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Reviewer Reports on the Initial Version: 

Referees' comments: 

Referee #1 (Remarks to the Author): 

Mitchell et al performed whole genome sequencing of 3579 single-cell-derived colonies from 10 

healthy individuals to study the clonal dynamics haematopoiesis. They carefully analyzed these data 

to confirm and refine what has been known about clonal haematopoiesis such as the linear 

accumulation of point mutations and indels over time and the shortening of telomeres with 

increasing age. Additionally, the authors inferred phylogenetic trees and analyzed the subclonal 

composition. They found that in adults aged <65 haematopoiesis is highly polyclonal while in adults 

aged >70 expanded subclones made up 32% to 61% of the sequenced colonies. Moreover, they 

could estimate the timing of branching points in the phylogenies, the occurrence of mutations, and 

multiple independent losses of chromosome Y. To investigate potential explanations for the 

different subclonal compositions, the authors developed a simple mathematical model 

Overall, I have to admit that I struggled with the text. Mostly because of the long introduction and 

the repetition of known results. It’s not really clear which of these results are new and novel. That 

actually starts in the abstract which does say “We sequenced..”, but then continues with rather 

generic statements and it is unclear which of these statements are new or novel findings of this 

particular study. Most findings seem rather incremental refinements. I also think that the 

computational methods should be described in much greater detail. For example, it’s not clear to me 

how the phylogenies in Figs. 2 and 3 were generated. Although there is the “Construction of 

phylogenetic trees” section in the supplement, it only references the phylogenies in the Extended 

Data Figures section. 

Fig 1c,d: It would be great if there would be marks for means/median (perhaps even quantiles such 

as in Fig. 1h). Due to the overlapping clouds of points, it is hard to see where most of these points 

lie. 

Figs. 2 and 3: These figures are very interesting. How were these phylogenies inferred? The figure 

captions could provide some more details. Additional summary statistics about number of driver 

mutations, expanded clones, fraction of expanded clones, average onset times of these 

clones/drivers would be helpful. The information in Fig. 5a and b could be integrated directly to 

better put this information in context. 

Line 210: Doubled “in mice” 

Line 302: It is not clear to me how the authors converted the dN/dS ratios into estimated numbers of 



driver mutations. Can you please elaborate? 

Line 386: Time of oligoclonal haematopoiesis was also already predicted by the models presented in 

refs. 44 and 61. Similarly line 390, isn’t the universal loss of clonal diversity in haematopoiesis an 

already known fact? It is also stated in that way in the first paragraph of the related manuscript by 

Fabre et al. 

One final remark: I have no idea why the authors choose to have the figure captions not next to the 

figures and instead even put them in different files for the extended data figures. There is so much 

material to review and this makes it unnecessarily hard. 

Referee #2 (Remarks to the Author): 

In this manuscript, Mitchell et al present an elegant analysis of whole-genome sequences from 

single-cell derived colonies of HSC/MPPs across haematologically normal subjects across a wide age 

range. The conclusions are well-supported, are certain to be of interest to the readership of Nature, 

and have vast significance for several reasons: 

(i) Only a ~1/5 of clones had known driver mutations, which has important implications for the clonal 

hematopoiesis field, in which the majority of studies to date have primarily focused on CH with 

known drivers 

(ii) The authors find that the landscape of CH drivers may be much larger than previously 

appreciated (and as compared to the landscape of events that drive malignancy), that 1/34 to 1/12 

non-synonymous mutations may be drivers 

(iii) Their findings refine estimates of the number of long-term HSCs in humans 

(iv) The authors report a striking difference between the polyclonal nature of hematopoiesis in 

younger individuals as compared to the oligoclonal landscape in older individuals, and compellingly, 

find that these age-related dynamics and abrupt emergence of oligoclonality appear to be 

explainable by simple, predictable processes 

Specific points 

• In EDF 1b, the data reveal that not all sorted cells were able to form colonies. Could the authors 

comment on whether this may represent a source of bias? Could the ability to form colonies track 

with some of the measurements in their paper such as telomere length, number of somatic 

mutations, which would in turn influence some of their quantitative inferences? 

• Given that X-chromosome mosaic events are common, why do the authors primarily only focus on 

loss of Y chromosome and not X-chromosome events as well? 

• Stem cell biologists have focused on the role of the bone marrow microenvironment with age. 

Could the authors speculate on the known changes to the microenvironment at older age and how 

that might influence the dramatic changes in clonal diversity with age? 



• How do the authors think that the clones without known driver mutations contribute to the 

development of myeloid malignancies? 

Referee #3 (Remarks to the Author): 

This is an excellent research article in which authors report single-cell sequences of hematopoietic 

stem cells and multipotent progenitors (HSC/MPPs). Several interesting observations and claims are 

made based on molecular evolutionary analysis with dating. I am very supportive of its publication. 

But, I do have many major/minor comments and concerns that will help clarify important findings 

reported and claims made. 

(a) Single-cell sequences reveal that hematopoiesis is massively polyclonal, and there is high clonal 

diversity. It will be useful to include a comparison with polyclonality and diversity of stem cells in 

other tissues or organs. 

(b) Using parameters estimated from the data, empirical simulations show concordance with the 

observations under a simple model. While it is exciting, one wonders how the simulation 

consistently achieves an inflection point in the change in diversity in the last few years of the 

simulated data. Is it a deterministic outcome by design or by model properties? An intuitive 

explanation will be useful. 

(c) The finding that older individuals have decreased clonal diversity is interesting, especially that it 

became pronounced only after the age of 70. It will be great to know if there is something special 

about this timing from a functional genomics point of view? 

(d) An interesting observation is made about the association between the loss of the Y chromosome 

and the increase in the representation of the descending lineages. This is interpreted as a selective 

benefit. But, I wonder how the alternative explanation of the relaxation of negative selection is 

excluded. Intuitively, loss of the Y chromosome will reduce the number of proteins encoded, 

reducing the degree of purifying selection, especially if any of the protein was functionally used (e.g., 

dN/dS was smaller than others). Of course, if it is not possible to exclude the relaxation of purifying 

selection, alternatives need to be mentioned together. 

(e) Pervasive positive selection is claimed based on dN/dS ratio being slightly larger than 1. First, the 

value is barely larger than 1, which could easily be due to the bias of the estimate. In somatic 

evolution, overall dN/dS close to 1 is universally observed. A slight deviation from this ratio can 

occur because there is no way to eliminate bias in estimation methods. Since the effect size is small 

and could be due to bias, the estimate's variance for a large dataset becomes so small that the P 

values become nonsensical. Therefore, the authors have an unenviable task of proving that their 

dN/dS estimates are unbiased if they used dN/dS ratios slightly greater than 1 to indicate positive 

selection. Of course, this does not exclude the possibility that some mutations will likely confer an 

advantage for some cells to grow larger in numbers, but it is not the same as pervasive positive 

selection. Anyway, in Figure 5d, 95% CIs are rather close to 1 (even without considering bias in 

generating the estimate and its CI), so one needs to be very careful in claiming pervasive positive 

selection. 

(f) Was the neutrality of amino acid variants tested by using a prediction tool? Anyway, it will be 

good to know what fraction of non-driver AA variants were likely non-neutral. 

(g) How were the phylogenetic trees linearized? Since the phylogenies are not strictly clock-like, it is 



best to use a relaxed clock method that can convert a phylogeny into a tree (e.g., a Bayesian 

approach, if possible, or a rapid method such as RelTime for many sequences). 

(h) Based on the phylogeny included in the supplementary information (for an older individual), the 

accumulation of mutations seems to be relatively constant. But, the mutation rate is likely different 

in the initial life stages (first few years) in which cell divisions seem to produce two stem cells as 

compared to the rest of the lifetime in which cell divisions appear to be asymmetric such that they 

produce one stem cell and another progenitor/specialized cell. Wouldn't this change the mutation 

rate between two phases, making it difficult to convert a phylogeny into a clonal timetree? Is it 

possible to estimate the early and late mutation rates and compare them to mutation rates in other 

somatic contexts? 

(i) Also, the authors need to test whether the mutation rate is constant during all phases of the 

lifetime. This may be checked by examining the estimates of mutation rates (or diversity) from 

younger individuals compared to older individuals (but maybe not the oldest). This could reveal a 

mutational rate shift in different segments of long legs in the phylogeny. 

(j) For such data, SCITE is the most appropriate method for lower-quality data (many unknown and 

incorrect base assignments), and the authors have used it already (as reported in the Supplementary 

information). SCITE produces a mutation tree, and thus a clone phylogeny and branch lengths. Those 

are expected to be most appropriate for the current application. So, why MPBoot is being applied 

and why the ML method estimates branch lengths are not clear. 

(k) Also, in Supplementary Figure S3, the method used for S3b needs to be mentioned. MPBoot 

phylogenies in Figures S3e and S3f have different bootstrap values? 

(l) The article also does not present enough information on how the completeness of sequence 

alignments. What was the percentage of positions with missing data, and was there a need to use 

methods to impute missing data and correct sequencing errors (e.g., SCITE, BEAM, etc.). It would 

also be useful to know how often cells were not heterozygous (e.g., LOH). 

(m) As for standard bootstrapping, it is expected to be low for short branch lengths, i.e., those with 

only one or a few mutations, due to standard properties of the site-sampling bootstrap (e.g., a 

branch must contain at least 3 mutations before the expected bootstrap support can ever reach 

95%). So, bootstrap support for early branching events is expected to be very low, but this 

uncertainty is unlikely to affect the downstream inference. 

(n) It will be useful to be more explicit about how the trees were rooted. I gleaned that somewhat 

from the protocol noted, but was an actual sequence of (e.g., 0's) used in MPBoot analysis to root 

the tree? SCITE will automatically assume that but was that done in MPBoot, or is midpoint rooting 

used? This clarification is important to know if the early phase was symmetric cell division, leading to 

a balanced tree or a highly asymmetric one. 

(o) In the phylogenies presented, HSCs and MPPs are not immediately clear. Maybe I missed it. It will 

be useful to mark those lineages if they are both included. Are the dynamics different for HSC and 

MPPs? 

(p) Data sharing. While the raw data and the associated source code to summarize them are 

available, the availability of alignments (1/0/? states and base calls) used for MPBoot (and other 

evolutionary analysis) is extremely important for others to be able to reanalyze/reproduce/advance 

the results presented. In particular, providing those in a form that can allow one to use standard 

methods for dN/dS analyses will be important to reproducing results and scrutinizing patterns.



“Clonal dynamics of haematopoiesis across the human lifespan” 
 
Thank you for the opportunity to provide a point-by-point outline response to the reviewer comments. 
We were pleased that overall the comments were positive. The major changes to the manuscript that 
we have made include: (1) testing additional methods for reconstruction, linearisation and scaling of 
phylogenetic trees; (2) rewriting of the introduction and discussion to more clearly delineate the 
novelty  of  our  data,  and  their  relevance  to  ageing;  and  (3)  considerably  more  detail  on  the 
computational methods used, together with release of scripts (Github) and intermediate datasets 
(Mendeley Data – doi: 10.17632/np54zjkvxr.1) that will enable readers to reproduce all findings in the 
manuscript. 
 
Below, the reviewer comments are in blue, with our response in black and actions that we have 
undertaken for the revision in red and bold. 
 
Referees' comments: 
 
Referee #1 (Remarks to the Author): 
 
Mitchell et al performed whole genome sequencing of 3579 single-cell-derived colonies from 10 
healthy individuals to study the clonal dynamics haematopoiesis. They carefully analyzed these data 
to  confirm  and  refine  what  has  been  known  about  clonal  haematopoiesis  such  as  the  linear 
accumulation  of  point  mutations  and  indels  over  time  and  the  shortening  of  telomeres  with 
increasing age. Additionally, the authors inferred phylogenetic trees and analyzed the subclonal 
composition. They found that in adults aged <65 haematopoiesis is highly polyclonal while in adults 
aged >70 expanded subclones made up 32% to 61% of the sequenced colonies. Moreover, they 
could estimate the timing of branching points in the phylogenies, the occurrence of mutations, and 
multiple  independent  losses  of  chromosome  Y.  To  investigate  potential  explanations  for  the 
different subclonal compositions, the authors developed a simple mathematical model. 
 
Overall, I have to admit that I struggled with the text. Mostly because of the long introduction and 
the repetition of known results. It’s not really clear which of these results are new and novel. That 
actually starts in the abstract which does say “We sequenced..”, but then continues with rather 
generic statements and it is unclear which of these statements are new or novel findings of this 
particular study. Most findings seem rather incremental refinements.  
 
We accept that our original submission did not clearly distinguish between the past literature and the 
key advances in understanding offered by our work. The major novelties in our paper rest on critical 
methodological differences from past publications which, when deployed at scale, have generated 
high-resolution and unbiased insights into clonal dynamics over the human lifespan. We summarise 
the  key methodological  differences  first,  and  follow  this  with  a  summary  of  the novel  biological 
insights that emerge. 
 

Author Rebuttals to Initial Comments:



 
1. Clone-specific resolution – The critical difference between this work and the majority of the clonal 

haematopoiesis literature is that we have sequenced single HSC/MPP-derived colonies. Clonal 
haematopoiesis was discovered through sequencing DNA from bulk blood cell populations1–5. This 
approach has the advantage that large numbers of patient samples can be assessed – indeed, 
several of the key initial papers leveraged existing exome data from large biobanks sequenced for 
germline association studies. However, bulk sequencing is really only capable of detecting 
mutations in clones that contribute more than 5% of blood production, so is strongly biased 
towards the one or two most numerically dominant clones that might be present. Our design 
provides mutations at the resolution of individual HSC/MPPs. First, we observe many ‘singleton’ 
colonies in all patients – HSC/MPPs unrelated to any others sequenced, for which the clonal 
fraction must be considerably lower than what could be detected with bulk sequencing. Second, 
we directly report clonal dynamics in long-term blood-producing HSC/MPPs and do not infer these 
from sequencing of relatively short-lived mature cells, eliminating any biases due to selection 
during differentiation. 
 

2. Genome-wide coverage at scale – Most studies to date have used targeted sequencing of either 
the exome or the few hundred known cancer genes. Furthermore, the data analyses have focused 
on known drivers of myeloid leukaemia, which means that selection acting outside of these ~200 
genes has proved difficult to assess. Our study used whole genome sequencing, undertaken on 
over 3,500 colonies. This provides considerable statistical power for quantifying the patterns of 
positive selection, and is able to discover clonal expansions that occur in the absence of known 
drivers.  

 
3. Accurate reconstruction of lineage trees – With bulk sequencing, it is impossible to determine 

which mutations travel together in the same clone, or their temporal relationships to the clone’s 
expansion. With single-cell colonies, we can reconstruct highly accurate phylogenetic trees, which 
we can couple with the predictable mutational clock of blood cells to infer the distribution of clonal 
expansions across the HSC/MPP compartment and their age of onset. 

 
Novel biological insights 
 

1. Universal, rapid decrease in clonal diversity after age 70 years – Based on identifying mutations in 
bulk sequencing data, papers have typically reported 10-20% prevalence of clonal haematopoiesis 
after the age of 70 years1–5. With error-corrected sequencing for known drivers, the prevalence 
increases6, but these studies cannot estimate the number of expanded clones in a given individual. 
In our paper, we show that all elderly individuals sequenced have decreased clonal diversity. We 
demonstrate that this loss of diversity is inevitable – the rate at which driver mutations enter the 
HSC population together with the large population size mean that many clones, typically 10-20, 
will have undergone sizable expansions by the age of 70. The accurate phylogenetic trees inform 
us that these expansions are entirely independent of one another, sharing no clonal relationships, 
something that could not be confidently inferred from bulk sequencing. Together, these clones 
account for 30-60% of all blood production in elderly individuals – this is a considerably larger 
fraction than reported in the bulk sequencing studies.  
 

2. Clonal expansions in the absence of known driver mutations – An unexpected finding in our study 
is that only a quarter of the clonal expansions in elderly haematopoiesis have known driver 
mutations. Indirect evidence for the existence of clones without known drivers has been previously 
been reported from patterns of synonymous variants7, but the low sensitivity for mutation-calling 
when variant allele fractions are in the 1-5% range makes these inferences challenging. Here, with 
multiple colonies from an expanded clone, each sequenced at genome-wide coverage, we have 

Key methodological features 



very high sensitivity for calling individual mutations, and therefore have high confidence that these 
clones do not carry known drivers. Furthermore, our observation of an elevated dN/dS ratio across 
the whole genome provides independent genetic analysis for positive selection acting on 
mutations in genes yet to be discovered. 
 

3. Clonal expansions start decades earlier – Clonal haematopoiesis is generally assumed to be an age-
related phenomenon, but we show that it has its origins in mutations acquired in childhood and 
early adulthood. The phylogenetic trees provide accurate insights into age-of-onset of driver 
mutations: for example, of 13 expanded DNMT3A mutations, 2 were acquired before the age of 10 
years, 3 before the age of 20, and the remainder before the age of 40. Likewise, the distribution of 
branch-points on the phylogenetic tree for clones without known drivers also shows that they 
began in childhood and early adulthood. These insights could not be achieved with bulk sequencing 
studies – the exponential nature of these expansions means that for the vast majority of those 
intervening decades, each clone is well beneath the detection limits of bulk sequencing. 

 
We would argue that these observations have important implications for our understanding of ageing; 
considerably more substantial than “incremental refinements”. First, they provide an intriguing model 
for how lifelong, constant accumulation of molecular damage (in this case, somatic mutations) can 
lead to abrupt, organ-wide deterioration after the age of 70 years – a fundamental conundrum of 
ageing8. Second, the wide repertoire of available driver mutations means it is statistically inevitable 
that a few HSCs will prevail in their Darwinian struggle, but the properties of each successful clone will 
be shaped by its specific driver – this suggests a hypothesis for how the phenotypes of ageing can be 
both universal but also variable between individuals. Third, the progressive expansion of these clones 
over many decades provides a plausible mechanistic link to other lifelong disease processes such as 
atherosclerosis – an established but unexplained clinical correlate of clonal haematopoiesis3,9. 
 
We accept the reviewer’s criticism that the manuscript as originally submitted did not sufficiently 
distinguish the novel insights of our study from the existing knowledge. We have therefore rewritten 
the Introduction to emphasise what was known and establish why our experimental design enables 
both higher resolution and less bias in inferring clonal dynamics (‘Introduction’, p. 3). We have also 
rewritten the Discussion to draw out the key biological insights that have emerged (‘Discussion’, pp. 
9-10).  

 
 
I also think that the computational methods should be described in much greater detail. For 
example, it’s not clear to me how the phylogenies in Figs. 2 and 3 were generated. Although there 
is the “Construction of phylogenetic trees” section in the supplement, it only references the 
phylogenies in the Extended Data Figures section.  
 
We agree that the computational methods for constructing the phylogenetic trees need more detailed 
explanation. The key steps in the algorithm to generate the trees shown in Figures 2-3 are as follows: 

1. Generate a ‘genotype matrix’ of mutation calls for every colony within a donor – Our protocol, 
based on whole genome sequencing of single-cell-derived colonies, generates consistent and even 
coverage across the genome, leading to very few missing values within this matrix (ranging from 
0.005 – 0.034 of mutated sites in a given colony across different donors within our cohort). This 
generates a high degree of accuracy in the constructed trees. 

2. Reconstruct phylogenetic trees from the genotype matrix – This is a standard and well-studied 
problem in phylogenetics. The low fraction of the genome that is mutated in a given colony 
(<1/million bases) coupled with the highly complete genotype matrix mean that different 
phylogenetics methods produce reassuringly concordant trees. We used the MPBoot algorithm for 
the tree reconstruction, as it proved both accurate and computationally efficient for our dataset. 



3. Correct terminal branch lengths for sensitivity to detect mutations in each colony – The trees 
generated in the previous step have branch lengths proportional to the number of mutations 
assigned to each branch. For the terminal branches, which contain mutations unique to that 
colony, variable sequencing depth can underestimate the true numbers of unique mutations, so 
we correct these branch lengths for the estimated sensitivity to detect mutations based on genome 
coverage. 

4. Make phylogenetic trees ultrametric – After step 3, there is little more than Poisson variation in 
corrected mutation burden among colonies from a given donor. Since these colonies all derived 
from the same timepoint, we can normalise the branch lengths to have the same overall distance 
from root to tip (known as an ultrametric tree). We used an ‘iteratively reweighted means’ 
algorithm for this purpose. 

5. Scale trees to chronological age – Since mutation rate is constant across the human lifespan, we 
can use it as a ‘molecular clock’ to scale the y axis of the ultrametric tree to chronological age.  

6. Overlay phenotypic and genotypic information on the tree – The tip of each branch in the resulting 
phylogenetic tree represents a specific colony in the dataset, meaning that we can depict 
phenotypic information about each colony underneath its terminal branch (the coloured stripes 
along the bottom of Figures 2-3). Furthermore, every mutation in the dataset is confidently 
assigned to a specific branch in the phylogenetic tree. This means that we can highlight branches 
on which specific genetic events occurred (such as DNMT3A or other driver mutations). 

 
The critical steps in this process are steps 2 and 4. We have now performed more extensive 
comparison of different methods for these two stages. For step 2 (tree building), we have compared 
two methods – SCITE and MPBoot for 7 of the 8 phylogenies (we were unable to get the 8th phylogeny, 
KX004, to complete its SCITE analysis within the 4-week time limit set on our compute farm). 
Reassuringly, in all cases there was high concordance in the phylogenies produced by the two 
approaches (Robinsons-Foulds distance < 0.07). Most differences that did emerge affected the precise 
arrangement of some early embryonic branch points – these differences would not have an impact on 
the key downstream analyses in the manuscript. We have also formally compared the summary 
statistics used in the Approximate Bayesian Calculation models from the phylogenies inferred using 
MPBoot versus SCITE. We found that when the range of summary statistics we utilise for the ABC 
modelling were assessed at 4 timepoints, in 5 out of 7 individuals, the statistics for the MPBoot and 
SCITE phylogenies were identical. For the other 2 individuals, 6 of 32 (KX007) and 4 of 32 (KX003) 
summary statistics calculated for each phylogeny were discordant but by a negligible amount (2 or 
less). These overall highly concordant findings further confirm that the choice of tree-building 
approach would not have altered the conclusions of the downstream modelling analyses. 
 
For step 4, making the phylogenetic trees ultrametric (normalising them to identical total branch 
lengths), we have now tested a Bayesian algorithm, Rtreefit, developed by Williams et al10 for somatic 
mutations in blood cancers in addition to the iterative reweighted means algorithm used in the first 
submission. In brief, Rtreefit is a Bayesian model for converting trees based on mutation counts into 
time-based trees. The mean branch timings are directly sampled from the posterior distribution and, 
by construction, the resulting trees are guaranteed to have a root to tip distance that matches the 
sampling age of the colony. Reassuringly, we found extremely high concordance between our custom 
‘iteratively reweighted means’ approach and the Bayesian approach. In all phylogenies the R2 for 
branch length comparisons between the two approaches was > 0.99. 
 
We have now included more information about how the phylogenies were inferred and presented 
in the figure captions (Fig. 2) and referenced the Materials and Methods where additional details 
have been provided as above.  We have also given more information regarding how MPBoot was 
run and what percentage of sites in our genotype matrix of shared mutations had ‘missing data’ in 



the Materials and Methods. The code used in linearisation of phylogenies (to make them 
‘ultrametric’ with equal branch lengths) has also been released on Github.   
 
In terms of providing additional information for other computational methods, we have included 
the formula for calculating driver mutation number in the “Driver mutation acquisition rate 
estimation” section of the Materials and Methods.  Further details on the ABC methods and PPC 
(posterior predictive checks) calculations have been added to the technical appendix on these 
methods. 
 
All code used is available on github and data for running scripts to fully reproduce the analyses is 
available on Mendeley data (doi: 10.17632/np54zjkvxr.1).  We have included a guide to available data 
in the Materials and Methods section “Data availability”. 
 
 
Fig 1c,d: It would be great if there would be marks for means/median (perhaps even quantiles such 
as in Fig. 1h). Due to the overlapping clouds of points, it is hard to see where most of these points 
lie. 
 
We have added box-plots showing median and interquartile range of mutation burden for each 
donor in Figure 1c,d as suggested. 
 
 
Figs. 2 and 3: These figures are very interesting. How were these phylogenies inferred? The figure 
captions could provide some more details. Additional summary statistics about number of driver 
mutations, expanded clones, fraction of expanded clones, average onset times of these 
clones/drivers would be helpful. The information in Fig. 5a and b could be integrated directly to 
better put this information in context. 
 
See response above regarding additional information on how Figures 2-3 were generated. We have 
added more detail on the steps involved in generating the trees to the main text (‘Whole genome 
sequencing of HSC-derived colonies’, p. 4). We have added more clarification on the construction 
and interpretation of the trees in the Figure legends, as suggested. 
 
We see the main purpose of Figures 2-3 being to display within-donor information, such as 
phylogenetic structure and timing of driver mutations and expanded clades. In contrast, we see the 
main purpose of Figure 5a-b being to display comparisons of clonal diversity and clone size distribution 
across different donors. Because Figures 2-3 are already very information-dense, we would prefer to 
avoid overlaying summary statistics such as shown in Figure 5a-b on the trees.  However, we have 
provided more clarity in the main text for interpretation (‘Qualitative change in HSC population 
structure after 70 years of age’, p. 5).  We have also created a new figure summarising the inferred 
timing of acquisition of both driver mutations and expansion of clades with no known drivers 
(Extended Fig. 6a, shown below as Reviewer Figure 1). 
 
 



 
 
Reviewer Figure 1 (included in manuscript as Extended Figure 6a). Plots illustrating the timing of 
acquisition of driver mutations and onset of clonal expansions respectively. These timings are 
inferred from the timing of the corresponding branches in the phylogenies depicted in Figs. 2 and 3. 
Bars are colours by gene mutation or blue for expanded clades with no known driver. Age 0 denotes 
the time of birth and black dots illustrate the age at sampling. 
 
 
Line 210: Doubled “in mice” 
 
Many thanks, we have amended this. 
 
 
Line 302: It is not clear to me how the authors converted the dN/dS ratios into estimated numbers 
of driver mutations. Can you please elaborate? 
 
The dN/dS parameter is widely used in evolutionary genetics to infer patterns of selection11,12, recently 
adapted for cancer and somatic mutations13. It is essentially a measure of how far the observed 
number of non-synonymous mutations diverges from the number that would be expected from the 
synonymous mutation rate, after correction for mutation spectrum13. It is underpinned by the 
assumption that synonymous mutations evolve neutrally, and selection only acts on non-synonymous 
mutations. For example, a dN/dS ratio of 1 means that we observed exactly the same number of non-
synonymous mutations as we would have expected for the number of synonymous variants. A dN/dS 
ratio of 2 means we observed twice as many non-synonymous mutations as expected, implying that 
half of the observed non-synonymous mutations occurred as expected for the background mutational 
processes, while the other half have accumulated through positive selection. From this, with a total 
number of observed non-synonymous mutations, we can estimate the number of driver mutations in 
excess of the background expectation (noting that this is an underestimate of the true number in the 
presence of any negative selection).  
 
This, then, is the intuition for the formal mathematical exposition. Given an observed number of non-
synonymous mutations, 𝑛NS, and an estimated dN/dS ratio, 𝜔NS, the formula for the expected number 
of drivers, 𝑛D, is as follows: 

𝑛D =	
(𝜔NS − 1)
𝜔NS

𝑛NS  
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To give a worked example using missense substitutions in our dataset, we estimated the overall dN/dS 
ratio to be 1.06 with the 95% confidence interval to be 1.03 – 1.09 (Figure 5d). We observed a total of 
16,536 non-synonymous mutations. The number of excess missense mutations, then, is calculated as 
(1.06 – 1)/1.06 * 16536, which works out at 936, with the lower bound on the confidence interval as 
(1.03 – 1)/1.03 * 16536, which equals 482.  This then equates to the estimation in the manuscript (p. 
8) that 1 mutation in every 18 (16536/936=17.7) missense mutations is under positive selection. 
 
We have included this intuition, formal equation and worked example in the Materials and Methods 
(‘Driver mutation acquisition rate estimation’). 
 
 
Line 386: Time of oligoclonal haematopoiesis was also already predicted by the models presented 
in refs. 44 and 61. Similarly line 390, isn’t the universal loss of clonal diversity in haematopoiesis an 
already known fact? It is also stated in that way in the first paragraph of the related manuscript by 
Fabre et al. 
 
We agree that this particular paragraph of the Discussion was clumsily worded – as the reviewer 
states, previous mathematical models have indeed shown that increased cell turnover accelerates 
clonal advantage, bringing forward the time of their emergence. We apologise for this oversight. 
 
We do not, however, believe that universal loss of clonal diversity in haematopoiesis is a known fact. 
As argued above, studies using sequencing data from bulk blood samples have estimated prevalence 
rates of known driver mutations of 10-20% of individuals aged over 70 years, with drivers present at 
very small clonal fractions, typically 1-5%1–5 only – the corollary being, of course, that 80-90% of elderly 
individuals did not have drivers detected. A study using error-corrected sequencing for known drivers 
showed this prevalence does increase if considering mutations at clonal fractions less than 1%6 – this 
study found 1-6 variants per person on average at a median clonal fraction of 0.002, with no ability to 
determine whether those variants were carried by a single clone or more than one clone. Either way, 
such clone sizes would not be sufficient to meaningfully impact on global measures of clonal diversity 
such as the Shannon Diversity Index. 
 
Our data suggest that age-related loss of clonal diversity is orders of magnitude more pervasive than 
estimated from these studies: (1) the prevalence of clones at >1% VAF will be universal after the age 
of 70 years, not 10-20% prevalent; (2) the number of expanded clones per individual will be 10-20, not 
1-2; and (3) the fraction of overall haematopoiesis accounted for by expanded clones is 30-60%, not 
1-5%. To this, three further insights not accessible with published methods can be added: (4) the age 
of onset of driver mutations and clonal expansions is decades earlier, typically before the age of 40; 
(5) the loss of clonal diversity emerges abruptly after the age of 70 years; and (6) the repertoire of 
genes conferring selective advantage on HSCs is considerably broader than those known to cause 
blood cancers. This is, of course, not a criticism of the previous studies – we are merely emphasising 
that using single-cell-derived, high-resolution methods for characterising haematopoiesis leads to an 
unbiased assessment of its clonal diversity. 
 
We have rewritten the Discussion to remove the rather weak point about lifestyle and disease risk 
factors affecting the timing of clonal changes, replacing it with a clearer delineation of the novel 
insights from this study and its broader implications for ageing (‘Discussion’, pp. 9-10). 
 
 
One final remark: I have no idea why the authors choose to have the figure captions not next to the 
figures and instead even put them in different files for the extended data figures. There is so much 
material to review and this makes it unnecessarily hard. 



 
Many apologies for this.  We have addressed this in the resubmitted version, placing each legend 
immediately before the corresponding figure. 
 
 
Referee #2 (Remarks to the Author): 
 
In this manuscript, Mitchell et al present an elegant analysis of whole-genome sequences from 
single-cell derived colonies of HSC/MPPs across haematologically normal subjects across a wide age 
range. The conclusions are well-supported, are certain to be of interest to the readership of Nature, 
and have vast significance for several reasons:  
 
(i) Only a ~1/5 of clones had known driver mutations, which has important implications for the 
clonal hematopoiesis field, in which the majority of studies to date have primarily focused on CH 
with known drivers  
(ii) The authors find that the landscape of CH drivers may be much larger than previously 
appreciated (and as compared to the landscape of events that drive malignancy), that 1/34 to 1/12 
non-synonymous mutations may be drivers  
(iii) Their findings refine estimates of the number of long-term HSCs in humans  
(iv) The authors report a striking difference between the polyclonal nature of hematopoiesis in 
younger individuals as compared to the oligoclonal landscape in older individuals, and compellingly, 
find that these age-related dynamics and abrupt emergence of oligoclonality appear to be 
explainable by simple, predictable processes  
 
Specific points 
 
• In EDF 1b, the data reveal that not all sorted cells were able to form colonies. Could the authors 
comment on whether this may represent a source of bias? Could the ability to form colonies track 
with some of the measurements in their paper such as telomere length, number of somatic 
mutations, which would in turn influence some of their quantitative inferences?  
 
The reviewer is correct that not all sorted cells were able to form colonies, and in theory, this could 
represent a source of bias if there were a specific cell subtype, driver mutation or telomere length 
with reduced colony-forming capacity in vitro.  
 
Several points argue that the colonies we generated are broadly representative of the historic HSC 
dynamics we infer: 
• First, the protocol we followed to generate single-cell-derived colonies is considerably more 

efficient than methods used in previous studies where colonies were grown in semi-solid medium. 
In the latter conditions and using published protocols, our group has estimated that fewer than 
10% of single HSC/MPPs will produce a colony, whereas our liquid medium single cell flow-sorted 
method is at least 5 to 8-fold more efficient. 

• Second, colony-forming efficiency with our method was broadly equivalent across all donor ages 
and tissues examined (Extended Figure 2b), a finding that we have seen repeatedly in our 
laboratory14,15. This means that any potential bias would apply across the lifespan and should 
therefore not affect the main conclusions of our study.  

• Third, the rates of colony-formation efficiency were in the range 40-75% for each adult in the study, 
meaning that the cells we do access with this protocol represent a majority population of 
HSC/MPPs in each individual. 

• Fourth, the genomic data we observe from the multiple colonies per individual in aggregate closely 
match data published from bulk sequencing studies – telomere lengths of a few kilobases 



shortening at ~30bp/cell/year are close to published estimates16; mutation burdens of colonies are 
identical to those obtained by single-molecule sequencing of bulk blood cells17; and the 
distributions of driver mutations and loss-of-Y across donor ages follow similar trajectories as those 
from bulk studies1–5 after allowing for the greater sensitivity of our approach. 

• Fifth, our inferences of clonal dynamics depend upon the genomic records of historic HSC divisions 
encoded in the phylogenetic trees, rather than the specific current properties of the cell whose 
colony we have actually sequenced. That is, even if we sequence a colony arising from a 
differentiated progenitor cell in a 70-year old, that cell will only have been a progenitor for the 
most recent year or two – branch-points in that cell’s lineage tree from 30-40 years earlier will 
reflect historic stem cell divisions, not its current status. 

 
We have undertaken further analysis to address the question of bias between cells that successfully 
seeded colonies and those that did not, leveraging the index flow-sorting data collected from the 
donor samples. For each cell that was flow-sorted into the culture plates, we collected the data on 
fluorescence intensity of cell surface markers – from this, we compared the expression level of these 
markers between HSC/MPPs that successfully generated colonies and cells that did not. We have 
included the additional HSC markers CD90 and CD49f in this analysis18, although these markers were 
not used in the sort gating strategy. This analysis shows there was no immunophenotypic difference 
in cells that were sequenced compared to those that were not in surface expression of CD34, CD38, 
CD45RA, CD90 or CD49f, across any of the donor samples (see Reviewer Figure 2 below). This provides 
further reassurance that the colonies that we sequenced are broadly representative of the HSC/MPP 
compartment we model. 
  
We have added a comment on the efficiency of colony formation with our liquid culture method 
compared to previously used methods to the Supplementary Methods. We have included Reviewer 
Figure 2 below as a new panel in Extended Figure 2 (panel c), and signposted this in the main text 
(‘Whole genome sequencing of HSC-derived colonies’, p. 3). 
  
 

 
 
Reviewer Figure 2 (included as Extended Figure 1c). Box and whisker plots showing the range of 
fluorescence intensity levels for cells that successfully grew colonies (teal-green/sequenced) versus 
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those that did not (salmon-pink/not-sequenced), broken down by research subject (rows) and cell 
surface marker (columns). Boxes show the interquartile range and the centre horizontal lines show 
the median. Whiskers extend to the minimum of either the range or 1.5× the interquartile range, 
with outlier cells beyond the whiskers shown as individual points.  
 
 
• Given that X-chromosome mosaic events are common, why do the authors primarily only focus 
on loss of Y chromosome and not X-chromosome events as well?  
 
The copy number algorithm we used, ASCAT, does call chromosomal aberrations and focal copy 
number changes genome-wide. In fact, on re-reviewing these data, we did not identify any X 
chromosome changes, either gains or losses. We believe this has interesting implications – after all, 
the inactive X chromosome and the Y chromosome have similar gene content and expression from 
the pseudoautosomal regions. Outside these regions, with a few exceptional genes, the inactivation 
of the X chromosome in females is strongly maintained. As a consequence, only a small handful of 
active genes would be different between a male cell losing the Y chromosome and a female cell losing 
the inactive X chromosome – and yet we see 94 independent occurrences of the former and 0 of the 
latter across the dataset. This suggests that either the rate of mitotic loss is vastly different between 
the two chromosomes (a hypothesis we have not found any data to support) or there is a growth-
suppressor gene on chromosome Y that results in a growth advantage to cells upon loss-of-Y. Our 
observation that clones with loss-of-Y are more expanded than cells with retained Y, the vast majority 
of which are euploid, provides additional evidence for the hypothesis of selective advantage. 
 
We have rephrased the main text to clarify this point (‘Mutation burden and telomere lengths’, p. 
5) and expanded the Materials and Methods to make it clear that the copy number analysis covers 
the whole genome (‘Structural variant and copy-number calling’). 
 
 
• Stem cell biologists have focused on the role of the bone marrow microenvironment with age. 
Could the authors speculate on the known changes to the microenvironment at older age and how 
that might influence the dramatic changes in clonal diversity with age? 
 
This is an intriguing question – as the reviewer notes, it is widely accepted that ageing results in 
microenvironmental changes in the bone marrow. For example, ageing is associated with changing 
cytokine concentrations in the bone marrow.  Increased signalling of specific cytokines could synergise 
with specific driver mutations (as has been shown experimentally for TET2 and IL619 as well as 
DNMT3A and IFNg20), conferring an increased proliferative advantage on these clades, or cause a more 
general increase in cell division rates across the whole population. Other microenvironmental changes 
include the accumulation of adipocytes as well as remodelling of structural components such as the 
vasculature, extracellular matrix and bone. These are likely to alter the niche for HSCs and potentially 
shape the selective landscape the clones are competing in, which may alter clonal dynamics. As a 
further complication, it is entirely feasible that clones with driver mutations actively remodel their 
own niche – this has been documented in mouse models of Tet2 mutations, for example21.  
 
Our data report on relative fitness of different clones within the same individual; namely, HSCs 
competing with one another in the same haematopoietic microenvironment. For microenvironmental 
ageing to promote the loss of clonal diversity we observe, it would still have to act in a clone-specific 
manner. Interestingly, our data show that all of the expanded clades began their expansion in the first 
half of life – this suggests that their selective advantage is lifelong, emerging before the local marrow 
microenvironment has itself undergone age-related remodelling.  
 



We have incorporated further comment on the possible role of microenvironmental changes with 
ageing in the Discussion (p. 11). 
 
 
• How do the authors think that the clones without known driver mutations contribute to the 
development of myeloid malignancies? 
 
This is a fascinating question. Most previous studies of clonal haematopoiesis have focused on 
mutations in known blood cancer genes, and have shown a consistently elevated risk of subsequent 
blood cancer in those individuals carrying such known drivers. The risk arising from clones without 
known driver mutations has been much less comprehensively studied. Probably the most informative 
data come from a reanalysis of 11,262 bulk whole genome sequences from the deCODE cohort22. Here, 
the authors distinguished three groups of subjects: (1) those without detectable clonal 
haematopoiesis (acknowledging the low sensitivity of bulk WGS); (2) those with clonal haematopoiesis 
carrying known drivers; and (3) those with evidence for clonal haematopoiesis but no known drivers. 
Interestingly, the latter two groups both had elevated risk of all-cause mortality and future 
haematologic malignancy, after correction for confounders – furthermore, this elevated risk was 
broadly equivalent whether or not known drivers were present22.  
 
These data, while suggestive, do not prove that clones without known driver mutations are 
themselves at greater risk of leukaemic transformation – it could be that their presence denotes a 
microenvironment of increased cell turnover and selective pressure conducive to clonal outgrowth, 
with future malignancies arising from other, independent clones. We have observed this in other 
settings, such as chronic liver disease, which represents a clear field effect for tumour evolution, but 
where the diseased microenvironment selects for clones with mutations in metabolism genes that do 
not themselves transform to malignancy23. 
 
At present we do not have any evidence that the clones without known driver mutations have 
themselves an increased risk of malignant transformation. For example, screening 534 published AML 
genomes24–26 for variants in the two relatively new genes described, we identified only one possible 
oncogenic mutation in ZNF318 and no mutations in HIST2H3D (Table S8). 
 
We have included these points in the revised Discussion (pp. 10-11). 
 
 
Referee #3 (Remarks to the Author): 
 
This is an excellent research article in which authors report single-cell sequences of hematopoietic 
stem cells and multipotent progenitors (HSC/MPPs). Several interesting observations and claims are 
made based on molecular evolutionary analysis with dating. I am very supportive of its publication. 
But, I do have many major/minor comments and concerns that will help clarify important findings 
reported and claims made. 
 
(a) Single-cell sequences reveal that hematopoiesis is massively polyclonal, and there is high clonal 
diversity. It will be useful to include a comparison with polyclonality and diversity of stem cells in 
other tissues or organs. 
 
The haematopoietic system is distinctive among organ systems for being well-mixed – when we 
compare the variant allele fraction of mutations in a single bone marrow draw with that from 
peripheral blood, we find strong correlation27, confirming that recirculation of stem cells is sufficiently 
frequent that spatial biases are negligible over the timescales we are interested in here.  



 
In contrast, studies in solid tissues have revealed that stem cell clones exhibit considerable spatial 
organisation28. For example, human colonic epithelium is organised by crypt, with 5-15 independent 
stem cells at the base of each crypt dividing neutrally to generate clonal sweeps every 1-2 years29,30 – 
with ~10 million crypts per colon31, which undergo crypt fission events only every 2-3 decades30, this 
implies many tens of millions of independent colonic stem cells per adult human. Likewise, detailed 
lineage tracing of human prostate has revealed that each of the 24-30 independent glandular subunits 
are laid down in utero by 5-10 embryonic cells – these then proliferate to seed stem cells throughout 
the ductal tree which, following a wave of further proliferation and duct formation during puberty, 
enter a relatively quiescent phase of local stem/progenitor cell tissue maintenance in adulthood32. In 
squamous tissues, such as oesophagus33,34, bronchial epithelium35,36 and skin37, driver mutations 
accumulate steadily with ageing, causing exponential clonal expansions38, with competition occurring 
predominantly at clone boundaries39. 
 
The effects of ageing on stem cell clonal dynamics in solid tissues have not been extensively studied 
to date. However, the effects of disease and of toxicity have had some initial evaluation. In intestine, 
it is clear that inflammatory bowel disease leads to considerably larger clonal expansions than seen in 
normal individuals, partially driven by selection for driver mutations that protect against the 
inflammatory process and partially driven by the regenerative pressure of a relapsing-remitting 
disease course40–42. Likewise, while normal liver is a tightly knit patchwork of clones as small as 100-
1000 hepatocytes, chronic liver disease is characterised by considerably larger clones, millimetres to 
centimetres in size, often accounting for entire cirrhotic nodules23,43–45 – again, these clonal 
expansions are driven by a combination of selection for protective driver mutations and the 
regenerative milieu arising from sustained hepatocyte toxicity. Interestingly, cellular toxicity, such as 
that arising from tobacco smoke in bronchus35 or ultraviolet light in skin46, also increases the rate of 
driver mutations and clonal expansion in solid tissues. 
 
Taken together, these data show that tissue maintenance in adults in solid organs is typically a hugely 
polyclonal process, strongly shaped by the spatial organisation of the tissue. Clonal competition 
therefore remains local, and the opportunities for massive clonal expansion remain limited under 
normal physiological conditions. However, with disease or toxicity, when selective pressures are more 
pronounced and coupled with increased regenerative pressure, clonal expansions can be sizable, 
encompassing (square or cubic) millimetres to centimetres of tissue. Furthermore, convergent 
evolution, where the same genes are recurrently mutated and positively selected in independent 
clones, can lead to an analogous situation to that we have observed here in blood, where 20-80% of 
all epithelial cells within, say, skin37,46, oesophagus33,34, endometrium47 or bronchus35 carry mutations 
in specific driver genes. 
 
We have summarised these points in the main text (Discussion, p. 10), and included the text above 
as Supplementary Note 2. 
 
 
(b) Using parameters estimated from the data, empirical simulations show concordance with the 
observations under a simple model. While it is exciting, one wonders how the simulation 
consistently achieves an inflection point in the change in diversity in the last few years of the 
simulated data. Is it a deterministic outcome by design or by model properties? An intuitive 
explanation will be useful. 
 
We agree that it is important to explain the basis for the Approximate Bayesian Computation 
framework for the general reader; thankfully, it is relatively intuitive. In the initial phase, we generate 
hundreds of thousands of different simulations of haematopoietic stem cell compartments. Each 



simulation follows exactly the same assumptions – constant population size of HSCs during adulthood; 
linear entry of driver mutations into the HSC compartment across life; fitness coefficients of drivers 
drawn from a gamma distribution; fitness coefficient is constant with time. We do not know a priori 
the values for several of these key parameters (distribution of fitness coefficients, rate of driver 
mutation entry), so each simulation takes a draw for these parameters from relatively uninformative 
prior distributions. 
 
We then take the huge number of simulations and the phylogenetic trees that they produce, and 
compare informative summary statistics from simulated trees against the same summary statistics 
generated from our real phylogeny data. Clearly, many of the simulations will generate trees that are 
very different to those observed – for example, low driver mutation rates generate many trees with 
no clonal expansions; fitness coefficients that are too high generate single, massive clonal expansions 
rather than the oligoclonal patterns we observe. 
 
From the small fraction of simulated trees that best match the observed data, then, we can extract 
posterior distributions of the parameters we are most interested in. The formal mathematics for this 
is well-established48,49 – reassuringly, the posterior distributions we extract using these methods are 
a well-defined subspace of the prior distribution, suggesting that the observed phylogenetic trees 
contain considerable information about, and constraints upon, the underlying distribution of the key 
parameters. 
 
With this intuition for how the modelling works, then, we can see that the inflection point in clonal 
diversity from the age of 70 years observed in the simulations is not an outcome by design – we do 
not build such an inflection point into the models as an explicit feature. Rather, it is a data-driven 
outcome of the simulations. That is, only a relatively narrow window in estimates for the rate of driver 
mutation acquisition and distribution of fitness coefficients are compatible with the observed 
phylogenies (Extended Fig. 9b; Supplementary Fig. 12) – pleasingly, this narrow window of parameter 
estimates generates simulations that match the inflection point of sharply reduced clonal diversity 
after the age of 70 years that we observe in the real data (see Reviewer Figure 3 below).  
 
To better illustrate the inflection point in the simulated data, we have generated a new figure (Fig. 
5g, shown below as Reviewer Figure 3) that illustrates the median, interquartile range and 95% 
posterior intervals for Shannon Diversity Indices calculated yearly from age 10 – 100 for 10,000 HSC 
population simulations run utilising the optimal parameter values for driver acquisition rate and 
fitness effects derived from our driver ABC modelling work.  The figure helps demonstrate that the 
inflection point is determined by the model properties, specifically the optimal parameters we 
derived from the phylogenies, and is not built into the model design. We have also included the 
intuitive explanation of the Approximate Bayesian Computation framework above as 
Supplementary Note 1, signposted in the main text (‘Modelling positive selection in HSCs’, p. 8). 
 
 



 
 
Reviewer Figure 3 (included as Figure 5g). Median, interquartile range, and 95% posterior intervals 
for Shannon Diversity Indices calculated yearly for 10,000 HSC population simulations run utilising 
the optimal parameter values for driver acquisition rate and fitness effects derived from the ABC 
modelling approach. The point estimate for the shape and rate parameters of the gamma 
distribution were shape = 0.47, rate = 34. The point estimate for the number of drivers with s>5% 
entering population per year = 200. 
 
 
(c) The finding that older individuals have decreased clonal diversity is interesting, especially that it 
became pronounced only after the age of 70. It will be great to know if there is something special 
about this timing from a functional genomics point of view? 
 
We also found the observation that clonal diversity diminishes sharply after the age of 70 interesting. 
We hypothesise that this particular timing arises as a consequence of our species’ historic survival-
fecundity curves – our past demographic structure has exerted evolutionary pressure on the germline 
genome to find strategies to reduce blood cancer risk up till the ages of 50-65 years. However, the 
relatively low historic contribution of individuals over this age to successful reproductive output 
substantially reduces that evolutionary pressure. This combination of progressive mortality and 
declining fecundity with age generates what has been termed a ‘selective shadow’, in which the force 
of natural selection rapidly reduces to zero at ages beyond which further reproductive output is 
negligible50. 
 
With this evolutionary perspective, it is then interesting, as the reviewer poses, to speculate on the 
functional basis of the evolutionary strategies that maintain clonal diversity until the age of 70. From 
our modelling, the parameters that clearly shape the age at which clonal diversity declines are: 
• The population size of HSCs and generation time (average time between symmetric self-renewals); 
• Rate of entry of driver mutations into the HSC compartment (a function of both the overall 

mutation rate and the fraction of those mutations that confer selective benefit); 
• The magnitude of the fitness benefit conferred by the driver mutations. 
 

We believe, therefore, that each of these parameters has had sustained (germline) evolutionary 
pressure to maintain a high degree of clonal diversity until the age of 60-70 years. Evolutionary 
pressure on germline variants in genes controlling these dynamics – HSC population size and turnover, 
somatic mutation rates, distribution of fitness benefits – has historically acted to maintain robust, 
polyclonal haematopoiesis until age 60-70, but no further. Thus, the distribution of fitness effects we 
infer (Figure 5e) is precisely this shape because of that evolutionary pressure – a right-shifted 
distribution with stronger drivers would cause sufficiently frequent blood cancers (or other deleterious 

0 20 40 60 80 100

0

5

10

15

20

25

Age (years)

Sh
an

no
n 

D
ive

rs
ity

 In
de

x



phenotypes) in reproductively active humans to exert evolutionary pressure; but the selective shadow 
means evolutionary pressure for driving the distribution further to the left peters out. 
 
Supportive evidence for this comes from considering other mammalian species with very different 
lifespans. For example, somatic mutation rates have evolved such that the end-of-life mutation burden 
is remarkably similar across different mammals, despite there being 50-fold variation in lifespan51. 
Considering HSC-specific parameters, shorter lived species such as mice have a smaller HSC population 
(~5,000-10,000)52,53, with a shorter generation time (~5 weeks)54–56 – smaller population size and more 
rapid generations both lead to accelerated opportunity for clonal expansions, but presumably a 
maximal lifespan of 2-3 years in a mouse limits the risk that these will result in decreased reproductive 
output. Some degree of decreased clonality has already been observed in elderly mice57 and 
macaques58. It would be a fascinating follow-up experiment to assess whether loss of clonal diversity 
towards the end of the natural lifespan is seen systematically across many mammalian species. 
 
We have now elaborated these ideas in the Discussion (p. 10). 
 
 
(d) An interesting observation is made about the association between the loss of the Y chromosome 
and the increase in the representation of the descending lineages. This is interpreted as a selective 
benefit. But, I wonder how the alternative explanation of the relaxation of negative selection is 
excluded. Intuitively, loss of the Y chromosome will reduce the number of proteins encoded, 
reducing the degree of purifying selection, especially if any of the protein was functionally used 
(e.g., dN/dS was smaller than others). Of course, if it is not possible to exclude the relaxation of 
purifying selection, alternatives need to be mentioned together.  
 
The hypothesis of relaxed purifying selection acting on the Y chromosome is an interesting one – 
perhaps there is a moderate rate of chromosomal aneuploidy across all chromosomes, but the only 
cells that survive are those that lose Y because the gene content on Y is so low. Under this hypothesis, 
loss of any other chromosome would severely disadvantage the HSC, and it would therefore not 
survive to be sequenced. 
 
Two observations from our data argue against this hypothesis. The first is that clones with loss-of-Y 
are larger than age-matched clones from the same individual. The vast majority (>99%) of these age-
matched clones are euploid, which suggests that the clones with loss-of-Y have expanded to a greater 
degree than their wild-type counterparts; something more suggestive of positive selection than 
diminished negative selection. The second is that we do not observe equivalent frequency of losses of 
the inactive X chromosome in the elderly females in the study. The inactive X chromosome and the Y 
chromosome have similar gene content and expression within the pseudoautosomal regions, and only 
a few exceptional genes remain expressed outside these regions. Thus, the content of expressed genes 
for a male cell losing the Y chromosome and a female cell losing the inactive X chromosome would be 
broadly similar, and yet we see 94 independent occurrences of the former and 0 of the latter across 
the dataset. 
 
We accept that these arguments, while suggestive, are not definitive, and have therefore 
acknowledged the possibility of relaxed purifying selection in the manuscript (‘Genetic evidence for 
pervasive positive selection’, p. 8). 
 
 
(e) Pervasive positive selection is claimed based on dN/dS ratio being slightly larger than 1. First, 
the value is barely larger than 1, which could easily be due to the bias of the estimate. In somatic 
evolution, overall dN/dS close to 1 is universally observed. A slight deviation from this ratio can 



occur because there is no way to eliminate bias in estimation methods. Since the effect size is small 
and could be due to bias, the estimate's variance for a large dataset becomes so small that the P 
values become nonsensical. Therefore, the authors have an unenviable task of proving that their 
dN/dS estimates are unbiased if they used dN/dS ratios slightly greater than 1 to indicate positive 
selection. Of course, this does not exclude the possibility that some mutations will likely confer an 
advantage for some cells to grow larger in numbers, but it is not the same as pervasive positive 
selection. Anyway, in Figure 5d, 95% CIs are rather close to 1 (even without considering 
bias in generating the estimate and its CI), so one needs to be very careful in claiming pervasive 
positive selection. 
 
The reviewer is correct that a small bias in estimated dN/dS ratio could lead to an apparently 
significant excess when the dataset contains large numbers of mutations, as our does. In defence of 
the claim, we proffer four lines of argument and new analyses: 
 
1. Correction for confounders in the dN/dS algorithm  
 
The dN/dS algorithm13 is one of the best-in-class algorithms for quantifying somatic selection, as 
demonstrated by a recent pan-cancer comparison of different methods59. One of the reasons for this 
is the rigorous approach it takes to correcting for the known variables influencing mutation rate across 
the genome, including replication timing, chromatin state and DNAse accessibility60. In addition, the 
model balances the predicted mutation rates from these global covariates with the observed 
synonymous mutation rate within a gene – this latter correction captures many of the unknown 
variables affecting mutation rates acting at a local level.  
 
Furthermore, the algorithm corrects for the observed mutational spectrum13 – this is important 
because, for example, transitions are more likely to generate a synonymous mutation than 
transversions. The model parameterises all 192 rates representing the 6 different types of base 
substitution, the 16 combinations of bases 3’ and 5’ to the mutated base, and transcribed versus non-
transcribed strand. This means that trinucleotide mutational signatures do not bias the overall dN/dS 
estimate.  
 
2. Running dN/dS algorithm with greater stringency 
 
In addition to running the dN/dS algorithm in its standard implementation, we have checked whether 
the overall estimates are materially altered if we run it using two adaptations to impose greater 
stringency.  
 
The first adaptation was to run the algorithm excluding sites that are masked by our variant caller in 
both the numerator and the denominator (a total of 175 million sites genome-wide). Essentially, most 
somatic mutation callers, including ours61, have a ‘normal panel’ where sites that are frequently non-
reference because of sequencing artefact or germline polymorphism are masked. Since germline 
polymorphisms have a dN/dS ratio << 1, this can lead to under-calling of synonymous somatic 
mutations relative to non-synonymous mutations. Running our algorithm with sites in this normal 
panel excluded from both numerator and denominator had minimal impact on the estimated overall 
value of dN/dS (1.0548, CI95%=1.02488-1.0856; versus 1.0586, CI95%=.02861-1.0895 for the standard 
implementation). This argues that there is no bias arising from masking of true somatic mutations at 
germline polymorphisms. 
 
The second adaptation was to run the dN/dS algorithm using correction for pentanucleotide sequence 
context. While a trinucleotide context captures virtually all of the effects of mutational signatures62, 
there remains the theoretical possibility that any signature extending beyond that may affect 



synonymous mutations differently to non-synonymous mutations. To test this, we repeated the 
analysis using rates for the 6 mutation classes and 256 different combinations of 2 bases each side of 
the mutated base – the pentanucleotide context. This also had minimal impact on the estimated value 
of dN/dS for missense variants (1.0472, CI95%=1.0155-1.0799; versus 1.0589, CI95%=1.02852-1.0902 for 
the standard implementation) or the dN/dS for truncating variants (1.0788, CI95%=1.0106-1.1516; 
versus 1.0569, CI95%=0.99558-1.1220 for the standard implementation). Importantly, a 
pentanucleotide context covers the whole of the codon, no matter which base in the codon is mutated 
(whereas a trinucleotide context only covers the whole codon if the middle base is mutated) – this 
means that even if there were residual effects of mutational signatures beyond the pentanucleotide, 
they would not affect the mutated codon, and therefore the amino acid change. 
 
3. Measuring dN/dS on simulated mutations 
 
As a further check, we have now generated simulated mutations in the sequencing data and run the 
dN/dS algorithm. We took 19 BAM files from cord blood HSC/MPPs in our dataset for which zero 
coding mutations were identified by our variant caller. For each BAM file, we randomly chose 2000 
sites in the exome to have simulated mutations, with the mutations following the same mutational 
spectrum as observed in the whole dataset. At each position with a mutation, we then extracted the 
reads reporting that base, and changed the base-call recorded at that base with 0.5 probability (to get 
average VAF of 50%), according to the following rules: change to mutant base if read reported 
reference base; change to reference base if read reported mutant base; change to the other non-
reference, non-mutant base if read reported non-reference, non-mutant base.  
 
The modified BAM files then underwent exactly the same process of variant calling as our real data. 
We verified that the majority of the simulated mutations were correctly called (the proportion 
dependent on sequencing coverage), and that the mutation spectrum was the same as that observed 
in the real data. In total, we called 29,008, which was close to our real dataset of 25,888 coding 
mutations. We ran the dN/dS algorithm over the simulated dataset and found no bias in the results, 
with a dN/dS ratio for all randomly simulated variants of 1.00. For the simulated missense mutations, 
the estimated dN/dS was 1.001 (CI95%=0.974-1.028); and for simulated truncating mutations, it was 
1.001 (0.956-1.067).  
 
These simulations would have captured any biases in the estimation of dN/dS that arose from, for 
example, differential sequencing coverage across the genome, variant calling, variant filtering, variant 
annotation or the dN/dS algorithm. Instead, the estimates of dN/dS are almost exactly 1.00, as 
expected, with confidence intervals that do not overlap with those for our real data. 
 
4. Frequency of clonal expansions concords with estimates of numbers of driver mutations 
 
Our argument that there is pervasive positive selection is not based exclusively on the genetic analysis. 
We also observe a number of clonal expansions in our dataset. We tested Approximate Bayesian 
Computation (ABC) models to see whether these expansions could be explained by neutral drift (for 
example, programmed changes in HSC population size). However, these neutral models were unable 
to capture the asymmetry of branching across the clades in the elderly subjects (many singleton 
branches interspersed with 10-20 considerably expanded clones – see Extended Figure 7). 
 
Instead, to capture this asymmetry, we had to use models which included positive selection. The 
estimates of driver mutation rates that were required to generate trees that matched those we 
observed were about 2.0 x 10-3/HSC/year. These models considered only driver mutations with fitness 
coefficient s>5%. Note that the ABC modelling uses no genetic data to arrive at this estimate – it is 



purely based on how many drivers are required to generate the observed branching patterns in the 
real phylogenies of the older individuals.  
 
Reassuringly, this estimate of the rate of drivers from the ABC modelling is broadly comparable with 
the estimate obtained from the dN/dS analysis. Overall, non-synonymous mutations accumulated in 
HSC/MPPs at a rate of 0.12/HSC/year (CI95%=0.11-0.13), with dN/dS estimates suggesting that 1/34 to 
1/12 non-synonymous mutations were drivers (approximately 5%). This computes to a driver rate of 
3.6-10 x10-3/HSC/year estimated from direct genetic analysis, an estimate which would include drivers 
with s<5% present in sequenced colonies. 
 
We have included a more detailed discussion of potential biases in the dN/dS analysis in the 
Materials and Methods (‘dN/dS analysis’), including these new analyses, and have signposted this 
in the main text (‘Genetic evidence for pervasive positive selection’, p. 8).  
 
 
(f) Was the neutrality of amino acid variants tested by using a prediction tool? Anyway, it will be 
good to know what fraction of non-driver AA variants were likely non-neutral. 
 
We have now performed this analysis using: 

• SIFT4G (https://sift.bii.a-star.edu.sg/sift4g/AnnotateVariants.html)63 and 
• Polyphen2 (http://genetics.bwh.harvard.edu/pph2/bgi.shtml)64.  
 

Of a total 16536 missense mutations in our dataset, 5088 could be annotated by SIFT4G (38 in myeloid 
driver genes) and 4551 could be annotated by Polyphen2 (35 in myeloid driver genes). Approximately 
42% and 45% of the annotated mutations were deemed to be ‘deleterious’ respectively (see Table 
below).  If the same proportion of missense mutations is present in the dataset as a whole we would 
predict approximately 7000 ‘deleterious mutations’, equating to around 1000 per adult individual. 
  

SIFT4G Polyphen2 
Total missense mutations in dataset 16536 16536 
Number annotated 5088 4551 
Number in known driver (excluded) 38 35 
Deleterious 1998 2049 
Possibly deleterious 319 762 
Tolerated 2495 1709 
Fraction deleterious 0.42 0.45 
Predicted deleterious in whole dataset 6945 7441 

 
We have added this analysis to the Supplementary Methods and also included a Supplementary 
Table 7 of annotated coding mutations used in the dN/dS analysis incorporating their SIFT4G and 
Polyphen2 annotations. 
 
 
(g) How were the phylogenetic trees linearized? Since the phylogenies are not strictly clock-like, it 
is best to use a relaxed clock method that can convert a phylogeny into a tree (e.g., a Bayesian 
approach, if possible, or a rapid method such as RelTime for many sequences). 
 
We would argue that somatic mutations within the haematopoietic system from the same individual 
represent an excellent and linear molecular clock. This is based on two properties of mutation burdens 



in HSCs, which not only are conclusively demonstrated in our current dataset, but have also been 
reproducibly demonstrated by other researchers previously65,66. First, across individuals, mutations 
increase linearly with age throughout adulthood, suggesting that the mutation rate is constant and 
clock-like. For our purposes, at a mutation every 2-3 weeks per cell on average, this rate is sufficiently 
high that over the time scales we are interested in (decades of life), the stochastics of the mutational 
processes average out. Second, within an individual, we see remarkably consistent estimates of the 
overall mutation burden per cell. As can be seen in the table below, the standard deviation of mutation 
burden across colonies is remarkably low compared to the mean, suggesting that there is only limited 
overdispersion in the observed burdens. Therefore, we do not need to account for material 
differences in mutation rates across different lineages, as we might need to do for inter-species 
phylogenetic trees, say. 
 

Sample_ID Mean mutation 
burden 

Standard 
deviation 

CB001 56.69 8.47 
CB002 53.30 8.81 
KX001 562.76 40.73 
KX002 677.59 41.37 
SX001 833.54 59.39 
AX001 1103.43 69.83 
KX007 1335.59 70.40 
KX008 1332.96 93.94 
KX004 1346.60 82.52 
KX003 1456.33 82.08 

 
 
Another important feature of our data is that we have more confidence in the branch lengths of early 
branches than late branches. Early branches have effectively been sequenced in many individual 
colonies, to a high combined coverage, meaning that our confidence in their lengths is 
high.  Conversely, private (terminal) branches have higher uncertainty due to the lower effective 
coverage from sequencing only a single colony containing its variants.   
 
To reflect this, we developed a custom method for making our phylogenies ultrametric that gives more 
weight to the lengths of early branches.  This method, which we term an ‘iteratively reweighted means 
approach’, starts from the root of the tree and movies progressively towards each tip. For each 
coalescence, the fraction of overall time at that branch-point is calculated as the fraction of remaining 
time multiplied by the number of mutations on the given shared branch divided by the mean number 
of mutations of all descendants from that shared branch. The function is called recursively, updating 
the fraction of remaining time, as the algorithm moves from root to tip. This algorithm therefore has 
the property that the most confident timings (nodes near the root) are defined first, anchoring the 
timings of subsequent, less confident nodes. 
 
In response to the reviewer’s suggestion to test other approaches for tree linearisation, we have used  
the Bayesian algorithm, Rtreefit, developed by Williams et al10 for somatic mutations in blood cancers.  
In brief, Rtreefit is a Bayesian model for converting trees based on mutation counts into time-based 
trees. The method jointly fits a global constant mutation acquisition rate and absolute time branch 
lengths under the assumption that the observed mutation count based branch lengths are Poisson 
distributed with 𝑀𝑒𝑎𝑛 = 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑅𝑎𝑡𝑒 and subject to the constraint 
that the root to tip duration is the age at colony sampling. The mean branch timings are directly 



sampled from the posterior distribution and by construction the resulting trees are guaranteed to 
have a root to tip distance that matches the sampling age of the colony. The model is coded in R and 
Rstan and inferred using the Rstan implementation of Stan’s No-U-Turn sampler variant of 
Hamiltonian Monte Carlo method. For each patient tree, the model was fitted across four chains each 
with 20,000 iterations including 10,000 burn-in iterations. The code is available as an R package 
“Rtreefit” at  https://github.com/NickWilliamsSanger/rtreefit. 
 
Reassuringly, we found extremely high concordance between our custom ‘iteratively re-weighted 
means’ approach and the Bayesian approach described above. In all phylogenies the R2 for branch 
length comparisons between the two approaches was > 0.99 (see Reviewer Figure 4 below). 
 
We have included results from the comparison of the iteratively re-weighted means approach we 
used for phylogeny linearisation and the alternative Bayesian approach described above in the 
Materials and Methods. Reviewer Figure 4 below has been included as Supplementary Figure 3. We 
have also provided more computational details on the iteratively reweighted means approach in 
the Methods. 
 

 
 
Reviewer Figure 4 (included as Supplementary Figure 3). Scatter plots showing the estimates of 
branch lengths for each phylogeny from the iteratively reweighted means algorithm (x axis) versus 
the branch lengths estimated using the Bayesian algorithm, Rtreefit (y axis). The lines show the 
equality x=y. 
 
 
(h) Based on the phylogeny included in the supplementary information (for an older individual), the 
accumulation of mutations seems to be relatively constant. But, the mutation rate is likely different 
in the initial life stages (first few years) in which cell divisions seem to produce two stem cells as 
compared to the rest of the lifetime in which cell divisions appear to be asymmetric such that they 
produce one stem cell and another progenitor/specialized cell. Wouldn't this change the mutation 
rate between two phases, making it difficult to convert a phylogeny into a clonal timetree? Is it 
possible to estimate the early and late mutation rates and compare them to mutation rates in other 
somatic contexts? 
 
We agree this is an important point to address. Thankfully, we have reasonably accurate estimates of 
the mutation rates during foetal development, which enables us to calibrate the early molecular clock 
on the phylogenies to chronological age. 
 



The mean mutation burden across HSC/MPPs from our two cord blood samples was 55 SNVs/cell. Our 
published data on whole genome sequencing from two human foetuses allow us to refine this rate 
further67, where we observed a mean mutation burden in HSPCs at 8 weeks’ gestation of 25 SNVs/cell, 
and at 18 weeks of 42 SNVs/cell. These data show that the rate of mutation acquisition slows 
considerably during development, from an average rate of 3.2 mutations per week in the first 8 weeks 
to an average rate of 1.6 mutations per week between weeks 8 and 18, and likely also slows 
considerably in the latter half of gestation when compared to our cord blood mutation burden of 
55/cell. The study on foetuses is also helpful in demonstrating there is a rate of mutation acquisition 
per cell division of < 0.9 after the first 3 cell divisions in the zygote67. Although this rate of mutation 
accumulation per cell division is low, due to the very much higher rates of cell division in early 
development, we believe it accounts for the overall higher rates of mutation acquisition observed. 
 
Bulk blood telomere data show that telomere loss is higher in the first 6 months of life after birth, 
before stabilising to adult levels over the rest of childhood68.  It is therefore likely that from the age of 
1 year onwards mutation rate is close to constant due to the fact that cell division rate (and therefore 
telomere loss) stabilises after this period.  Telomere loss data are helpful as they allow us to assess 
total cell division rates (both symmetric and asymmetric) over life. Although the reviewer makes the 
statement that HSC division over adult life is asymmetric, recent experimental work in mice supports 
the view that over 90% of HSC divisions in adult life remain symmetric69,70.   
 
Despite the hint from telomere data that the rate of mutation burden accumulation may be higher in 
the first year of postnatal life, we do not have any direct evidence of a higher mutation rate in very 
early childhood from our data.  A linear regression on age and mutation burden using data from the 
two cord blood donors and the youngest adult age 29 gives a rate of mutation accumulation of 17.56 
per year (CI95%= 17.32-17.78) over this younger period, which is very close to the rate calculated over 
the whole lifespan (16.8).  In addition, the analysis we made of population dynamics (Fig. 4a) suggests 
that the HSC/MPP population reaches its adult size around the time of birth, which would fit with a 
switch from a population growth phase requiring more frequent cell division to steady state adult cell 
division frequency within the first year after birth. To further support the linearity of mutation 
accumulation in early life, recently published work has looked at HPC mutation burden in paediatric 
haematopoietic stem cell donors and recipients aged between 2 and 20 years71. The mutation burdens 
across this age range fit exactly with the model of linear acquisition that we have documented in adult 
life.  Although we cannot exclude a slightly higher HSC mutation rate in the first 1-2 years of life, this 
would have very minimal impact on the validity of our conversion of the phylogenies to time trees 
from birth onwards.  
 
Importantly, as discussed in the previous point, the within-individual mutation burden for the two 
foetuses was remarkably consistent, with little more than Poisson variation. This again argues that 
while the mutational clock ticks faster during development than in adulthood, this is constant across 
different HSC clades, and therefore the linearisation methods across clades are appropriate. 
 
We had already accounted for the higher mutation rate during in utero development in Fig. 4a, but 
in response to this comment, we have now also accounted for it in the age axis of the phylogenies 
in Figs 2 and 3.  The adjustment is performed by assigning the first 55 mutations of molecular time 
to the ‘in utero’ period (such that ‘birth’ or age zero on the axis occurs at 55 mutations) and scaling 
the remaining postnatal mutation time by chronological age in years. We have also referenced the 
recent work on paediatric HPC mutation burdens in the Introduction.   
 
 
(i) Also, the authors need to test whether the mutation rate is constant during all phases of the 
lifetime. This may be checked by examining the estimates of mutation rates (or diversity) from 



younger individuals compared to older individuals (but maybe not the oldest). This could reveal a 
mutational rate shift in different segments of long legs in the phylogeny.  
 
There is now considerable evidence that the major influence on HSC mutation rate is time, rather than 
cell division, meaning that small changes in numbers of cell division over life or in response to 
perturbations will have minimal impact on mutation burden17,71,72.   
 
As stated in the response to the previous point, we have evidence for an elevated HSC/MPP mutation 
rate during in utero development. There is little precise evidence for HSC/MPP mutation rate in the 
first year of postnatal life as discussed above, but in general, all the evidence we have points towards 
a relatively constant relationship from very early childhood onward. We have now performed linear 
regression of age and mutation burden in age ranges.  Using data from the two cord blood donors and 
the youngest adult age 29 gives a rate of mutation accumulation of 17.56 per year (CI95%= 17.32-17.78). 
Using data from just the 3 younger donors aged 29, 38, and 48 gives a rate of mutation accumulation 
of 17.21 per year (CI95%= 16.12-18.3). Linear regression of age and mutation burden using the 5 older 
donors aged 63, 75, 76, 77 and 81 gives a rate of mutation accumulation of 18.84 per year (CI95%= 
16.82-20.86). These results are very consistent over different phases of life. We do, however, agree 
that due to the relatively small number of individuals in our study, this analysis cannot be wholly 
conclusive. Considerable further work would need to be performed to identify any small variation in 
HSC/MPP mutation rate over life that we are unable to detect with this study.  
 
Whilst this analysis on variable mutation rate with age still leaves some uncertainty in the exact timing 
of historical coalescent events, we believe the range of uncertainty is small and does not have any 
impact on the main analyses we present or conclusions we draw. 
 
We have included the results of the linear regression broken down into age ranges in the Materials 
and Methods (‘Mutation burden analysis’). 
 
 
(j) For such data, SCITE is the most appropriate method for lower-quality data (many unknown and 
incorrect base assignments), and the authors have used it already (as reported in the Supplementary 
information). SCITE produces a mutation tree, and thus a clone phylogeny and branch lengths. Those 
are expected to be most appropriate for the current application. So, why MPBoot is being applied 
and why the ML method estimates branch lengths are not clear.  
 
The major advantage of our approach of growing single cells into colonies, rather than directly 
sequencing the single cells themselves after whole genome amplification, is that the genomes we get 
are considerably higher quality. First, we have very few false positive mutation calls because the DNA 
amplification from the single cell happens in cellulo, where all the DNA repair processes remain active, 
rather than in vitro, where only a single, rather error-prone processive bacteriophage polymerase is 
used. Second, the genome coverage is much more even in the colonies, meaning that the average 
depth we achieved here, 14x, is generally consistent across every mutated base. As a result, the 
fraction of sites where we are missing data is generally no more than 0.5-3% (see table below). For 
example, in KX003, only 1.17% of genotypes were ‘unknown’, and, as demonstrated by the 
disagreement scores, the vast majority of allocated genotypes were concordant with phylogenetic 
assumptions.  
 

Sample_ID Genotype 
0 
‘absent’ 

Genotype 
0.5 
‘unknown’ 

Genotype 
1 
‘present’ 

% sites ‘missing data’ 

KX001 3,068,118 42,512 22,049 1.38 



KX002 2,719,616 28,599 20,085 1.05 
SX001 4,003,266 127,878 32,218 3.17 
AX001 5,086,607 173,657 39,577 3.39 
KX007 9,081,044 48,041 97,580 0.52 
KX008 10,248,698 78,247 157,878 0.75 
KX004 21,179,417 197,625 249,761 0.92 
KX003 8,993,397 107,236 187015 1.17 

 
 
These features mean that MPBoot is an appropriate method for phylogeny inference – maximum 
parsimony methods work well when the data are relatively complete across sites, as evidenced here, 
and the infinite sites assumption holds (which it does since overall mutation burdens are very low, 
less than 1 in a million bases genome-wide per cell, with relatively even distribution across the 
genome).  
 
We do agree with the reviewer that SCITE is also an appropriate method, with several advantages, as 
pointed out. We have now run SCITE over all but one of the phylogenies for this revision. However, 
we have found that the computational burden of SCITE is challenging – taking about 2-3 weeks to 
complete on average. The largest phylogeny (KX004) cannot complete within the timeframe required 
for our compute farm ‘basement queue’, which terminates jobs after 4 weeks. For this reason, we 
have stayed with the MPBoot trees in the figures for consistency across the dataset. 
 
To be confident that the two methods give concordant trees, we have measured the similarity of trees 
estimated with MPBoot and SCITE. Reassuringly, in all cases there was high concordance in the 
phylogenies produced by the two approaches (Robinsons-Foulds distance < 0.07) as shown in the table 
below.  
 

Individual Robinsons-Foulds 
Similarity of SCITE 

tree 

Quartet Similarity of 
SCITE tree 

Comparison of 32 summary 
statistics  

KX001 0.934 1.000 Unchanged 
KX002 0.949 0.999 Unchanged 
SX001 0.945 0.999 Unchanged 
AX001 0.947 1.000 Unchanged 
KX007 0.977 0.999 Subtle changes (see below) 
KX008 0.960 0.998 Unchanged 
KX003 0.954 1.000 Subtle changes (see below) 

 
 
Most differences that did emerge affected the precise arrangement of some early embryonic branch 
points – these differences would not be anticipated to have an impact on any of the key downstream 
analyses in the manuscript. See Reviewer Figure 5 below for 4 examples of the comparison, in which 
discrepant nodes between the phylogenies inferred using MPBoot vs. SCITE are highlighted.  
 
We have also formally compared the summary statistics obtained from the phylogenies inferred using 
MPBoot vs SCITE. We found that when the range of summary statistics we utilise for the driver ABC 
modelling are assessed at 4 timepoints, in 5 out of 7 individuals the statistics for the MPBoot and SCITE 
phylogenies are identical. For KX007, 6 of 32, and for KX003, 4 of 32 summary statistics calculated for 
each phylogeny are discordant but by a negligible amount (2 or less). See the tables below for the 
discordant statistics for KX007 and KX003, showing the marginal differences between the approaches. 



These overall highly concordant findings further confirm that the choice of tree-building approach 
would not have altered the conclusions of the downstream modelling analyses. 
 
KX007: discrepant summary statistics between MPBoot and SCITE phylogenies 

Tree 
building n_singletons_2 n_singletons_3 ltt_2 ltt_3 coals_1 coals_3 

MPBoot 224 290 253 300 43 15 

SCITE 226 292 254 301 44 14 

 
KX003: discrepant summary statistics between MPBoot and SCITE phylogenies 

Tree 
building  

n_singletons_3  clade_size_b_3  ltt_3 coals_3 

MPBoot 241 4 271 54 

SCITE 240 5 269 56 

n_singletons_2 = number singleton samples at timepoint 2 
n_singletons_3 = number singleton samples at timepoint 3 
ltt_2 = number lineages at timepoint 2 
ltt_3 = number lineages at timepoint 3 
coals_1 = number coalescences in time period 1 
coals_3 = number coalescences in time period 2 
clade_size_b3 = size of the second largest clade at timepoint 3 
 
We have incorporated the percentage of sites with missing data and a concise version of comparison 
of the summary statistics between the MPBoot and SCITE phylogenies in the Materials and Methods 
(‘Validation of the phylogeny’). 
 
 



 
Reviewer Figure 5. Comparison of phylogenetic trees between MPBoot and SCITE methods for four 
individuals in that study. Red bars highlight branches that are discrepant between the two methods. 
 
 
(k) Also, in Supplementary Figure S3, the method used for S3b needs to be mentioned. MPBoot 
phylogenies in Figures S3e and S3f have different bootstrap values?  
 
Supplementary Fig. 3b – the same raw read count bootstrapping approach was used as in 
Supplementary Fig. 3a. We have updated the figure legend to clarify this. 



Supplementary Fig. 3e and 3f – the annotated nodes do not relate to bootstrap values, but highlight 
differences in the phylogenies obtained between MPBoot and alternative phylogeny-inference 
approaches.  We have changed the figures and legends to clarify this. 
 
 
(l) The article also does not present enough information on how the completeness of sequence 
alignments. What was the percentage of positions with missing data, and was there a need to use 
methods to impute missing data and correct sequencing errors (e.g., SCITE, BEAM, etc.). It would 
also be useful to know how often cells were not heterozygous (e.g., LOH).  
 
We have included information on the completeness of sequence alignments in response to 
comment (j) and the Materials and Methods.  No imputation of missing data or correction of 
sequencing errors was performed. LOH was rare in our data as shown in Fig. 1e-f, and therefore the 
overwhelming majority of somatic mutations were heterozygous, with a VAF of ~50%. 
 
 
(m) As for standard bootstrapping, it is expected to be low for short branch lengths, i.e., those with 
only one or a few mutations, due to standard properties of the site-sampling bootstrap (e.g., a 
branch must contain at least 3 mutations before the expected bootstrap support can ever reach 
95%). So, bootstrap support for early branching events is expected to be very low, but this 
uncertainty is unlikely to affect the downstream inference. 
 
As the reviewer points out, the shape of our tree, with multiple short branches that are ancestral to 
many cells, makes bootstrapping rather conservative. As some of the earliest splits in the tree are 
supported by a single mutation which may be omitted in a bootstrap replicate (indeed, a given 
mutation will be present on average in 630 out of 1000 replicates), some of the earliest splits may not 
be supported by a particularly high proportion of replicates, even though the mutation calls 
themselves are highly confident (based on multiple colonies carrying 5-10 reads reporting the variant, 
while being completely absent from other colonies). 
 
We have extended this point in the relevant section of the Materials and Methods (‘Validation of 
the phylogeny’). 
 
 
(n) It will be useful to be more explicit about how the trees were rooted. I gleaned that somewhat 
from the protocol noted, but was an actual sequence of (e.g., 0's) used in MPBoot analysis to root 
the tree? SCITE will automatically assume that but was that done in MPBoot, or is midpoint rooting 
used? This clarification is important to know if the early phase was symmetric cell division, leading 
to a balanced tree or a highly asymmetric one.  
 
The trees were rooted using an ‘ancestral’ branch in the MPBoot analysis (coded as a string of W’s for 
wildtype). Variants were coded as ‘V’ and missing data was ‘?’. See example below: 
 
Ancestral: 
“WWWWWWWWWWWWWWWWWWWWWWWWWWWW” 
PD40521aa: 
“WWWWWWWVWWWWWWWWWWWW?WWWWWWW” 
PD40521ab: 
“WWWWWWWWWWWWWWWWVWWWWWWWWWWW” 
 
This information has been added to the Materials and Methods (‘Construction of phylogenetic 
trees’). 



 
 
(o) In the phylogenies presented, HSCs and MPPs are not immediately clear. Maybe I missed it. It 
will be useful to mark those lineages if they are both included. Are the dynamics different for HSC 
and MPPs? 
 
Apologies for the confusion surrounding the HSC nomenclature used in the manuscript.  The term 
‘HSC/MPP’ refers to a single population of sorted cells (as per Extended Fig. 1). Xenograft 
transplantation experiments have demonstrated that this population is the best described to date 
which contains both HSCs, defined as providing long-term human blood repopulation in the 
transplanted animals, as well as MPPs, which have short-term repopulation capacity in the same 
assays18,73–75.  We have not further subclassified the “HSC/MPP” population in this analysis. 
 
In response to this comment we have improved our description of the HSC/MPP population in the 
Materials and Methods (‘Fluorescence activated cell sorting’).  
 
 
(p) Data sharing. While the raw data and the associated source code to summarize them are 
available, the availability of alignments (1/0/? states and base calls) used for MPBoot (and other 
evolutionary analysis) is extremely important for others to be able to reanalyze/reproduce/advance 
the results presented. In particular, providing those in a form that can allow one to use standard 
methods for dN/dS analyses will be important to reproducing results and scrutinizing patterns.  
 
We have uploaded all the dN/dS input data to Mendeley data (doi: 10.17632/np54zjkvxr.1) along with 
all the data necessary to repeat the mutation burden and tree building analysis (including running 
MPBoot).  See below for a guide on how to locate different data matrices in the same format as used 
in the analyses presented here. 
 
dNdS_input folder 
Contains all raw input files for the dN/dS analysis. 
 
Filtering_output_XXXX folders (one for each individual) 
Contains three files: 
 
a) annotated_mut_set_XXXX_01_standard_rho01 
This is an R data object and is uploaded into an R workspace using load() 
The genotype matrix used for MPBoot tree building is available in the matrix: 
filtered_muts$Genotype_shared_bin 
The dna strings used as input for MPboot are available in the vector: filtered_muts$dna_strings 
The annotated variant calls with tree node information are available in the matrix: 
filtered_muts$COMB_mats.tree.build$mat 
The genotype matrix of mutations calls per sample is available in: 
filtered_muts$COMB_mats.tree.build$Genotype_bin 
Information on whether the variant is an SNV or indel is available in: 
filtered_muts$COMB_mats.tree.build$mat$Mut_type 
A summary of total numbers of shared and private SNVs and indels is available in: 
filtered_muts$summary 
 
b) XXXX_sensitivity 
This file contains information on the sensitivity of SNV and Indel calls per sample. 
 



c) tree_XXXX_01_standard_rho01.tree 
The raw tree with branch lengths equal to number of mutations assigned (without adjustment for 
sequencing coverage). 
 
metadata_matrix folder 
Contains file “Summary_cut.csv” which records metadata on each sample in the dataset including 
cell_type sorted, sequencing depth, sequencing_platform, SNV burdens, indel burdens and telomere 
length. 
 
The above guide to available data has been included in the Materials and Methods section ‘Data 
Availability’. 
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