
Clonal dynamics of haematopoiesis across 
the human lifespan

In the format provided by the 
authors and unedited

Nature  |  www.nature.com/nature

Supplementary information

https://doi.org/10.1038/s41586-022-04786-y



Supplementary information 
 
Clonal dynamics of haematopoiesis across the human lifespan 
 
Emily Mitchell1,2,3, Michael Spencer Chapman1,#, Nicholas Williams1,#, Kevin J Dawson1,#, 
Nicole Mende2, Emily F Calderbank2, Hyunchul Jung1, Thomas Mitchell1, Tim H H Coorens1, 
David H Spencer4, Heather Machado1, Henry Lee-Six1, Megan Davies5, Daniel Hayler2, 
Margarete Fabre1,2,3, Krishnaa Mahbubani6,7, Federico Abascal1, Alex Cagan1, George 
Vassiliou1,2,3, Joanna Baxter3, Inigo Martincorena1, Michael R Stratton1, David G Kent8, Krishna 
Chatterjee9, Kourosh Saeb Parsy6,7, Anthony R Green2,3, Jyoti Nangalia1,2,3*, Elisa Laurenti2,3*, 
Peter J Campbell1,2*. 
 
  



 2 

Table of Contents 

Supplementary Methods ................................................................................................................................. 3 
Substitution and indel calling ....................................................................................................................... 3 
Structural variants and copy number ........................................................................................................... 4 
Construction of phylogenetic trees ............................................................................................................... 4 
Validation of the phylogeny ....................................................................................................................... 10 
Using Rsimpop to simulate HSC populations............................................................................................... 14 
HSC population size modelling ................................................................................................................... 15 
HSC population size estimate ..................................................................................................................... 17 
dN/dS analysis ........................................................................................................................................... 17 
Amino acid variant annotation .................................................................................................................. 20 
Driver mutation acquisition rate estimation ............................................................................................... 21 
Modelling positive selection in the HSC population ..................................................................................... 22 
Phylofit estimation of selection coefficients ................................................................................................ 23 

Supplementary Background .......................................................................................................................... 27 
Definition of phylodynamics ....................................................................................................................... 27 
Definition of Nt ......................................................................................................................................... 27 
Phylodynamic principles ............................................................................................................................ 27 
Application of phylodynamics to stem cell populations ............................................................................... 28 

Supplementary Simulations .......................................................................................................................... 28 
Effect of population size............................................................................................................................. 29 
Effect of age .............................................................................................................................................. 30 
Population decline ..................................................................................................................................... 31 
Population growth ..................................................................................................................................... 32 
Population bottlenecks .............................................................................................................................. 33 
Positive selection ....................................................................................................................................... 34 

Supplementary Results.................................................................................................................................. 38 
Phylodyn trajectories for the older individuals ............................................................................................ 38 
Phylogeny annotated with BM HSC/MPP vs BM HPC cell type .................................................................... 39 
Posterior distributions for ‘driver modelling’ parameters ............................................................................ 39 
Putative additional novel drivers ................................................................................................................ 40 

Supplementary Note 1: Intuition for Approximate Bayesian Computation.................................................... 41 

Supplementary Note 2: Comparison with clonal dynamics in solid organs .................................................... 42 

Data Availability ............................................................................................................................................ 44 

References .................................................................................................................................................... 45 



 3 

 

Supplementary Methods 
 

Substitution and indel calling 
CaVEMan (used for calling SNVs) and Pindel (used for calling small indels) were run against an 
unmatched synthetic normal genome using in-house pipelines1,2. CaVEMan was run with the 
‘normal contamination of tumour’ set to 0.05, otherwise standard settings were used. Default 
filters were also used, one of which excludes putative SNVs that are present in a large panel 
of normal samples, so excluding most of the germline single nucleotide polymorphisms (SNPs) 
from subsequent analysis. It leaves around 30,000-40,000 germline SNPs in most individuals, 
which represent inherited SNPs that are rare within the population. In addition to the default 
CaVEMan filters, thresholds were set to require putative variants to have a mean mapping 
score (ASMD) of at least 140 and fewer than half supporting reads being clipped (CLPM=0). 
Pindel was run with standard settings. A custom filter was then used to remove artefacts 
associated with the ‘low input’ library preparation method, including those due to cruciform 
DNA structures3.   
 
Specifically, the custom ‘low input’ filter incorporates two additional filtering strategies4. 
Firstly, a fragment-based filter, designed to remove overlapping reads that result from the 
relatively shorter insert sizes produced by this protocol, which can result in the double 
counting of variants. Secondly, a cruciform filter, which removes erroneous variants 
introduced due to the incorrect processing of cruciform DNA. For each variant, the standard 
deviation (s.d.) and median absolute deviation (MAD) of the variant position within the read 
was calculated separately for positive and negative strands reads. Where a variant was 
supported by a low number of reads for one strand, the filtering used statistics calculated 
from the reads derived from the other strand. It was required that either: (a) ≤90% of 
supporting reads report the variant within the first 15% of the read as determined from the 
alignment start, or (b) MAD > 0 and s.d. > 4. Where both strands were supported by sufficient 
reads, it was required for both strands separately to either: (a) ≤90% of supporting reads 
report the variant within the first 15% of the read as determined from the alignment start, (b) 
MAD > 2 and s.d. > 2, or (c) at least one strand has MAD > 1 and s.d. > 10. 
 
Following this, cgpVAF (another bespoke algorithm) was used to generate a matrix of variant 
and normal reads at all sites that had a detected variant in any sample from a given individual.  
These algorithms are available from the Sanger Institute’s Cancer IT GitHub repository 
(https://github.com/cancerit). 
 
Additional filtering on the read count and depth matrices containing several hundred samples 
per individual was then performed as follows: a) An exact binomial filter was used to remove 
variants with aggregated count distributions consistent with germline single nucleotide 
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polymorphisms (SNPs)5. b) A beta-binomial filter was used to remove low-frequency 
artefacts, i.e. variants present at low frequencies across samples in a way not consistent with 
the sample-to-sample variation expected for acquired somatic mutations6. c) Sites with a 
mean depth below 8 and over 40 were removed. d) Thresholds for read count and VAF were 
used to filter out in vitro variants from the remaining mutations using a bespoke script. The 
thresholds were set to require a minimum variant read count of 2 or more and a variant allele 
fraction of 0.2 for autosomes and 0.4 for XY chromosomes (Extended Fig. 2a). e) For each site 
normal and variant read counts were aggregated from samples with ³ 3 variant reads. A one-
sided exact binomial test was used to filter mutations inconsistent with a true somatic 
mutation (p-value < 0.001). f) A final filtering step was the removal of mutations that best 
mapped to the ‘ancestral’ branch of the SNV-derived phylogenetic tree (only the case for 8 
mutations in one individual).  Custom R scripts, used for these filtering steps were adapted 
from Spencer Chapman et al7 (see Code Availability). 
 

Structural variants and copy number 
Structural variants (SVs) were called using GRIDDS8, with all variants confirmed by visual 
inspection and by checking if they fit the distribution expected based on the SNV-derived 
phylogenetic tree. Specifically, GRIDSS with a default setting (version 2.9.4) was used to call 
SVs. SVs larger than 1kb in size with QUAL >=250 were included. For SVs smaller than 30kb, 
SVs with QUAL >=300 were only included. Furthermore, SVs that had assemblies from both 
sides of the breakpoint were only considered if they were supported by at least four 
discordant and two split reads. We further filtered out SVs for which the standard deviation 
of the alignment positions at either ends of the discordant read pairs was smaller than five. To 
remove potential germline SVs and artefacts, we generated the panel of normal by adding in-
house normal samples (n=350) to the GRIDSS panel of normal. SVs found in at least three 
different samples in the panel of normal were removed. 
 
Autosomal copy number aberrations (CNAs) and X chromosome CNAs in females were called 
using ASCAT (Allele-Specific Copy number Analysis of Tumours)9, which was run against a 
single sample selected from each individual. The matched sample was selected to have a 
coverage > 15X, no loss of Y and to be a singleton in the phylogenetic tree (no coalescences 
post birth). The ASCAT output was manually interpreted through visual inspection. ASCAT was 
unable to accurately call copy number changes on the haploid sex chromosomes in males. 
Therefore, we ran the in-house algorithm BRASS (BReakpoint AnalySiS)10 to generate an 
intermediate file containing information on binned read counts across 500bp segments of the 
genome. A comparison of the mean coverage of the X and Y chromosomes was used to call X 
or Y CNAs in individual samples, which were then validated by visual inspection of read depth. 
 

Construction of phylogenetic trees 
The key steps to generate the phylogenies shown in Figures 2-3 and Extended Figure 5 are 
as follows: 
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1. Generate a ‘genotype matrix’ of mutation calls for every colony within a donor  
2. Reconstruct phylogenetic trees from the genotype matrix  
3. Correct terminal branch lengths for sensitivity to detect mutations in each colony  
4. Make phylogenetic trees  
5. Scale trees to chronological age 
6. Overlay phenotypic and genotypic information on the tree  

 
More detailed information on these steps is provided below: 
MPBoot, a maximum parsimony tree approximation method11, was used to build 
phylogenetic trees of the relationships between the sampled cells. Variants were genotyped 
as ‘present’ (coded as 1) in a sample if 2 or more variant reads supported the variant. Variants 
were genotyped as ‘absent’ (coded as 0) in a sample if 0 variant reads were present at a given 
site and depth at that site was 6 or more. Sites that did not fall into either of the above 
categories were marked as ‘unknown’ (coded as 0.5).  In all cases only a small minority of sites 
(< 5%) were categorised as ‘unknown’ or ‘missing data’ as shown in the table below. 
 

Sample_ID Genotype 
0 

‘absent’ 

Genotype 
0.5 

‘unknown’ 

Genotype 
1 

‘present’ 

% sites ‘missing data’ 

KX001 3068118 42512 22049 1.38 
KX002 2719616 28599 20085 1.05 
SX001 4003266 127878 32218 3.17 
AX001 5086607 173657 39577 3.39 
KX007 9081044 48041 97580 0.52 
KX008 10248698 78247 157878 0.75 
KX004 21179417 197625 249761 0.92 
KX003 8993397 107236 187015 1.17 

 
 
 The genotype matrix of shared variants was converted to a ‘DNA string’ for each sample with 
‘W’ representing a ‘wildtype’ position, ‘V’ a ‘variant’ position and ‘?’ representing ‘unknown’. 
The DNA strings were then used as the input for MPBoot, which outputs unscaled trees with 
uninformative branch lengths (Extended Fig. 3a). We explicitly added a ‘dummy sample’ 
(called “Ancestral”) into the DNA strings that MPBoot used, which has non-mutant genotypes 
across all sites i.e. representing the genotypes of the reference genome. After tree 
construction the ‘ancestral’ branch was dropped prior to downstream analyses.”A maximum 
likelihood approach and the original count data was then used to assign each mutation in an 
individual’s dataset to a branch in their MPBoot generated phylogenetic tree 
(https://github.com/NickWilliamsSanger/treemut). Tree edge lengths were then made 
proportional to the number of mutations assigned to the branch (Extended Fig. 3b).  
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The sensitivity of mutation calling in each sample was used to correct phylogeny branch 
lengths for sequencing coverage. Sensitivity was calculated as the fraction of known germline 
variants identified by CaVEMan in a specific sample. Mutation burden was corrected by 
multiplying the number of variants by 1/sensitivity for private branches. The sensitivity was 
adjusted to allow for the higher sensitivity on shared branches due to multiple samples 
containing the variant. Specifically, sensitivity was assessed by measuring the ability of the 
mutation-calling algorithms to detect heterozygous germline single nucleotide 
polymorphisms (SNPs) in each sample. Heterozygous SNPs should have the same VAF 
distribution and sensitivity as true somatic mutations. For private branches, the SNV 
component of branch lengths was scaled according to: 
 

𝑛"#$% =
𝑛#$%
𝑝(

 

Where 𝑛"#$% is the corrected number of SNVs in sample i, 𝑛#$% is the uncorrected number of 
SNVs called in sample i and 𝑝( is the proportion of germline SNPs called by the Caveman 
algorithm in sample i. 
 
For shared branches, it was assumed that (1) the regions of low sensitivity were independent 
between samples, (2) if a somatic mutation was called in at least one sample within the clade, 
it would also be correctly called (or ‘rescued’) in other samples in the clade (even in lower 
sensitivity samples). Shared branches were therefore scaled according to: 
 

𝑛#$%
1 − 𝜋((1 − 𝑝()

 

 
Where the product is taken for 1 − 𝑝(  for each sample i within the clade.  However, both of 
these assumptions will not hold true in all cases. Firstly, regions with low coverage are not 
randomly distributed, with some genomic regions likely to have low coverage in multiple 
samples. Secondly, while many mutations will be ‘rescued’ in subsequent samples once they 
have been called in a first sample - because the treemut algorithm for mutation assignment 
uses original read count data, meaning that even a single variant read in a subsequent sample 
is likely to result in the mutation being correctly assigned - this will not be true in every case. 
Some samples with very low coverage have 0 variant reads at a given site will by chance. In 
this situation, a mutation may not be correctly placed. While these factors may lead to an 
under-correction of shared branches, this approach provides a reasonable approximation. 
Corrected SNV burdens for each sample can then be calculated as the sum of corrected 
ancestral branch lengths back to the root of the phylogeny. Supplementary Figs. 1-2 show 
the phylogenies with branch lengths corrected for differences in sequencing depth. 
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Supplementary Fig.1| Raw phylogenies for the four youngest adult donors. Phylogenies shown with 
raw mutation count branch lengths adjusted for sequencing depth of the sample using sensitivity.    
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Supplementary Fig.2| Raw phylogenies for the four elderly adult donors. Phylogenies shown with 
raw mutation count branch lengths adjusted for sequencing depth of the sample using sensitivity.   
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The phylogenies were then made ultrametric (or linearised) using a bespoke algorithm to 
make all branch lengths equal, which we call the ‘iteratively reweighted means approach’ 
(Extended Fig. 3c, Supplementary Code). Starting from the root of the tree and moving 
progressively towards each tip, the fraction of time for the given shared branch is calculated 
as the fraction of remaining time times the number of mutations on the given shared branch 
divided by the mean number of mutations of all descendants from that shared branch. The 
function is called recursively, updating the fraction of remaining time, as the algorithm moves 
from root to tip. This algorithm therefore has the property that the most confident timings 
(nodes near the root) are defined first, anchoring the timings of subsequent, less confident 
nodes.  
 
We compared the results obtained using our custom method for linearising the phylogenies 
and an alternative Bayesian approach (Rtreefit) utilised by Williams et al12.  In brief, Rtreefit 
is a Bayesian model for converting mutation count based trees into time-based trees.  The 
method jointly fits a global constant mutation acquisition rate and absolute time branch 
lengths under the assumption that the observed mutation count based branch lengths are 
Poisson distributed with 𝑀𝑒𝑎𝑛 = 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ×𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑅𝑎𝑡𝑒 and subject to 
the constraint that the root to tip duration is the age at colony sampling.  The mean branch 
timings are directly sampled from the posterior distribution and by construction the resulting 
trees are guaranteed to have a root to tip distance that matches the sampling age of the 
colony. The model is coded in R and Rstan and inferred using the Rstan implementation of 
Stan’s No-U-Turn sampler variant of Hamiltonian Monte Carlo method*. For each patient tree 
the model was fitted across four chains each with 20,000 iterations including 10,000 burn-in 
iterations.   The code is available as an R package “Rtreefit” at  
https://github.com/NickWilliamsSanger/rtreefit. 
 
We found extremely high concordance between our custom ‘iteratively reweighted means’ 
approach and the Bayesian approach described above. In all phylogenies the R2 for branch 
length comparisons between the two approaches was > 0.99 (Supplementary Fig. 3). 
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Supplementary Fig.3| Comparison of phylogeny linearisation methods. Plot comparing phylogeny 
branch lengths (in years) between the custom iteratively reweighted means approach for phylogeny 
linearization used in this manuscript and an alternative Bayesian approach (Williams et al12). 
 
Given the tight linear accumulation of mutations in HSPCs with age, the mutation branch 
lengths correspond to molecular time, which can be converted to time in years (Extended Fig. 
3d).  Due to the known higher mutation rate during in utero development, which generates 
on average 55 somatic mutations in our cord blood HSC/MPPs, the first 55 mutations on the 
axis were assigned to the period between conception and birth (age 0), with the remaining 
mutation time evenly split between the years of age of the individual.  
 
Additional information in the form of driver mutations, copy number changes and Y loss was 
then overlaid on the final ultrametric version of each phylogeny (as in Extended Fig. 3d) to 
generate the final phylogenies depicted in Figures 2 and 3 and Extended Figure 5.  Driver 
mutations (which had already been assigned to a phylogenetic node using the tree_mut script 
above) were identified in the dataset by searching the VAGRENT annotations in the 
filtered_muts$COMB_mats.tree.build$mat matrix  (in Rdata file annotated_mut_set_XXX). 
Copy number changes and Y loss events were identified as described in the relevant section 
above on a per sample basis, with this information read in to the tree_cut_analysis.Rmd script 
in .csv format and subsequently used in phylogeny annotation as described in 
tree_cut_analysis.Rmd. 
(https://github.com/emily-
mitchell/normal_haematopoiesis/4_phylogeny_analysis/scripts/tree_cut_analysis.Rmd) 
 
 
Validation of the phylogeny 
To assess the robustness, internal consistency and stability of the shared variants and 
inferred phylogenies we used several approaches: 
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(1) Bootstrapping of the original read counts.  
One well-established approach to assessing the robustness of individual clades in a phylogeny 
is to repeatedly bootstrap the mutation matrix and re-build the phylogeny, observing in what 
proportion of bootstraps each clade is retained. MPBoot incorporates a bootstrap 
approximation method. However, somatic data has a well-established ‘root’ (the human 
reference genome) which makes this approach less applicable in our setting where we have 
high confidence in early splits that our supported by multiple samples, even if the numbers 
of mutations on the branch are low. With our data type the major cause of uncertainty is 
knowing exactly which cells carry a mutation, and what impact this would have on the 
inferred tree structure. Therefore, to better assess this type of uncertainty, we used an 
alternative bootstrapping approach as per Spencer Chapman et al7. Specifically, we used a 
partially-filtered mutation set and bootstrapped the read counts for each colony at each 
locus.  We then subjected the raw read count data to the same filtering and phylogeny-
building approach as was used on the original data, with 1000 replicates per individual. The 
only exception was the beta-binomial filter.  This was applied to the simulated data before 
the read count boot-strapping step. As with conventional approaches, the bootstrap 
phylogenies were then compared to the observed phylogeny to assess the proportion of 
bootstraps in which each clade is retained or lost.  This was compared to the conventional 
mutation bootstrapping approximation performed by MPBoot (Supplementary Fig. 4a). 
Quartet divergence and Robinson-Foulds similarities were calculated using the tqDist 
algorithm40 implemented in the R package Quartet v1.2.041. The bootstrapping analysis was 
performed for one of our elderly adult HSCPC phylogenies to ensure the finding of clonal 
expansions in the phylogeny was robust. We found the bootstrap phylogenies had high 
correlation to the observed phylogeny (Supplementary Fig. 4b) with a median Robinson-
Fould similarity of 0.951 and quartet divergence of 0.999. 
 
(2) Assessment of internal consistency of genotype matrices using the disagreement score.  
This score is based on the observation that in a perfect phylogeny any pair of mutations 
should either be in discrete clades or nested one within the other. To test the consistency of 
our data with this assumption we calculated a ‘disagreement score’. For every pair of loci the 
number of cells in disagreement with this assumption was calculated. The mean score across 
all pairs was then calculated in such a way that cells with unknown genotypes were assumed 
to be in agreement. These scores from all the observed phylogenies were then compared to 
scores generated from random shuffles of the corresponding genotype table, internal to each 
locus. In this way the disagreement score in the observed genotype table can be compared 
to one that has been randomly generated. In all the observed trees the ‘disagreement score’ 
was extremely low compared to that obtained after random shuffling (Supplementary Fig. 
4d), showing our data has high internal consistency and the phylogenies are close to that 
expected in a perfect phylogeny (which would have a disagreement score of 0). 
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(3) Comparison of the MPBoot phylogeny with other phylogeny inference methods.   
To assess the reliability and stability of the phylogeny generated by MPBoot we used the same 
genotype data as input into two alternative algorithms: IQ-TREE37 and SCITE38. IQ-TREE is a 
stochastic algorithm which infers phylogenies using maximum-likelihood. The Jukes-Cantor-
type model for binary data was used as an appropriate model for single-cell whole-genome 
data.  SCITE is an algorithm designed for somatic single-cell data.  It uses Markov chain Monte 
Carlo sampling with an error model that takes potential false positives and false negatives 
into account for tree scoring. We used false positive and false negative rates of 0.001. Both 
these alternative algorithms produced phylogenies for KX003 (81 year male) with high 
agreement to the original MPBoot phylogeny with Robinson-Foulds distances of <0.05 for 
both comparisons (Supplementary Fig. 4e,f).  
 
We further explored whether using SCITE as an alternative phylogeny bulidling approach 
would materially alter any conclusions of our paper. We were able to run SCITE over all but 
one of the phylogenies. The largest phylogeny (KX004) cannot complete within the timeframe 
required for our compute farm ‘basement queue’, which terminates jobs after 4 weeks. To 
be confident that the two methods give concordant trees, we have measured the similarity 
of trees estimated with MPBoot and SCITE. Reassuringly, in all cases there was high 
concordance in the phylogenies produced by the two approaches (Robinsons-Foulds distance 
< 0.07) as shown in the table below.  
 

Individual Robinsons-Foulds 
Similarity of SCITE 

tree 

Quartet Similarity of 
SCITE tree 

Comparison of 32 summary 
statistics  

KX001 0.934 1.000 Unchanged 
KX002 0.949 0.999 Unchanged 
SX001 0.945 0.999 Unchanged 
AX001 0.947 1.000 Unchanged 
KX007 0.977 0.999 Subtle changes (see below) 
KX008 0.960 0.998 Unchanged 
KX003 0.954 1.000 Subtle changes (see below) 

 
 
Most differences that did emerge affected the precise arrangement of some early embryonic 
branch points – these differences would not be anticipated to have an impact on any of the 
key downstream analyses in the manuscript.  
 
We have also formally compared the summary statistics obtained from the phylogenies 
inferred using MPBoot vs SCITE. We found that when the range of summary statistics we 
utilise for the driver ABC modelling are assessed at 4 timepoints, in 5 out of 7 individuals the 
statistics for the MPBoot and SCITE phylogenies are identical. For KX007, 6 of 32, and for 



 13 

KX003, 4 of 32 summary statistics calculated for each phylogeny are discordant but by a 
negligible amount (2 or less). These overall highly concordant findings further confirm that 
the choice of tree-building approach would not have altered the conclusions of the 
downstream modelling analyses. 

 
 
Supplementary Fig.4|Phylogeny benchmarking. a, Robustness of each clade in the KX003 
phylogeny (81-year male) using bootstrapping of the raw sequencing read count data. The 
proportion of bootstraps in which a clade is retained is shown, ordered by decreasing robustness. 
b, KX003 phylogeny annotated to show all nodes that have <90% bootstrap support using 
bootstrapping of the raw sequencing read count data. The nodes are highlighted with the average 
bootstrap support value.   c, Comparison of the sequencing read count bootstrap trees to the 
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original trees by Robinson-Foulds similarity. d, Internal consistency of the genotype matrix for each 
adult individual as demonstrated by the disagreement score. The random shuffles have been 
displayed ‘jittered’. A perfect phylogeny has a score of zero. e-f, Comparison of KX003 phylogenies 
generated by MPBoot and by the alternative phylogeny inference methods IQTree and SCITE. The 
nodes highlighted in red are those that differ between the inference methods, showing that the 
phylogenies are only minimally impacted by the inference method utilised. 

 

Using Rsimpop to simulate HSC populations 
Simulations of complete HSC populations from conception to the age of sampling were 
performed for each individual using the R package rsimpop12 
(https://github.com/NickWilliamsSanger/rsimpop). Rsimpop utilises a birth-death model 
with specified somatic mutation accumulation rate and symmetric cell division rate, to 
simulate a complete HSC population. Each cell within the population has a rate of symmetric 
division and a rate of symmetric differentiation (or death). Asymmetric divisions do not 
impact on the HSC phylogeny and are not accounted for in the model.  
 
Let 𝛼 be the background rate of symmetric self-renewal cell divisions, measured in divisions 
per day.  We model selective advantage of driver containing clone 𝑖 as 𝑠(.  The increased rate 
of symmetric division 𝛼( = 𝛼(1 + 𝑠(). We assume during the early population growth phase 
that the total population grows unrestrained by death. Once the specified population size, 𝑁, 
is reached (within the first few years of life) then the death rate, 𝛽, for each cell matches the 
average division rate in the full population: 
 

B 𝛽
"CDDE

= B 𝛼
FGHI	JKLM	NMHHO

+B B (
NMHHO	GP	NHQPM	(	

1 + 𝑠()𝛼
(

 

Thus giving 

𝛽 =
(𝑁 − ∑ N(( )𝛼 + ∑ N((1 + 𝑠()𝛼(

𝑁  

 
In the case of a single driver mutation containing clone with selection coefficient 𝑠 then the 
deterministic phase behaviour is governed by a logistic growth function: 
 

𝑁T = 𝑁
1

1 + 𝑒𝑥𝑝V−𝛼𝑠(𝑡 − 𝑡T)W
 

 
For some constant 𝑡T (see Williams et al)12. 
 
In the early stages of the exponential growth process, it exhibits an annual rate of growth 𝑆: 
  

𝑆 = 𝑒𝑥𝑝(𝛼𝑠) − 1. 
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For multiple competing driver mutation containing clones, each with modest population sizes, 
it is expected that the above single clone approximation will apply for the individual 
competing clones.  Once one or more of the competing clones represents a significant fraction 
of the overall population then the dynamics will be more complex. For cells containing more 
than one driver mutation the fitness effect on S is additive. 
 
The above model is implemented using the Gillespie algorithm. The waiting time until the 
next event is exponentially distributed, with a rate given by the total division rate + total death 
rate. This event is then ‘division’ with probability=total division rate/(total division rate + total 
death rate).  If the event is ‘division’ then the choice of which cell divides is given by a 
probability proportional to the cell’s division rate, whereas if the event is ‘death’ then all cells 
are equally likely to be chosen.  
 
Implementation was in C++ with an R based wrapper as an R package rsimpop.  The simulator 
maintains a genealogy of the extant cells, together with a record of the number of symmetric 
divisions on each branch, the absolute timing of any acquired drivers and the absolute timings 
of branch start and end.  The package also provides mechanisms for sub-setting simulated 
genealogies whilst preserving the above per branch information. 
 

HSC population size modelling 
We first investigated simple neutral models of HSC populations (from which selection is 
absent). The cell phylogenies, constructed from singe cell genomes, include estimated branch 
lengths, from which we can calculate node heights, and hence the time intervals between 
successive coalescent events. In the case of a neutral model, the genomic data provides 
information about the trajectory of the product Nt (population size x time between 
symmetric self-renewal cell divisions). 
 
However, the genomic data cannot provide information separately about N (population size), 
or t (time between symmetric cell divisions). Furthermore, in the case of a neutral model, all 
the information provided by the genomic data, about the trajectory of the product Nt, is 
contained in sequence of inter-coalescent intervals calculated from the phylogeny. This 
sequence of inter-coalescent intervals is precisely the information which the phylodyn 
package uses to infer the trajectory of the product Nt. 
 
Here, our aim was to perform additional Bayesian inferences about the parameters of neutral 
models from the phylogenies. Specifically, we want to compute marginal posterior densities 
(providing point estimates accompanied by credible intervals) for the ‘LT-HSC Nt’ parameter 
for the first 2-3 decades of life, and two additional parameters representing the midlife fold-
change in Nt (elderly donors only), and late-life fold-change in Nt (all donors). 
We chose flat prior densities on wide intervals (Extended Fig. 8a) to represent prior 
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uncertainty about the values of these parameters, so that the resulting the marginal posterior 
densities could be compared with the inferences from the phylodyn package. 
 
An additional motivation for performing these Bayesian inferences on neutral models, was to 
enable us to perform posterior predictive checks (PPC), in order to decide if the observed 
phylogenies are compatible with neutral models. Note that a separate donor-specific 
posterior distribution was generated (sampled) for each donor (donor-specific ABC), and a 
separate donor-specific posterior predictive p-value was computed for each donor (donor-
specific PPC). Each donor-specific ABC for the neutral model was performed using the ABC 
rejection method (R package abc)13,14.  
 
We used the population trajectory from phylodyn to identify the time period prior to the 
increase related to a ST-HSC/MPP contribution, and the timing of the midlife and late-life fold-
change in Nt (Fig. 4a and Supplementary Fig. 12). We used our data to inform our choices for 
the time between symmetric cell divisions, which was set at 1 year (after the initial population 
growth phase in the first few years of life). We set the rate of mutation accumulation at 15 
mutations per year with an additional 1 mutation for every cell division (both of these were 
drawn from a Poisson distribution centred on the input value). 
 
In the younger individuals (aged < 65) estimates of Nt  in the first few decades of life could be 
made due to the absence of the effect of positive selection (Extended Fig. 12). However, in 
the older individuals (aged > 75), estimates of Nt could not be reliably calculated in the 
phylogenies due to the confounding effect of positive selection. Here we focussed on using 
the PPC method to decide whether the neutral model changes in population size (in the form 
of a bottleneck in the population in mid-life) is compatible with each of the observed trees.  
 
The Bayesian inferences about the parameters of these neutral models were performed using 
Approximate Bayesian Computation (ABC) methods (in which large numbers of simulations 
of the data are performed using rsimpop, in place of computation of the likelihood function). 
 
In order to apply these methods, the sequence of inter-coalescent intervals was replaced by 
a set of summary statistics (the ‘number of lineages’ in the tree through time at three points). 
For each donor, the marginal posterior densities for the parameters of interest are plotted 
alongside the corresponding prior densities, to illustrate how the data has reduced our 
uncertainty about the values of these parameters. For each donor, we can also use the sample 
from the (approximate) posterior distribution (generated by donor-specific ABC) for the 
parameters of the neutral model, to perform donor-specific PPC. 
 
We first generate a large sample of simulated data sets from the posterior predictive 
distribution, and from this we can estimate a donor-specific posterior predictive p-value. The 
purpose of this donor-specific PPC is to decide if the observed phylogeny obtained from each 
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donor is compatible with the proposed neutral model (while taking account of our uncertainty 
about the parameter values in the model). Here we are concerned with all features of the 
observed phylogenies (not only those features which are informative about the parameters 
of the neutral model). For observed phylogenies and simulated phylogenies, we can compute 
a chi-squared discrepancy variable which incorporates many summary statistics (including 
clade size statistics). The posterior predictive p-value is computed from the upper tail-area 
probability under the distribution of the difference between the simulated chi-squared 
discrepancy and the observed chi-squared discrepancy15. If the p-value is close to zero, then 
the observed data is extreme (an outlier) compared to the data predicted under the proposed 
model (taking account of our uncertainty about the parameter values in the model). Thus, 
when the p-value is close to zero, this is evidence that the observed phylogeny is not 
compatible with the neutral model. 
 

HSC population size estimate 
Using a Monte Carlo simulation approach, we sampled from the distributions of each variable 
500,000 times, calculating the value of N for each set of randomly sampled variables. This was 
done using the following distributions: telomeric shortening rate per division: 
uniform(minimum = 30, maximum = 100);  symmetric division rate: uniform(minimum = 0.8, 
maximum = 1.0); Nt : uniform(minimum = 50,000, maximum = 250,000); average telomere 
loss per year: uniform(minimum = 30, maximum = 40). 
(https://github.com/emily-
mitchell/normal_haematopoiesis/6_population_modelling/scripts/estimating_N.Rmd) 
 

dN/dS analysis 
We used the R package dndscv16 (https://github.com/im3sanger/dndscv) to look for evidence 
of positive selection in our dataset (https://github.com/emily-
mitchell/normal_haematopoiesis/5_dNdS/scripts/all_DNDScv_final.Rmd). The dndscv 
package compares the observed ratio of missense, truncating and nonsense to synonymous 
mutations, with that expected under a neutral model. It incorporates information on the 
background mutation rate of each gene and uses trinucleotide-context substitution matrices.  
The approach provides a global estimate of selection in the coding variant dataset (Table S7), 
from which the number of excess protein coding, or ‘driver mutations’ can be estimated. In 
addition, it identifies specific genes that are under significant positive selection.  
 
While a small bias in the estimated dN/dS ratio could lead to an apparently significant excess 
when the dataset contains large numbers of mutations, as our does. In defence of the 
significant excess of non-synonymous mutations we found, we proffer four lines of argument: 
 
1. Correction for confounders in the dN/dS algorithm  
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The dN/dS algorithm16 is one of the best-in-class algorithms for quantifying somatic selection, 
as demonstrated by a recent pan-cancer comparison of different methods17. One of the 
reasons for this is the rigorous approach it takes to correcting for the known variables 
influencing mutation rate across the genome, including replication timing, chromatin state 
and DNAse accessibility18. In addition, the model balances the predicted mutation rates from 
these global covariates with the observed synonymous mutation rate within a gene – this 
latter correction captures many of the unknown variables affecting mutation rates acting at 
a local level.  
 
Furthermore, the algorithm corrects for the observed mutational spectrum16 – this is 
important because, for example, transitions are more likely to generate a synonymous 
mutation than transversions. The model parameterises all 192 rates representing the 6 
different types of base substitution, the 16 combinations of bases 3’ and 5’ to the mutated 
base, and transcribed versus non-transcribed gene. This means that trinucleotide mutational 
signatures do not bias the overall dN/dS estimate.  
 
2. Running dN/dS algorithm with greater stringency 
 
In addition to running the dN/dS algorithm in its standard implementation, we have checked 
whether the overall estimates are materially altered if we run it using two adaptations to 
impose greater stringency.  
 
The first adaptation was to run the algorithm excluding sites that are masked by our variant 
caller in both the numerator and the denominator (a total of 175 million sites genome-wide). 
Essentially, most somatic mutation callers, including ours1, have a ‘normal panel’ or 
equivalent where sites that are frequently non-reference because of sequencing artefact or 
germline polymorphism are masked. Since germline polymorphisms have a dN/dS ratio << 1, 
this can lead to under-calling of synonymous somatic mutations relative to non-synonymous 
mutations. Running our algorithm with sites in this normal panel excluded from both 
numerator and denominator had minimal impact on the estimated overall value of dN/dS 
(1.0548, CI95%=1.02488-1.0856; versus 1.0586, CI95%=.02861-1.0895 for the standard 
implementation). This argues that there is no bias arising from masking of true somatic 
mutations at germline polymorphisms. 
 
The second adaptation was to run the dN/dS algorithm using correction for pentanucleotide 
sequence context. While a trinucleotide context captures virtually all of the effects of 
mutational signatures19, there remains the theoretical possibility that any signature extending 
beyond that may affect synonymous mutations differently to non-synonymous mutations. To 
test this, we repeated the analysis using rates for the 6 mutation classes and 256 different 
combinations of 2 bases each side of the mutated base. This also had minimal impact on the 
estimated value of dN/dS for missense variants (1.0472, CI95%=1.0155-1.0799; versus 1.0589, 
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CI95%=1.02852-1.0902 for the standard implementation) or the dN/dS for truncating variants 
(1.0788, CI95%=1.0106-1.1516; versus 1.0569, CI95%=0.99558-1.1220 for the standard 
implementation). Importantly, a pentanucleotide context covers the whole of the codon, no 
matter which base in the codon is mutated (whereas a trinucleotide context only covers the 
whole codon if the middle base is mutated) – this means that even if there were residual 
effects of mutational signatures beyond the pentanucleotide, they would not affect the 
mutated codon. 
 
3. Measuring dN/dS on simulated mutations 
 
As a further check, we have now generated simulated mutations in the sequencing data and 
run the dN/dS algorithm. We took 19 BAM files from cord blood HSC/MPPs in our dataset for 
which zero coding mutations were identified by our variant caller. For each BAM file, we 
randomly chose 2000 sites in the exome to have simulated mutations, with the mutations 
following the same mutational spectrum as observed in the whole dataset. At each position 
with a mutation, we then extracted the reads reporting that base, and changed the base-call 
recorded at that base with 0.5 probability (to get average VAF of 50%), according to the 
following rules: change to mutant base if read reported reference base; change to reference 
base if read reported mutant base; change to the other non-reference, non-mutant base if 
read reported non-reference, non-mutant base.  
 
The modified BAM files then underwent exactly the same process of variant calling as our real 
data. We verified that the majority of the simulated mutations were correctly called (the 
proportion dependent on sequencing coverage), and that the mutation spectrum was the 
same as that observed in the real data. In total, we called 29008, which was very close to our 
real dataset of 25,888 coding mutations. We ran the dN/dS algorithm over the simulated 
dataset and found no bias in the results, with a dN/dS ratio for all randomly simulated variants 
of 1.00. For the simulated missense mutations, the estimated dN/dS was 1.001 (CI95%=0.974-
1.028); and for simulated truncating mutations, it was 1.001 (0.956-1.067).  
 
These simulations would have captured any biases in the estimation of dN/dS that arose from, 
for example, differential sequencing coverage across the genome, variant calling, variant 
filtering, variant annotation or the dN/dS algorithm. Instead, the estimates of dN/dS are 
almost exactly 1.00, as expected, with confidence intervals that do not overlap with those for 
our real data. 
 
4. Frequency of clonal expansions concords with estimates of numbers of driver mutations 
 
Our argument that there is pervasive positive selection is not purely based on the genetic 
analysis. We also observe a number of clonal expansions in our dataset. We tested 
Approximate Bayesian Computation (ABC) models to see whether these expansions could be 
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explained by neutral drift (for example, programmed changes in HSC population size). 
However, these neutral models were unable to capture the asymmetry of branching across 
the clades in the elderly subjects (many singleton branches interspersed with 10-20 
considerably expanded clones – see Extended Figure 8). 
 
Instead, to capture this asymmetry, we had to use models which included positive selection. 
The estimates of driver mutation rates that were required to generate trees that matched 
those we observed were about 2.0 x 10-3/HSC/year. These models considered only driver 
mutations with fitness coefficient s>5%. Note that the ABC modelling uses no genetic data to 
arrive at this estimate – it is purely based on how many drivers are required to generate the 
observed branching patterns in the real phylogenies of the older individuals.  
 
Reassuringly, this estimate of the rate of drivers from the ABC modelling is broadly 
comparable with the estimate obtained from the dN/dS analysis. Overall, non-synonymous 
mutations accumulated in HSC/MPPs at a rate of 0.12/HSC/year (CI95%=0.11-0.13), with dN/dS 
estimates suggesting that 1/34 to 1/12 non-synonymous mutations were drivers 
(approximately 5%). This computes to a driver rate of 3.6-10 x10-3/HSC/year estimated from 
direct genetic analysis, an estimate which would include drivers with s<5% present in 
sequenced colonies. 
 

Amino acid variant annotation 
We performed amino acid variant annotation using SIFT4G (https://sift.bii.a-
star.edu.sg/sift4g/AnnotateVariants.html)20 and Polyphen2 
(http://genetics.bwh.harvard.edu/pph2/bgi.shtml)21.  Of a total 16536 missense mutations in 
our dataset, 5088 could be annotated by SIFT4G (38 in myeloid driver genes) and 4551 could 
be annotated by Polyphen2 (35 in myeloid driver genes). Approximately 42% and 45% of the 
annotated mutations were deemed to be ‘deleterious’ respectively (see Table below).  If the 
same proportion of missense mutations is present in the dataset as a whole we would predict 
approximately 7000 ‘deleterious mutations’, equating to around 1000 per adult individual. 
  

SIFT4G Polyphen2 
Total missense mutations in dataset 16536 16536 
Number annotated 5088 4551 
Number in known driver (excluded) 38 35 
Deleterious 1998 2049 
Possibly deleterious 319 762 
Tolerated 2495 1709 
Fraction deleterious 0.42 0.45 
Predicted deleterious in whole dataset 6945 7441 
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Table S7 lists all coding variants used to run dN/dS with annotation including the SIFT and 
Polyphen2 scores. 
 

Driver mutation acquisition rate estimation 
The dN/dS parameter is widely used in evolutionary genetics to infer patterns of selection22,23, 
recently adapted for cancer and somatic mutations16. It is essentially a measure of how far 
the observed number of non-synonymous mutations diverges from the number that would 
be expected from the synonymous mutation rate, after correction for mutation spectrum16. 
It is underpinned by the assumption that synonymous mutations evolve neutrally, and 
selection only acts on non-synonymous mutations. For example, a dN/dS ratio of 1 means 
that we observed exactly the same number of non-synonymous mutations as we would have 
expected for the number of synonymous variants. A dN/dS ratio of 2 means we observed 
twice as many non-synonymous mutations as expected, implying that half of the observed 
non-synonymous mutations occurred as expected for the background mutational processes, 
while the other half have accumulated through positive selection. From this, with a total 
number of observed non-synonymous mutations, we can estimate the number of driver 
mutations in excess of the background expectation (noting that this is an underestimate of 
the true number in the presence of any negative selection).  
 
This, then, is the intuition for the formal mathematical exposition. Given an observed number 
of non-synonymous mutations, 𝑛NS, and an estimated dN/dS ratio, 𝜔NS, the formula for the 
expected number of drivers, 𝑛D, is as follows: 

𝑛D = 	
(𝜔NS − 1)
𝜔NS

𝑛NS 

 
To give a worked example using missense substitutions in our dataset, we estimated the 
overall dN/dS ratio to be 1.06 with the 95% confidence interval to be 1.03 – 1.09 (Extended 
Fig. 9b). We observed a total of 16,536 non-synonymous mutations. The number of excess 
missense mutations, then, is calculated as (1.06 – 1)/1.06 * 16536, which works out at 936, 
with the lower bound on the confidence interval as (1.03 – 1)/1.03 * 16536, which equals 482. 
This then equates to the estimation in the manuscript that 1 mutation in every 18 (16536/936=17.7) 
occurring missense mutations is under positive selection. 
  
Linear mixed effects models were used to test for a linear relationship between age and the 
number of non-synonymous mutations. Colonies with a sequencing depth <14 were excluded. 
 
age.non_syn.depth <- lmer(number_non_syn ~ age + (age | donor_id), data = 
subset(summ_cut, mean_depth > 14), REML = F) 
 
This linear regression analysis found that non-synonymous mutations are acquired at a rate 
of 0.12/HSC/year (CI95%=0.11-0.13) and the dN/dS estimates inform that 1 in 12 to 1 in 34 
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non-synonymous mutations in the dataset are drivers. We used these estimates in a Monte 
Carlo simulation approach, sampling from the distributions of each variable 500,000 times, 
calculating the value of N for each set of randomly sampled variables. This was done using 
the following distributions: non-synonymous mutation acquisition per year: 
uniform(minimum = 0.11, maximum = 0.13);  fraction of drivers: uniform(minimum = 0.029 
(1/34), maximum = 0.083 (1/12)). 
(https://github.com/emily-
mitchell/normal_haematopoiesis/5_dNdS/scripts/estimating_driver_acquisition_rate.Rmd) 
 

Modelling positive selection in the HSC population 
Considering evidence from the dN/dS analysis, we aimed to investigate more elaborate 
models of HSC population dynamics, by incorporating positive selection acting on driver 
mutations. Here, as before, we use ABC methods to make inferences about the parameters 
of the model (incorporating positive selection), and posterior predictive checks (PPC), in order 
to decide if the observed phylogenies are compatible with this relatively simple non-neutral 
model (incorporating positive selection). In this non-neutral model, a static HSC population of 
100,000 cells undergoing 1 symmetric self-renewal division per year, we explored a range of 
parameter values for the number of drivers introduced into the population per year, as well 
as the shape and rate of the gamma distribution used to define the distribution of fitness 
effects these drivers were drawn from (Extended Fig. 8a).  
 
We used a threshold of 5% for the minimum fitness effect of these drivers (equivalent to a 
selection coefficient of 0.05) as Watson et al predicted drivers with a fitness effect of 4% or 
less could not expand to a VAF > 1% over the human lifespan24. We chose flat prior densities 
on wide intervals (Extended Fig. 8a) to represent prior uncertainty about the values of these 
parameters.   
 
First, a separate donor-specific posterior distribution was generated (sampled) for each donor 
(donor-specific ABC). The simulations were performed using rsimpop, and the donor-specific 
ABC (ridge regression on the re-scaled, and logit-transformed, parameter values) was 
performed using the R package abc. 
 
Second, we used a sequence of four ABC regression steps to generate a sample from the 
(approximate) multiple-donor posterior distribution on the combined data from the four 
oldest donors. The simulations were again performed using rsimpop, and the ABC regression 
steps were again performed using the R package abc13. In the case of non-neutral models, it 
is no longer the case that all the information provided by the genomic data, about the 
parameters of the model, is contained in sequence of inter-coalescent intervals (calculated 
from the phylogeny). Therefore, additional summary statistics (including clade size statistics) 
were used in the ABC steps. 
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A separate donor-specific posterior predictive p-value (donor-specific PPC) was computed for 
each donor (not only for the four oldest donors), based on the (approximate) multiple-donor 
posterior distribution on the combined data from the 4 oldest donors. In this case, the sample 
from each donor-specific posterior predictive distribution was generated by repeated 
sampling of parameter values from the multiple-donor posterior distribution, and then re-
simulating the model (using rsimpop) conditional on the donor-specific sample size (number 
of single cell genomes) and donor age. As before, the posterior predictive p-value is computed 
from the upper tail-area probability under the distribution of the difference between the 
simulated chi-squared discrepancy and the observed chi-squared discrepancy15.  
 
The purpose of this donor-specific PPC is to decide if the observed phylogeny obtained from 
each donor is compatible with the simple non-neutral model (while taking account of our 
uncertainty about the parameter values in the model). If the p-value is close to zero, then the 
observed data is extreme (an outlier) compared to the data predicted under the simple non-
neutral model. This is interpreted as evidence that the observed phylogeny is not compatible 
with the simple non-neutral model, and that more elaborate models need to be considered. 
 

Phylofit estimation of selection coefficients 
We used the algorithm phylofit to estimate the selection coefficients of known and unknown 
drivers in our phylogenies. Phylofit uses an efficient MCMC approach to model selection 
within a clade using the probability density of coalescence times and the population size 
trajectory. As such it can be thought of as a parametric adaptation of the phylodyn model.  
 
The starting point for phylofit is Equation 1 in Lan et al ‘An Efficient Bayesian Inference 
Framework for Coalescent-Based Nonparametric Phylodynamics’25: 
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Where {𝑡d|𝑘 ∈ 1. . 𝑛} are the timings of the time ordered coalescences belonging to the driver 
mutation containing clade, 𝑡Zis the first coalescence of the expansion and 𝑡] is the sampling 
time.  These times are expressed as the interval between the event and the sampling time 
(assumed to be isochronous). 
 
Substituting our formula for the cell count of the driver mutation containing clade 𝑁(𝑡) (in 
our case aberrant cell count refers to expanded clades both with and without known drivers) 
and performing the integral, eliminating terms that do not depend on overall population size, 
𝑁 , the trajectory midpoint, 𝑡(T), and the selective coefficient, 𝑠̂ = 𝛼𝑠, we arrive at the 
following log-likelihood: 
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Where recall the annualised selective coefficient is 𝑆 = exp(𝛼𝑠) − 1 = exp(𝑠̂) − 1 
We incorporate this central likelihood equation into a Bayesian model with uniform priors on 
log(N), 𝑠̂ and 𝑡(T).  

𝑠̂~𝑈(0.001,2) 
𝑡(T)~𝑈(𝑎, 𝑏) 

log10(N)~𝑈(4,6) 
𝒕~𝑃ℎ𝑦𝑙𝑜(𝑠̂, 𝑡(T), 𝑁) 

 
Here 𝑃ℎ𝑦𝑙𝑜 is the probability distribution described by the log-likelihood function specified 
above. 
 
Additionally, assuming unbiased sampling, we can optionally incorporate the number of 
sampled driver mutation containing colonies 𝑛T�m  out of 𝑛m�m  total colonies as an additional 
layer in the model:  

𝑛T�m~Binomial �𝑛m�m	,
1

1 + expV−𝑠̂(𝑇 − 𝑡(T))W
� 

 
The parameters, 𝑎 and 𝑏, setting the realistic range for the midpoint depend on whether the 
last component of the model is active and are detailed in the code.   
 
The above models were coded in R and Rstan and inferred using the Rstan implementation 
of Stan’s No-U-Turn sampler variant of Hamiltonian Monte Carlo method*. Models were 
fitted across three chains each with 20,000 iterations including 10,000 burn-in iterations. 
 
The input data for this approach is an ultrametric tree. We obtain the ultrametric tree for this 
analysis using the methods already outlined.  The code used to run phylofit can be found at 
(https://github.com/emily-mitchell/normal_haematopoiesis/7_phylofit/scripts/phylofit.R) 
 
The phylofit algorithm was validated by assessing the correctness of the selection coefficient 
inference when the algorithm was run on single driver mutation clones with a known selective 
coefficient.  The procedure was as follows: 
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Simulate population with initial division rate of 0.1 per day (𝛼 = 0.1)	until population has 
grown to the target equilibrium population size. 

• Set symmetric division rate to 1 per year (𝛼 = 0.5/365)	and simulate neutral 
evolution until time 𝑇=5 years. 

• Save the state of the simulation (*) 
• Introduce the driver with the specified selection coefficient. 
• If the driver lineage dies out before the sampling age is reached, or has less than 2% 

clonal fraction at the sampling age, then return to the saved state (*) and continue. 
 
An unbiased sub-sample of cells is taken from the extant population of cells. The phylofit 
algorithm was then applied to the mutant clade in the sub-sampled simulated ultrametric 
phylogenetic tree.    
 
The algorithm was found to recover the selection coefficients over a range of values of 
selection coefficient (Supplementary Fig. 5).    
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Supplementary Fig.5|Phylofit Benchmarking. The inference of annualised fitness effect, s.  The 
phylofit results (prior s range is 0-100% and log10(N) is 4 to 6) are shown for one hundred 
simulations for each of five values of s (=10%, 20%, 30%, 40% and 50%) and N=100,000 cells. The 
vertical lines show the 95% credibility intervals of the inferred selection coefficients with red lines 
highlighting instances where the true selection coefficient lies outside the 95% credibility interval 
(“alpha” is the proportion of such cases).  The sample mean estimate of s and the corresponding 
95% confidence interval are also shown.  The benchmarking shows that on average the selection 
coefficient is accurately recovered with little bias.  
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Supplementary Background 
 
Definition of phylodynamics 
Phylodynamics is defined as the study of how population level evolutionary processes act to 
shape phylogenies. To date the phylodynamic approach has been applied most commonly to 
rapidly evolving viral populations, where it has been used to characterise transmission 
dynamics26.  
 

Definition of Nt 
One fundamental tenet of phylodynamics is that the frequency of coalescent events in the 
trees is defined by Nt, where N is the population size and t  is the generation time. This means 
that the same phylogeny could be obtained from a population of 100,000 with a generation 
time of 1 year (Nt = 100,000) and a population of 25,000 with a generation of 4 years (again 
Nt = 100,000). 
 

Phylodynamic principles 
It has been shown that in a neutrally evolving population the pattern of coalescent events in 
a phylogeny created from a random sample of individuals can be used to infer historic 
population size changes25. Specifically, in populations of a constant size (N) and generation 

time (t) there will be more coalescent events (which define individuals that are related) 
observed in a small compared to a large population. The reason for this difference in 
phylogenies from small and large populations can be understood by imagining the predicted 
phylogeny obtained from sampling 10 random individuals from a population of 50 individuals, 
compared to sampling the same number from a population of 500. We would expect to have 
a higher chance of sampling siblings and cousins from the smaller population than the larger, 
which manifests as more coalescent events in the phylogeny from the smaller population 
(Supplementary Fig. 6). This concept can be taken a step further, such that in a population 
with a fluctuating population size, more coalescent events will be observed in time ‘windows’ 
where the population size is small compared to when it is larger. 
 
The action of genetic drift in a population means that a proportion of lineages are lost 
stochastically per unit time, and therefore the older the lineages in a population the more 
coalescent events will be observed per unit time. This is accounted for in phylodynamic 
models such as phylodyn. 
 
The action of positive selection in a population will alter the pattern of coalescent events in a 
phylogeny if it results in detectable clonal expansion. This means that inferences of 
population size and historic population dynamics are only valid in populations that do not 
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have evidence high levels of positive selection. The approach also relies on the random 
sampling of cells within the population. 
 

Application of phylodynamics to stem cell populations 

When applied to stem cell populations, N is the number of stem cells in the population and t  
is the generation time. Stem cells can divide in three distinct ways.  The first is a symmetric 
self-renewal division that creates 2 daughter stem cells, so increasing the stem cell population 
and being the equivalent of stem cell birth. The second is a symmetric differentiation division 
that results in 2 differentiated daughter cells, which is the equivalent of stem cell death. The 
final type is an asymmetric division, which produces one stem cell and one differentiated cell 
and therefore does not alter the size of the stem cell population. It can be seen that only the 
symmetric self-renewal division results in a daughter progeny that increases the size of the 
stem cell population. From the phylodynamic perspective stem cell generation time is 
therefore defined as the time between symmetric self-renewal divisions. 
 
Due to the requirement to sample random cells within a population, it is impossible to 
robustly apply phylodynamic methodology to somatic stem cells in solid organs. However, the 
haematopoietic system is the one example of a somatic stem cell population that can be 
randomly sampled, either through peripheral or cord blood sampling, or by taking a large 
bone marrow sample from multiple bones. The sampling of large volumes of bone marrow 
(50-80ml) from deceased organ donors provides the additional advantage that these 
individuals are highly likely to have had high levels of circulating cytokines at the time of 
sampling which is known to mobilise HSCs within the bone marrow27,28. This makes the 
haematopoietic stem cell population sampled in these ways the ideal candidate for the 
application of phylodynamic methods. Nevertheless, interpretation of the phylogenies 
created by sampling HSCs can be non-intuitive. The next section therefore expands on the 
simulated phylogenies provided in Extended Figures 6 and 7 to aid interpretation of our 
results. 
 

Supplementary Simulations 
In all the simulated phylogenies illustrated below, the R package rsimpop was used to 
simulate a full neutrally evolving HSC population of size N. At a given age 380 cells were 
sampled at random from the full population to allow creation of comparable phylogenies to 
those we have obtained from real HSC/MPPs. In all simulations the generation time (t) was 
set at 1 year meaning Nt = N. A phylodyn plot is also shown for each phylogeny to show how 
accurately the population trajectory could be recreated from the pattern of coalescent 
events. In phylodyn plots the downward dips in the trajectory (black line) represent 
coalescent events in the phylogeny. 
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Effect of population size 
Increasing N reduces the number of coalescent events in the phylogeny of cells with a fixed 
generation time sampled from an individual of a given age (Supplementary Fig. 6). At age 30 
there is loss of resolution in the phylodyn output between Nt = 500,000 and Nt = 750,000. 
 
 

 

 
Supplementary Fig.6|Effect of population size. a, Trajectories of Nt  used as input to rsimpop for the 
simulations to create phylogenies in b. Note the Y axis depicting Nt is on a log scale. b, Phylogenies 
created by randomly sampling 380 cells from the final full simulated population of between 25,000 
cells (Phylogeny 1) and 750,000 cells (Phylogeny 4). Phylogenies 1 to 4 are all derived from simulations 
of the HSC population up to the age of 30 years. Each simulation has an Nt  of 100,000. In all cases Nt  
is the same as the population size (N), as the generation time (t)  is 1 year. The phylodyn trajectories 
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to the right of each simulated phylogeny use the pattern of coalescent events to recover the input 
trajectories for Nt.  

 
Effect of age 
Increasing age allows a more accurate estimate of Nt due to the higher number of coalescent 
events per unit time (Supplementary Fig. 7). This increase in the number of coalescent events 
per unit time for a given population size occurs as a result of genetic drift.  
 

 
 
Supplementary Fig.7|Effect of age. a, Trajectories of Nt  used as input to rsimpop for the 
simulations to create phylogenies in b. Note the Y axis depicting Nt is on a log scale. b, Phylogenies 
created by randomly sampling 380 cells from the final full simulated population of 100,000 cells at 
between age 20 (Phylogeny 1), age 40 (Phylogeny 2), age 60 (Phylogeny3) and age 80 (Phylogeny 
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4). Each simulation has a constant Nt  of 100,000 In all cases Nt  is the same as the population size 
(N), as the generation time (t)  is 1 year. The phylodyn trajectories to the right of each simulated 
phylogeny use the pattern of coalescent events to recover the input trajectories for Nt.  

 
 

 

Population decline  
A decline in population size is reflected by an increase in the number of coalescent events 
captured per unit time as compared to when the population was larger (Supplementary Fig. 
8). Again, the older the individual the more accurately phylodyn is able to recover the true 
simulated population size trajectory. Decreases in Nt  to less than 25,000 can be reasonably 
accurately captured by phylodyn.  In younger individuals this is best observed as an increase 
in the frequency of bumps in the trajectory. 
 

 
 
Supplementary Fig.8|Effect of population decline. a, Trajectories of Nt  used as input to rsimpop 
for the simulations to create phylogenies in b. Note the Y axis depicting Nt is on a log scale. b, 
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Phylogenies created by randomly sampling 380 cells from the final full simulated population of 
25,000. Each simulation has an initial Nt  of 100,000 with a decline to 25,000. In all cases Nt  is the 
same as the population size (N), as the generation time (t)  is 1 year. The blue boxes indicate the 
period of time in which the population size is decreased. The phylodyn trajectories to the right of 
each simulated phylogeny use the pattern of coalescent events to recover the input trajectories for 
Nt. The blue line marks the time of change in Nt.  

 

Population growth  
An increase in population size is reflected by a decrease in the number of coalescent events 
captured per unit time as compared to when the population was smaller (Supplementary Fig. 
9). Again, the older the individual, the more accurately phylodyn is able to recover the true 
simulated population size trajectory. Increases in population size to over 500,000 result in a 
loss of resolution (and overestimation of Nt  in individuals < 40). In younger individuals the 
change in population size is best observed as a reduction in the frequency of coalescent 
events (bumps in the trajectory), but the magnitude of the change cannot be accurately 
determined. 
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Supplementary Fig.9|Effect of population increase. a, Trajectories of Nt  used as input to rsimpop 
for the simulations to create phylogenies in b. Note the Y axis depicting Nt is on a log scale. b, 
Phylogenies created by randomly sampling 380 cells from the final full simulated population of 
750,000. Each simulation has an initial Nt  of 100,000 with an increase to 750,000 in midlife. In all 
cases Nt  is the same as the population size (N), as the generation time (t)  is 1 year. The blue boxes 
indicate the period of time in which the population size is increased. The phylodyn trajectories to 
the right of each simulated phylogeny use the pattern of coalescent events to recover the input 
trajectories for Nt. The blue line marks the time of change in Nt. 

 

Population bottlenecks 
‘Bottlenecks’ in the population represent periods of time with a reduced population size 
compared to baseline. These can be recovered accurately by phylodyn at all ages, given a 
reduction to in Nt  from 100,000 to 10,000 during the bottleneck period (Supplementary Fig. 
10). 
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Supplementary Fig.10|Effect of population ‘bottleneck’. a, Trajectories of Nt  used as input to 
rsimpop for the simulations to create phylogenies in b. Note the Y axis depicting Nt is on a log scale. 
b, Phylogenies created by randomly sampling 380 cells from the final full simulated population of 
100,000. Each simulation has an initial Nt  of 100,000 with a decline to 10,000 during a period of 
midlife. In all cases Nt  is the same as the population size (N), as the generation time (t)  is 1 year. 
The blue boxes indicate the period of time in which the population size is decreased. The phylodyn 
trajectories to the right of each simulated phylogeny use the pattern of coalescent events to recover 
the input trajectories for Nt. The blue lines mark the times of change in Nt. 

 

Positive selection 
Positive selection can also be simulated in the phylogenies as illustrated in Supplementary 
Fig. 11 and Extended Fig. 11. These figures show phylogenies drawn from HSC populations 
where N is 100,00 and t is 1 year, with the population as a whole acquiring 200 driver 
mutations per year, although not all of these will be fixed in the population.  The fitness effect 
of the driver mutations is drawn from a fitness effect gamma distribution (with shape = 0.47 
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and rate = 34) that incorporates a fitness effect threshold of 5% (Fig. 5f). These parameters 
allow accurate recapitulation of the observed phylogenies across the human lifespan. The 
simulations illustrate how, although driver mutations are present in the phylogenies of 
individuals aged below 40, they do not typically impact the pattern of observed coalescences 
until later in life. This observation provides support for the accuracy of our estimates of Nt  in 
the two youngest individuals in our cohort. In addition, the simulations demonstrate how 
large clones typically only become detectable after the age of 60, despite the founding driver 
mutations having been acquired decades earlier (typically in the first 3-4 decades of life). They 
also illustrate the range of older phylogenies (similar to the range of topologies in our real 
phylogenies) that can be generated from the stochastic process of driver acquisition.  The 
simulations show how by age 115 years the haematopoietic system could commonly be 
sustained by just two clones with no known driver mutations, as has been previously reported 
in a single real individual29. 
 
The simple model we use predicts that by age 80, typically > 90% HSCs contain at least 1 driver 
mutation. In addition, there is a high prevalence of cells containing multiple drivers, such that 
in later life clonal competition between driver containing clones with different fitness effects 
can cause complex clonal dynamics. This is illustrated by that fact that some of the highlighted 
clades remain stable in size over the last few decades of life, while others may even decline 
in size. In all illustrated cases one or more ‘fittest’ clones continues to expand into extreme 
old age.  
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Supplementary Fig.11| Phylogenies of 380 cells sampled from a population of 100,000 cells that 
has been maintained at a constant Nt over life, with incorporation of positively selected ‘driver 
mutations’. The driver mutations have a fitness effect > 5% (drawn from a gamma distribution with 
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shape = 0.47 and rate = 34) and enter the population at a rate of 200 per year.  These are the optimal 
estimates of these parameters based on our ABC modelling. The inclusion of these driver mutations 
is able to recapitulate a similar clade size distribution to that observed in the real HSPC phylogenies 
of the observed individuals across the whole age range. However, including driver mutations does 
not fully recapitulate the observed lack of coalescent events in the last 10-15 years of life, showing 
that an increase in Nt over this time is also required to fully recreate the patterns of coalescences 
in the real phylogenies. Driver mutations are marked with a symbol and their descendent clades are 
coloured. In all cases Nt  is the same as the population size (N) as the generation time (t) in all 
simulations is fixed at 1 year. The symbols / colours are not consistent for driver mutations between 
plots. The largest clades are therefore coloured in a consistent way beneath the plots to show how 
their size changes over time. The simulated phylogenies illustrate the complex clonal dynamics that 
can occur in later life as a result of clonal competition. While the majority of clades continue to 
expand, others stay relatively stable and some reduce in size. The phylogenies also show that by 
the age of 80 typically > 90% of HSCs in the population carry at least one driver mutation.   
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Supplementary Results  
 
Phylodyn trajectories for the older individuals 
Phylodyn trajectories for the older individuals (age > 75) (Supplementary Fig. 12) cannot be 
reliably interpreted due to the presence of multiple positively selected clades in each case. 
However, the trajectories were used to inform the timing of populations size changes in the 
ABC modelling approach for HSC population size (as below). 
 
 

Time period 75 year old 76 year old 77 year old 81 year old 
Change 1 10-19 15-24 10-19 15-19 
Mid-life bottleneck 20-45 25-50 20-45 20-50 
Change 2 46-60 51-60 46-60 51-60 

  
 
 

 
Supplementary Fig.12| Phylodyn plots illustrating the trajectory of Nt  for human LT-HSCs in the 
four adult donors aged >75 if the pattern of coalescent events in their respective phylogenies was 
not confounded by the presence of positive selection. The black line represents the trajectory of 
LT-HSC Nt, with the shaded grey area on either side representing the 95% credibility interval.  
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Phylogeny annotated with BM HSC/MPP vs BM HPC cell type 
For the KX004 phylogeny (77-year-old female), we sequenced 352 BM HSC/MPPs and 99 
HPCs, both bone marrow derived.  Supplementary Fig. 13 shows the phylogeny with the 
terminal progenitor cells lineages highlighted blue. For 2 clades the clonal fraction in the 
HSC/MPPs and HPCs is quite different, providing some evidence that drivers may differ in the 
compartment in which they exert their fitness effects. Some for example could cause 
increased proliferation in the HSC/MPP compartment, while others may confer an advantage 
at the progenitor level. 
 

 
 
Supplementary Fig.13| Real phylogeny for KX004 (77 year female) annotated by cell type (BM 
HSC/MPP vs BM HPC). Two clades with differing clonal fractions of these cell types are highlighted. 

 

Posterior distributions for ‘driver modelling’ parameters 
Three parameters were included in the ABC driver modelling: 1) rate of the gamma 
distribution of fitness effects, 2) shape of the gamma distribution of fitness effects 3) Drivers 
(with s>5%) entering the HSC population of size 100,000 per year. The posterior distributions 
for all three parameters are shown in Extended Fig. 13a. 2D plots showing the relationship 
between the three parameters are shown in Supplementary Fig. 14 below. 
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Supplementary Fig.14| 2D plots showing the relationship between the posterior distributions of 
the three parameters estimated in the driver modelling approach: 1) rate of the gamma distribution 
of fitness effects, 2) shape of the gamma distribution of fitness effects 3) Drivers (with s>5%) 
entering the HSC population of size 100,000 per year.   

Putative additional novel drivers 
Additional possible novel driver genes were identified on the branches of phylogenies leading 
to expanded clades (Supplementary Fig. 15 and Extended Fig. 11b). Cancer gene variants, as 
included in the Cosmic Cancer Census v.92 gene set (Table S4), which comprises a set of 723 
genes causally implicated in cancer development.  The top 1500 dN/dS gene hits (Table S6) 
were also interrogated and included only where a manual check of gene function was not 
incompatible with a possible mechanism to explain clonal expansion. 
  

 
 
Supplementary Fig.15| Table showing putative identified drivers for all four expanded clades in the 
young adult individuals (clade size 3 – 5). There are strong candidate drivers for these four 
individuals, whose expansions all have relatively high fitness effects, as would be expected for them 
to have been able to expand to a detectable level by a young age. The fitness effect was not 
calculated for SX001_Clade1 due to the clade size being 3 (too small for a meaningful phylofit 
analysis). For the elderly adult individuals a clade size cut off of ³ 5 was used as clade sizes of up to 
4 can occasionally be seen under a neutral model by this age. 
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Supplementary Note 1: Intuition for Approximate Bayesian Computation 
 
The Approximate Bayesian Computation framework we have used for modelling different 
haematopoiesis scenarios is relatively intuitive. In the initial phase, we generate hundreds of 
thousands of different simulations of haematopoietic stem cell compartments. Each 
simulation follows exactly the same assumptions – constant population size of HSCs during 
adulthood; linear entry of driver mutations into the HSC compartment across life; fitness 
coefficients of drivers drawn from a gamma distribution; fitness coefficient is constant with 
time. We do not know a priori the values for several of these key parameters (distribution of 
fitness coefficients, rate of driver mutation entry), so each simulation takes a draw for the 
parameters from relatively uninformative prior distributions. 
 
We then take the huge number of simulations and the phylogenetic trees that they produce, 
and compare informative summary statistics from simulated trees against the same summary 
statistics generated from our real phylogeny data. Clearly, many of the simulations will 
generate trees that are very different to those observed – for example, low driver mutation 
rates generate many trees with no clonal expansions; fitness coefficients that are too high 
generate single, massive clonal expansions rather than the oligoclonal patterns we observe. 
 
From the small fraction of simulated trees that best match the observed data, then, we can 
extract posterior distributions of the parameters we are most interested in. The formal 
mathematics for this is well-established14,30 – reassuringly, the posterior distributions we 
extract using these methods are a well-defined subspace of the prior distribution, suggesting 
that the observed phylogenetic trees contain considerable information about, and constraints 
upon, the underlying distribution of the key parameters. 
 
With this intuition for how the modelling works, then, we can see that the inflection point in 
clonal diversity from the age of 70 years observed in the simulations is not an outcome by 
design – we do not build such an inflection point into the models as an explicit feature. Rather, 
it is a data-driven outcome of the simulations. That is, only a relatively narrow window in 
estimates for the rate of driver mutation acquisition and distribution of fitness coefficients 
are compatible with the observed phylogenies (Extended Fig. 9b; Supplementary Fig. 12) – 
pleasingly, this narrow window of parameter estimates generates simulations that match the 
inflection point of sharply reduced clonal diversity after the age of 70 years that we observe 
in the real data (Fig. 5g).  
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Supplementary Note 2: Comparison with clonal dynamics in solid organs 
 
The haematopoietic system is distinctive among organ systems for being well-mixed. When 
we compare variant allele fraction of mutations in a single bone marrow draw with peripheral 
blood, we find strong correlation31, confirming that recirculation of stem cells is sufficiently 
frequent that spatial biases are negligible over the timescales we are interested in here.  
 
In contrast, studies in solid tissues have revealed that stem cell clones exhibit considerable 
spatial organisation32. For example, human colonic epithelium is organised by crypt, with 5-
15 independent stem cells at the base of each crypt dividing neutrally to generate clonal 
sweeps every 1-2 years33,34 – with ~10 million crypts per colon35, which undergo crypt fission 
events only every 2-3 decades34, this implies many tens of millions of independent colonic 
stem cells per adult human. Likewise, detailed lineage tracing of human prostate has revealed 
that each of the 24-30 independent glandular subunits are laid down in utero by 5-10 
embryonic cells – these then proliferate to seed stem cells throughout the ductal tree which, 
following a wave of further proliferation and duct formation during puberty, enter a relatively 
quiescent phase of local stem/progenitor cell tissue maintenance in adulthood36. In 
squamous tissues, such as oesophagus37,38, bronchial epithelium39,40 and skin41, driver 
mutations accumulate steadily with ageing, causing exponential clonal expansions42, with 
competition occurring predominantly at clone boundaries43. 
 
The effects of ageing on stem cell clonal dynamics in solid tissues have not been extensively 
studied to date. However, the effects of disease and of toxicity have had some initial 
evaluation. In intestine, it is clear that inflammatory bowel disease leads to considerably 
larger clonal expansions than seen in normal individuals, partially driven by selection for 
driver mutations that protect against the inflammatory process and partially driven by the 
regenerative pressure of a relapsing-remitting disease course44–46. Likewise, while normal 
liver is a tightly knit patchwork of clones as small as 100-1000 hepatocytes, chronic liver 
disease is characterised by considerably larger clones, millimetres to centimetres in size, often 
accounting for entire cirrhotic nodules47–50 – again, these clonal expansions are driven by a 
combination of selection for protective driver mutations and the regenerative milieu arising 
from sustained hepatocyte toxicity. Interestingly, cellular toxicity, such as that arising from 
tobacco smoke in bronchus39 or ultraviolet light in skin51, also increases the rate of driver 
mutations and clonal expansion in solid tissues. 
 
Taken together, these data show that tissue maintenance in adults in solid organs is typically 
a hugely polyclonal process, strongly shaped by the spatial organisation of the tissue. Clonal 
competition therefore remains local, and opportunities for massive clonal expansion remain 
limited under normal physiological conditions. However, with disease or toxicity, when 
selective pressures are more pronounced and coupled with increased regenerative pressure, 
clonal expansions can be sizable, encompassing (square or cubic) millimetres to centimetres 
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of tissue. Furthermore, convergent evolution, where the same genes are recurrently mutated 
and positively selected in independent clones, can lead to an analogous situation to that we 
have observed here in blood, where 20-80% of all epithelial cells within, say, skin41,51, 
oesophagus37,38, endometrium3 or bronchus39 carry mutations in specific driver genes. 
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Data Availability 
 
The main data needed to reanalyse / reproduce the results presented is available on 
Mendeley Data (https://data.mendeley.com/datasets/np54zjkvxr/1). The following files and 
folders are found at the Mendeley Data archive: 
 
dNdS_input folder 
Contains all raw input files for the dN/dS analysis. 
 
Filtering_output_XXXX folders (one for each individual) 
Contains four files: 
 
a) annotated_mut_set_XXXX_01_standard_rho01 
This is an R data object and is uploaded into an R workspace using load() 
The genotype matrix used for MPBoot tree building is available in the matrix: 
filtered_muts$Genotype_shared_bin 
The dna strings used as input for MPboot are available in the vector: 
filtered_muts$dna_strings 
The annotated variant calls with tree node information are available in the matrix: 
filtered_muts$COMB_mats.tree.build$mat 
The genotype matrix of mutations calls per sample is available in: 
filtered_muts$COMB_mats.tree.build$Genotype_bin 
Information on whether the variant is an SNV or indel is available in: 
filtered_muts$COMB_mats.tree.build$mat$Mut_type 
A summary of total numbers of shared and private SNVs and indels is available in: 
filtered_muts$summary 
 
b) XXXX_sensitivity 
This file contains information on the sensitivity of SNV and Indel calls per sample. 
 
c) tree_XXXX_01_standard_rho01.tree 
The raw tree with branch lengths equal to number of mutations assigned (without adjustment 
for sequencing coverage). 
 
metadata_matrix folder 
Contains file “Summary_cut.csv” which records metadata on each sample in the dataset 
including cell_type sorted, sequencing depth, sequencing_platform, SNV burdens, indel 
burdens and telomere length. 
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