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Figure S1. Protein sequence alignment of RsgI9 sequences in Clostridia. Alignment of the 

amino acid sequences of RsgI9 in Clostidium thermocellum (Acetivibrio thermocellus) and related 

species using Clustal Omega1. The domains are boxed and labeled in the same colors, and the 

catalytic triad residues in the S1C peptidase domain are indicated by the asterisks. 
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Figure S2. Comparison of RsgI9’s CTD with a structurally similar NTF2-like protein. (A) 

Surface representation of RsgI9 C-terminal domain (CTD) (pink), and (B) a NTF2-like structural 

homolog shown in the same orientation (cyan) (PDB accession code 3ROB). The structures are 

similar and have a DALI Z-score = 13.7 and PDBeFold Z-score = 7.8. (C) Cartoon figure showing 

the extended β-sheet found in other NTF2-like proteins (red) that is missing in RsgI9 (pink). RsgI9 

secondary structural elements are labeled. The positioning of the structures is the same in each 

panel.  
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Figure S3. 2-D NMR spectrum of RsgI9S1C-CTD. A 2-D TROSY-HSQC NMR spectrum of 
15N-labeled RsgI9S1C-CTD was acquired prior to 15N-TRACT correlation time determination. The 

spectrum indicates a well-folded protein with backbone amide signals well-dispersed. 
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Figure S4. RsgI9’s catalytic triad resembles inactive form of homolog DegS. (A) Alignment 

of the catalytic triad residues found in RsgI9 with those in the active (magenta, PDB: 4RQZ) and 

inactive (yellow, PDB: 4RQY) forms of the E. coli DegS protease. RsgI9’s configuration more 

closely resembles the inactive form, as the distance between the His Nε2 and the Ser/Thr hydroxyl 

group is too far to make a productive hydrogen bond. (B) Alignment of the oxyanion hole residues 

adjacent to the nucleophilic Ser/Thr, with the same structures and coloring as in panel A. Both 

RsgI9 and the inactive form of DegS presumably fail to stabilize the tetrahedral intermediate 

during proteolysis due to a deformation relative to the active conformation. Notably, the amide Ni-

2 is flipped out while the carbonyl Ci-3 points inward.  
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Figure S5. Fit of SAXS data and ab initio reconstructions. (A) Fit of experimental scattering 

curve to that predicted for the RsgI9S1C-CTD crystal structure by the FoXS server (χ2 value of 1.23). 

(B) Ab initio bead model and electron density reconstructions of RsgI9S1C-CTD, using DAMMIF/N 

and DENSS, respectively. The maximum dimension of the model (84 Å) is consistent with the 

Dmax observed from the data (82 Å). (C) Ab initio models for intact RsgI9ecto. The length of the 

model is in agreement with the value of Dmax derived from the SAXS data (160 Å). 
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Figure S6. C. thermocellum RsgI architecture vs. DISOPRED3 disorder predictions. The 

primary sequences of the nine RsgI proteins from Clostridium thermocellum were analyzed using 

DISOPRED32. Values above 0.5 are predicted to be disordered, while those below are likely 

structured. The domain architecture of each RsgI is shown below each plot based on previous 

structures, UniProtKB annotation, and this work3-6. A good agreement is seen between annotated 

domains and predicted structured regions. 
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