribution parameterized similarly to the one described in the 

“Hierarchical modelling of clone trajectories through time” section of the Methods, where the 

probability is the proportion of cells from a specific clone present at a given time-point. More 

concretely, 𝑐𝑜𝑢𝑛𝑡𝑠 ∼ 𝐵𝐵(
𝑝𝛽

1−𝑝
, 𝛽, 𝑐𝑜𝑣), where 𝑝 is the allele frequency of a mutation, 𝛽is the technical 

overdispersion parameter and 𝑐𝑜𝑣 is the coverage which is sampled from the coverage distribution as 

inferred from our data. 

To infer coefficients under this setting we converted generations to years (13 generations per year) 

and used the framework described in the previous sections to infer these coefficients. Since the nature 

of these mutations does not consider different levels of genetic resolution, we had to modify the driver 

coefficient to 𝑑𝑟𝑖𝑣𝑒𝑟 𝑒𝑓𝑓𝑒𝑐𝑡 ∼ 𝑁(0, √2 ∗ 0.12)so that the distribution from which this coefficient is 

being drawn has the one we consider for the driver effect considering a gene, domain and site effect. 

The observed coefficients are converted to year as 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 = (1 + 𝑓𝑖𝑡𝑛𝑒𝑠𝑠)𝑔 − 1, where 𝑔 is 

the number of generations per year, and we assess the fit between inferred and observed coefficients 

considering these values. We additionally calculate the age at clone foundation for the inferred 

coefficients and, using these simulations which allow us to know the true age at clone foundation, we 

assess the fit between inferred and observed ages at clone foundation. 

https://paperpile.com/c/d1Y5Va/96AY+NO9p+hTgo
https://paperpile.com/c/d1Y5Va/0Pq8


 

 

To better understand the impact that population size and generation times have on these simulations, 

we conduct the same analysis considering two additional scenarios: a population size of 100,000 HSC 

and 5 generations per year, and a population size of 50,000 HSC and 1 generation per year. 

Finally, we also calculate the age at onset as specified in the “Determining the expected age at 

beginning of clone onset”. To do this, we assume that these clones follow a Wright-Fisher process, 

where growth can be separated into two distinct phases which depend on the size of the clone - a 

stochastic phase, where the clone is too small and during which growth happens linearly, and a 

deterministic phase, during which growth is approximately exponential (Extended Data Fig. 4a). 

According to this growth regime, the age at onset can be calculated as 𝑡0𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝑡0 +
𝑙𝑜𝑔(𝑔/𝑏𝑡𝑜𝑡𝑎𝑙)

𝑏𝑡𝑜𝑡𝑎𝑙
−

1

𝑏𝑡𝑜𝑡𝑎𝑙
, where 𝑡0 is the age at onset if the clone grew exponentially (as opposed to 

following a Wright-Fisher process), 
𝑙𝑜𝑔(𝑔/𝑏𝑡𝑜𝑡𝑎𝑙)

𝑏𝑡𝑜𝑡𝑎𝑙
 is the time at which the clone started to grow 

deterministically and 
1

𝑏𝑡𝑜𝑡𝑎𝑙
 is the expected time the clone spends following a stochastic growth regime. 

We assess the validity of this approach by calculating the coefficient of correlation between inferred 

and true ages at onset from the simulations. 

Validating the Phylogenies 

We used two established approaches to assess the internal consistency, stability and robustness of 

the shared mutation data and inferred phylogenetic trees, as used previously 5,6: 

(1) Assessment of the internal consistency of shared mutation data using the disagreement score. 

A perfect phylogeny contains pairs of mutations that are either in discrete clades or nested one within 

the other. To test the consistency of our data with this assumption, we calculated a ‘disagreement 

score’. For every pair of loci, we calculated the number of samples in disagreement with this 

assumption, and then calculated the mean score across all pairs7. Samples with unknown genotypes 

were assumed to be in agreement. Scores from observed phylogenies were then compared to scores 

generated from random shuffles of the corresponding genotype matrix, internal to each locus. In this 

way, the number of mutations for each locus is preserved, and the disagreement score in the observed 

genotype matrix can be compared to the score in the randomly generated matrix. For each of our 

three phylogenies, the disagreement scores were extremely low at <0.02 in all cases, which was 

~100,000-fold lower compared to random shuffles of the genotypes at each locus (Extended Data Fig. 

5d). This demonstrates that our data have high internal consistency and that the phylogenies are close 

to what would be expected in a perfect phylogeny, where the disagreement score is 0. 

(2) Comparison of the MPBoot phylogeny with an alternative phylogeny-inference algorithm (SCITE). 

To assess the reliability and stability of the phylogeny inferred by MPBoot, we fed the same genotype 

data into an alternative algorithm, SCITE8. SCITE is a tree-inference algorithm designed for somatic 

single-cell data that uses Markov chain Monte Carlo sampling with an error model that takes potential 

false positives and false negatives into account for tree-scoring. We used false positive and false 

negative rates of 0.001. SCITE produced phylogenies with high agreement to the original MPBoot 

phylogenies, with Robinson-Foulds similarities of 0.989 (PD34493), 0.996 (PD41305) and 1.000 

(PD41276) (Extended Data Fig. 5e).  

https://paperpile.com/c/d1Y5Va/IPVV+FceV
https://paperpile.com/c/d1Y5Va/vdeo
https://paperpile.com/c/d1Y5Va/VJab


 

 

Validating annual growth rate inferences from single-cell phylogenies 

with Wright-Fisher simulations 

We use Wright-Fisher simulations 2,3 with 50 possible drivers and test a range of different fitness 

advantages ([0.005,0.010,0.015,0.020,0.025,0.030]) over 800 generations at a fixed population size of 

200,000 HSC. For each fitness effect we define a driver mutation rate ([200 ∗ 10−9,50 ∗ 10−9,20 ∗

10−9,15 ∗ 10−9,8 ∗ 10−9,5 ∗ 10−9], respectively) that guarantees that at least a few simulations lead 

to clones which expand to sufficient sizes and avoid many competing expansions and keep the 

passenger mutation rate constant (2 ∗ 10−5). For each simulation we infer phylogenetic trees by 

sampling 100 representative clones from our population and using a neighbour-joining algorithm 

based on mutation presence. The representative sampling is done by defining for each clone a 

probability of being sampled that is equivalent to its proportion in the population. We then detect the 

clades that contain drivers, isolate them and infer their effective population size (Neff) trajectory using 

BNPR 9,10.  

We fit different models to the inferred Neff trajectories, namely: 

1. A log-linear fit (assumes exponential growth); 

2. A scaled and shifted sigmoidal fit (assumes that growth saturates based on the Neff 

trajectory); 

3. A shifted sigmoidal fit (assumes that growth saturates at 1 and that the most recent Neff 

estimate corresponds to the proportion of tips in the clade); 

4. A biphasic log-linear fit (assumes that growth is exponential and has two distinct coefficients 

corresponding to early and late growth; the boundary between early and late growth - 

otherwise referred to as the changepoint between both - is also fitted with the other 

parameters and is constrained to lie in the central part of the trajectory: for the time 𝑡 over 

which the clone expands, the changepoint cannot be inferior to 𝑚𝑖𝑛(𝑡) + 0.25 ∗ 𝑟𝑎𝑛𝑔𝑒(𝑡) 

nor superior to 𝑚𝑎𝑥(𝑡) − 0.25 ∗ 𝑟𝑎𝑛𝑔𝑒(𝑡), where 𝑟𝑎𝑛𝑔𝑒(𝑡) = 𝑚𝑎𝑥(𝑡) − 𝑚𝑖𝑛(𝑡). This 

constraint prevents fits that are too close to the clonal inception or to the clone at later 

stages). 

We compare these models by assessing how closely they are able to recapitulate the original fitness 

in the simulations. To do so, we calculate their coefficient of determination and root mean squared 

error. We also visually assess how similar these trajectories are to the true driver trajectories as 

reconstructed from simulations - to match clones from a Wright-Fisher simulation to an expansion in 

a phylogenetic tree we assign each clone from the Wright-Fisher simulation to its nearest clone in a 

phylogenetic tree using the Hamming distance between the mutations in each clone. 

We additionally estimate the effective population size using two other methods for validation - 

mcmc.popsize and skyline from the ape package 11 in R . This allows us to confirm our observations 

that stem from phylodynamic estimations and that concern, mostly, a prevalent effect of clonal 

deceleration which is detailed in the main text and in the following section. 

https://paperpile.com/c/d1Y5Va/NO9p+hTgo
https://paperpile.com/c/d1Y5Va/Dvp2+TA6O
https://paperpile.com/c/d1Y5Va/KDMy


 

 

Detecting deceleration in single-cell phylogenies and longitudinal data 

We infer the presence of deceleration in both single-cell phylogenies and longitudinal data. To do this, 

we use two distinct methods: calculating the ratio between the expected and observed VAF and 

calculating deceleration using growth rates.  

For the first method - calculating the ratio between expected and observed VAF - we use the value for 

the early growth from the changepoint log-linear fit described in “Validating annual growth rate 

inferences from single-cell phylogenies with Wright-Fisher simulations” and extrapolate the Neff to 

the age at sampling. By doing so we get the expected clone fraction if growth had not changed during 

the Neff trajectory. We also calculated the observed clone fraction as the fraction of tips in the clade. 

To get the expected clone fraction from Neff we divide Neff by the inferred population size in Lee-Six 

et. al (200,000 HSC) 4. We then calculate the ratio between the expected and observed clone size - if 

this ratio is close to 1 this implies little to no changes in dynamics, whereas a ratio above 1 implies 

deceleration and a ratio below 1 implies acceleration. 

For the second method - calculating deceleration using growth rates - we define two distinct quantities 

for both single-cell phylogenies/longitudinal data - expected/observed growth, corresponding to the 

growth rate of each clone during observation at old age, and early/minimal historical growth, 

corresponding to the growth rate of each clone at an earlier stage of clonal dynamics - and calculate 

the ratio between them. 

As such, for phylogenies we first calculate the Neff trajectory for each clade using BNPR 9. Next, and 

using their Neff trajectory, we calculate their expected growth rate by assuming a sigmoidal growth. 

We additionally assume that the final Neff (Neff at sampling) estimate corresponds to the fraction of 

tips in the clade and we scale our data accordingly such that 1 corresponds to the maximum Neff and 

the fraction of tips in the clade corresponds to Neff at sampling. Thirdly and using the changepoint 

log-linear fit described in “Validating annual growth rate inferences from single-cell phylogenies with 

Wright-Fisher simulations” we derive the value for early growth. Finally, as a measure of deceleration, 

we calculate the ratio between expected and early growth - a value close to 1 for this ratio implies an 

absence of deceleration whereas smaller values imply deceleration. 

For the longitudinal data we use the observed growth for each clone as described in “Hierarchical 

modelling of clone trajectories through time”. Next, we calculate the (minimal) historical growth as 

the growth that excludes all posterior samples that would lead to age at onset estimates exceeding 

lifetime (ages at onset for clones below -1, a heuristic value chosen to represent developmental onset 

of clones). Finally and as a measure of deceleration, we calculate the ratio between observed and 

historical growth. The interpretation for this ratio is similar to that defined in the previous paragraph 

for phylogenetic data - a value of 1 implies an absence of detectable deceleration, whereas smaller 

values represent the minimal amount of deceleration. This method has, however a caveat - due to the 

nature of this calculation (excluding posterior samples which are too slow to provide solutions within 

lifetime), values above 1 (indicating acceleration) are technically impossible.   

https://paperpile.com/c/d1Y5Va/0Pq8
https://paperpile.com/c/d1Y5Va/Dvp2


 

 

Supplementary Notes 

Supplementary Note 1 - Determining the effect of repeated sampling 

on the theoretical limit of detection 

Across this work we sequence individuals a median of 4 times across their lifetime. We define a 

detection threshold of 0.5% VAF as the minimum clone size for detection on individual timepoints, but 

the repeated sampling leads to 0.5% VAF being an overestimation of the actual limit of detection (LOD) 

- the size at which clones become detectable.  

To show this, we simulate the repeated sampling of variants existing at a true clone proportion 

between 0 and 2%. We use this proportion 𝑝 as the probability parameter in a beta binomial 

distribution, the overdispersion 𝛽 calculated using technical replicates as the overdispersion in the 

same beta binomial distribution and a coverage of 1000. Having fully parameterized this distribution 

(𝑐𝑜𝑢𝑛𝑡𝑠 ∼ 𝐵𝐵(
𝑝𝛽

1−𝑝
, 𝛽, 1000)) we sample counts from it between 1 to 5 times. For each combination 

of clone size and number of samples we perform 1,000 realisations and calculate the number of 

detected clones at a threshold of 0.5%. This allows us to assess the fraction of clones with a specific 

size which are detected if we sample them multiple times - in other words, are able to assess the 

detection rate for different clone sizes and different numbers of samples. 

With this, we show that, at a threshold of 0.5% and sampling only once, we detect 14.8% of all clones 

existing at 0.5% (Fig. S1). However, repeating this sampling 3 and 5 times leads to the detection of 

approximately 37.7% and 54.3% of all clones existing at 0.5%, respectively. As such, under regular 

conditions - a single sample - we would detect 13.5% of all clones present at 0.5% with a detection 

threshold of 0.5%. The question we should now ask is: what is the smallest possible clone size we 

detect at the same rate of detection - 13.5% - if we increase the number of samples? Using the same 

set of simulations, we can calculate the likely minimal size of the detected clones with clones as small 

as 0.21% and 0.14% being detected with 3 and 5 samples, respectively, using the same detection rate 

(with 2 and 4 samples, the theoretical LOD is 0.30% and 0.16%, respectively). As such, when 

considering the theoretical LOD used in Fig. 4k, we avoided using 0.5% which, as we show, would be 

at least twice as high as the theoretical LOD obtained from simulations. 



 

 

 

Fig. S1 - Fraction of detected clones upon repeated samples/timepoints at a detection threshold of 0.5%.  

Supplementary Note 2 - Patterns of selection in longitudinal and 

phylogenetic data 

In this Supplementary Note we examine changes in selection, as quantified by the dN/dS ratio, in two 

settings: (i) in our longitudinal cohort, we ask whether dN/dS ratios change with age, and (ii) in our 

phylogenies, we compare dN/dS ratios in shared and private branches.  

We use the dNdScv algorithm, an implementation of dN/dS that corrects for trinucleotide mutation 

rates, sequence composition, and variable mutation rates across genes 12. 

dN/dS ratios in longitudinal data 

First, using the 385 individuals included in our longitudinal data set, we compared the dN/dS ratio at 

the time of study entry (median age 69.3 years) with the ratio at the end-of-study (median age 81.3 

years). We derived both global dN/dS ratios across all targeted genes (Fig. S2), and gene-specific dN/dS 

ratios (Fig. S3). 

https://paperpile.com/c/d1Y5Va/ZOPh


 

 

 

Fig. S2 - Global dN/dS ratios at the start vs end of study. Error bars depict 95% CIs.  

Fig. S3 - Gene-specific dN/dS ratios at the start vs end of study, for missense (left) and truncating (right) 

mutations. Error bars depict 95% CIs.  

We noted a consistent trend for higher dN/dS ratios at older ages. One interpretation of this is that 

selection tends to strengthen with age. However, we now know from our longitudinal and 

phylogenetic data that this is not universally true, and that the relationship between age and mutation 

‘fitness’ is gene-specific. For example, we found that DNMT3A-mutant clones preferentially expanded 

early in life and displayed slower growth in old age (suggesting falling selective pressure with 

advancing age), while splicing gene mutations only drove expansion later in life (suggesting increasing 

selective pressure with advancing age). Despite this, all driver genes display higher dN/dS ratios at 

older ages (Fig. S3), including, for example, DNMT3A. This highlights the inability of dN/dS to quantify 

selection strength at a particular point in time. Instead, dN/dS reflects the cumulative effects of 

selection up to the time of sampling. As such, while selection might strengthen with advancing age for 

many mutations, higher dN/dS ratios at later time-points also reflect the fact that additional mutant 

clones are identified at older ages, having had longer to reach detectable levels. In this case, drivers 

are not necessarily ‘fitter’ in older people, they have simply had longer to expand their cognate clones 

to a detectable level (by conventional sequencing). This illustrates that dN/dS ratios cannot 

disentangle the effects of driver fitness and duration of clonal expansion. In contrast, our longitudinal 



 

 

modelling of clonal trajectories, using serial and phylogenetic data, allows for quantitation of driver 

mutation fitness specifically. 

dN/dS ratios in phylogenetic data 

Next we explored how dN/dS ratios vary within haematopoietic phylogenies. Specifically, we asked 

whether selection strength differs between phylogenetic branches that precede clonal expansions 

(shared branches, coloured red in Fig. S4), as compared to selection along branches that do not 

(private branches, coloured grey in Fig. S4). 

 

Fig. S4. Example phylogeny (PD41305) illustrating the distinction between shared (red) and private (grey) 

branches. 

We combined our three phylogenies (as depicted in Fig. 3 of the main manuscript) into a single analysis 

to maximise our power to detect signal from the limited number of coding mutations across the 

genomes of just 3 individuals (total of 245 shared and 1885 private somatic mutations). Applying the 

dNdScv algorithm, we observe a trend towards higher global dN/dS ratios along shared vs private 

branches (Fig. S5).  



 

 

 

Fig. S5. Global dN/dS ratios among shared vs private mutations. Error bars depict 95% CIs.  

Since mutations acquired along shared phylogeny branches are, by definition, those preceding clonal 

expansion, it is expected that selection would be strongest here, as compared to along private 

branches, where mutations do not, by definition, lead to clonal expansion. Excluding known CH driver 

mutations (defined as those in the 17 genes included in our longitudinal model), or excluding any 

mutation in a cancer gene (defined as those in Tier 1 of the Cancer Gene Census; 

https://cancer.sanger.ac.uk/census), made almost no impact on the dN/dS ratios derived as above. 

This is consistent with the existence of clones without known drivers in elderly individuals, and our 

observation that such clones grow over their lifetimes at rates comparable to clones with known 

drivers (Fig. 3, main manuscript).  

  

https://cancer.sanger.ac.uk/census


 

 

Supplementary Note 3 - Investigating clonality and its possible impact 

on inference 

In this Supplementary Note, we tentatively infer co-clonality (whether two or more mutations are in 

the same clone) and investigate the potential impact this may have on our inference of clonal growth. 

Clonality inference from targeted sequencing data 

Our initial assumption, backed up by single-cell studies13, was that CH clones commonly harbour a 

single driver mutation. Nonetheless, we try here to investigate the possibility that two or more driver 

mutations occur in the same clone. Typically, clonality can be successfully inferred when information 

on large parts of the genome is available (e.g. with whole genome or exome sequencing). The 

longitudinal part of our study required deep sequencing of 56 genes in 1593 samples, such that we 

needed to focus our sequencing on the relevant genes in order to robustly track small and large clones 

over time. Unfortunately, such highly targeted sequencing does not normally provide sufficient 

information to facilitate clonality inferences. Nevertheless, here we attempt a number of heuristic 

tests to investigate this specifically using the following tools/approaches: 

● PyClone - PyClone is a software tool that relies on copy number data and deep sequencing to 

infer the clonal architecture of a sample 14; 

● Fisher test consistency - if mutation counts are consistently identical (i.e. non-significant in a 

Fisher's test) through time, it becomes more likely that they are present in the same clone; 

● Pigeonhole principle - if the sum of VAF for a set of heterozygous mutations is greater than 

50%, it is biologically impossible for them to be all in separate clones; 

● Dynamic similarity - if two mutations are dynamically similar (i.e. their annual growth rates 

are similar) this suggests that they may reside in the same clone. 

On clonal structure 

Here, it should be noted that, in the absence of genome-scale data, it is possible that clustering 

mutations by relative frequencies can be indicative of the following: 

1. Two separate but similarly sized clones (false positive); 

2. A clone carrying one mutation acquires a second mutation (true positive); 

3. A parental clone with one or more unknown drivers acquires one or more  known drivers in 

the same subclone (true positive); 

4. A parental clone with one or more unknown drivers acquires two known drivers in distinct 

subclones: here, while both new drivers are acquired in cells of the ancestral clone (marked 

by the unknown driver), each are actually in distinct subclones (false positive). 

For cases 3 and 4 (represented in Fig. S6), we should be clear in our nomenclature as both imply that 

"two mutations are in the same clone" but only one of them is of relevance (3). As such and for clarity, 

https://paperpile.com/c/d1Y5Va/PDG3
https://paperpile.com/c/d1Y5Va/FKUR


 

 

we are interested in detecting 3 and this is what we mean by "two mutations in the same clone"; 4 

should be further specified and defined as "two mutations in separate subclones in the same parental 

clone". 

 

Fig. S6 - Representation of two different scenarios of possible confusion when referring to “two mutations being 

in the same clone”. On the left, two consecutive mutations are acquired in the same parental clone and subclone, 

while on the right two mutations are acquired in separate subclones, having nonetheless similar sizes. 

PyClone analysis 

PyClone14 typically relies on deeply sequenced somatic mutations and copy number information to 

phase mutations into specific clones. However, our data is limited for this purpose, given the very 

small number of somatic mutations identified in each individual’s blood DNA (median 2). Indeed, if we 

analyse our longitudinal data using PyClone (the PyClone input for each individual were their 

respective mutation calls for all timepoints), the limited input data leads the software to propose co-

clonality in all individuals with more than one mutation. Furthermore, for the 76 individuals with 3 

mutations, Pyclone proposed that all 3 belonged to just one clone in 67% of cases (51/76). These 

inferences are implausible and almost certainly a consequence of the limited input mutation data. In 

fact, evidence suggests that CH mutations are not commonly co-clonal, including the following. First, 

a recent study used single-cell DNA sequencing to specifically determine whether CH driver mutations 

existed in separate cells or coexisted in the same cell 13. In this study, individuals with CH never 

harboured more than one mutation in epigenetic regulator genes in the same cell/clone (including in 

the two most common CH driver genes, DNMT3A, TET2, and also ASXL1 and IDH1/2). Also, only 2/21 

(9.5%) individuals were found to harbour more than one CH mutation in the same cell/clone. Second, 

upon close inspection, several instances of co-clonality proposed by PyClone in our data are 

functionally implausible. For example, there were instances of putative co-clonal mutations that are 

known to not co-occur in the same cell (e.g. SF3B1 and U2AF1 mutations, proposed by PyClone to exist 

in the same clone in one individual, but previously shown to be mutually exclusive15). For these 

reasons, we did not use Pyclone for clonality inference as it is not a suitable tool for our data. 

Longitudinal consistency of Fisher's test 

We used a Fisher's test to compare the VAFs of any two mutations within an individual. If this 

comparison was consistently non-significant over time (i.e. the VAFs of the two mutations did not 

differ), we considered these two mutations to be putatively in the same clone. For each time-point 

and for each mutation pair within an individual, we tested for significance according to a Fisher's test 

https://paperpile.com/c/d1Y5Va/FKUR
https://paperpile.com/c/d1Y5Va/PDG3
https://paperpile.com/c/d1Y5Va/EjA7


 

 

using a contingency table with the number of mutant and reference reads for each mutation. We 

define potential co-clonality (i.e. two mutations in the same clone) in cases where the Fisher’s test is 

not significant at all time-points. Using this definition, out of 752 mutation pairs, 102 are putatively 

co-clonal. 

Importantly, while this analysis detects clones which are consistently similar in size over a median 

period of 13 years (consistent with co-clonality), it does not exclude the alternative (and realistic) 

scenario that two independent clones show similar growth trajectories within an individual. 

Pigeonhole principle 

The pigeonhole principle states that if the combined VAFs of a group of mutations within an individual 

is greater than the carrying capacity of the population then the mutations cannot be in distinct clones. 

Applying this principle, we found only six pairs of mutations that are proposed to exist in the same 

clone.  

Dynamic similarity 

If two mutations have similar annual growth rates, they may be in the same clone. To assess this, we 

subtract the posterior samples for growth rate of every mutation in a mutation pair within an 

individual. If the difference in coefficients is close to 0, this makes co-clonality of the two mutations 

more likely. To obtain a background distribution, we compare random mutation pairs between 

individuals (i.e. the growth rates from two distinct mutations in different individuals). As shown in Fig. 

S7, the distribution of differences in growth coefficients between any two randomly selected 

mutations is practically identical to that of the difference in growth coefficients between two 

mutations within the same individual. Therefore, this approach is not adequate for determining 

clonality.  



 

 

 
Fig. S7 - Distribution of differences in growth rates between mutations within pairs, where the two mutations 

are either (i) present in the same individual (within individuals) or (ii) randomly selected from our cohort 

(between individuals). The point estimates represent the average value of the difference, whereas the intervals 

represent the 90% confidence interval for the difference. 

The impact of clonality on the inference of clonal growth rates 

As discussed above, our data do not allow us to determine co-clonal events with any confidence. 

Importantly, this lack of certainty would be of no tangible consequence for our modeling of clonal 

growth rates, if potential co-clonality had no impact on our inferences of CH growth dynamics. To 

assess this, we checked whether there was any association between the number of clones within an 

individual (where multiple mutations could be consistent with co-clonal events) and: (i) the unknown-

cause growth (i.e. the component of overall clonal growth not accounted for by the identity of the 

driver mutation) and (ii) the fraction of clonal trajectories growing at a constant rate over time 

(referred to here as ‘explained trajectories’). As observable in Fig. S8, no such associations were 

detectable. 



 

 

 

 

 

Fig. S8 - Association between number of mutations per individual and unknown cause effect (left) and fraction 

of explained trajectories (right; n=685). The boxes represent the 25th, 50th (median) and 75th percentiles of the 

data; the whiskers represent the lowest (or highest) datum within 1 interquartile range from the 25th (or 75th) 

percentile. Intervals in the right panel are beta-distributed 90% confidence intervals. 

We confirmed this lack of a relationship between the number of mutations and growth rate in 

DNMT3A or TET2 (the two genes for which sufficient numbers are available for this comparison), 

where we find no association between the number of mutations in a given individual and the average 

DNMT3A or TET2 growth rate (R=-0.12, p=0.15 and R=0.03, p=0.68, respectively). 

In conclusion, while there may be a small number of clones that harbour more than one mutation, 

these do not affect our inferences relating to CH clonal dynamics 5,13.  

  

https://paperpile.com/c/d1Y5Va/PDG3+IPVV
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