### Supplementary files



Fig. S1. Usp26 expression during osteoblastic and osteoclastic
differentiation, and the effect of Usp18, Usp21, or Usp4 deletion on

osteoblastic or osteoclastic differentiation. (A) Time curve of Usp26 5 expression in MSCs after different days of osteoblastic differentiation. (B) 6 Time curve of Usp26 expression in BMMs after different days of 7 osteoclastic differentiation. (C-F) The osteoblastic genes expression, ARS 8 and ALP staining of MSCs with or without Usp18 or Usp21 knockdown 9 after 8 days of osteoblastic differentiation. (G and I) The osteoclastic genes 10 expression of BMMs with or without Usp21 or Usp4 deletion after 3 days 11 of osteoclastic differentiation. (H and J) The TRAP staining of 12 multinucleated osteoclasts formation of BMMs with or without Usp21 or 13 Usp4 deletion after 5 days of osteoclastic differentiation. \*P < 0.05, 14 \*\**P*<0.01, \*\*\**P*<0.001. *P*-values were analyzed by one-way ANOVA in 15 (A) and two-tailed t tests in (B, C, E, G, I). All data are representative of 16 two independent experiments. 17

18

19





Fig. S2.  $Usp26^{-/-}$  mice have reduced bone mass and poor bone strength. (A) Representative micro-CT images of femur bones of 1-, 2- and 5-monthold  $Usp26^{-/-}$  mice and their WT littermates (n=5). (B) Representative micro-CT images of cortical bone from the femoral metaphysis of 5month-old  $Usp26^{-/-}$  mice and their WT littermates (n=6). (C) The cortical

bone volume (BV/TV, %), bone mineral density (BMD, g/cm<sup>3</sup>), cotical 27 thickness (Cb.Th, mm), total cross sectional cortical bone area (B. Ar, 28 mm<sup>2</sup>), and cortical porosity (Ct.Po, %) were determined by micro-CT 29 analysis (n=6). (D) Maximum force and elasticity modulus analyzed using 30 three-point bending test, including elasticity modulus (MPa), energy to 31 failure (mJ), maximum force (N), and ultimate stress (MPa) (n=6). 32 \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.001. P-values were analyzed by one-tailed t33 tests. All data are representative of two to three independent experiments. 34 35



36

Fig. S3. (A) Osterix, OC and BMP2 immunohistochemical staining in femurs of 5-month-old  $Usp26^{-/-}$  mice and their wild-type (WT) littermates (*n*=6). Scale bars represent 100 µm. All data are representative of two independent experiments.

1 matqadlmel dmamepdrka avshwqqqsy ldsgihsgat ttapslsgkg npeeedvdts 61 qvlyeweqgf sqsftqeqva didgqyamtr aqrvraamfp etldegmqip stqfdaahpt 121 nvqrlaepsq mlkhavvnli nyqddaelat raipeltkll ndedqvvvnk aavmvhqlsk 181 keasrhaimr spqmvsaivr tmqntndvet arctagtlhn lshhreglla ifksggipal 241 vkmlgspvds vlfyaittlh nlllhqegak mavrlagglq kmvallnktn vkflaittdc 301 lqilaygnqe skliilasgg pqalvnimrt ytyekllwtt srvlkvlsvc ssnkpaivea 361 ggmqalglhl tdpsqrlvqn clwtlrnlsd aatkqegmeg llgtlvqllg sddinvvtca 421 agilsnltcn nyknkmmvcq vggiealvrt vlragdredi tepaicalrh ltsrhqeaem 481 aqnavrlhyg lpvvvkllhp pshwplikat vglirnlalc panhaplreq gaiprlvqll 541 vrahqdtqrr tsmggtqqqf vegvrmeeiv egctgalhil ardvhnrivi rglntiplfv 601 qllyspieni qrvaagvlce laqdkeaaea ieaegatapl tellhsrneg vatyaaavlf 661 rmsedkpqdy kkrlsvelts slfrtepmaw netadlgldi gaqgealgyr qddpsyrsfh 721 sggygqdalg mdpmmehemg ghhpgadypv dglpdlghaq dlmdglppgd snqlawfdtd 781 l

42

#### 43 Fig. S4. Sequences of the $\beta$ -catenin protein and peptides identified by

### 44 liquid chromatography-tandem mass spectrometry. The identified

45 peptide sequences are shown in red.



Fig. S5. Usp26 deletion impaired chondrogenesis of MSCs, resulted in 48 decreased chondrocyte formation and abnormal early skeletal 49 **development**. (A) Quantification analysis of Aggrecan, Collagen  $2\alpha l$ , and 50 Sox9 expression in WT and Usp26<sup>-/-</sup> MSCs after 14 days of chondrogenic 51 differentiation. (B) Alcian blue staining of WT and Usp26<sup>-/-</sup> MSCs after 14 52 days of chondrogenic differentiation. Scale bars represent 20 µm. (C and 53 D) Alcian blue and H&E staining of femoral sections from E16.5 WT and 54  $Usp26^{-/-}$  mice (n=5). Scale bars represent 20 µm. (E-H) Alcian blue/alizarin 55

red staining of the whole skeleton (E), calvaria (F), forelimb (G), and hindlimb (H) from 1-week-old WT and  $Usp26^{-/-}$  male littermates (*n*=3). Scale bars represent 1 cm. \*\**P*<0.01, \*\*\**P*<0.001. *P*-values were analyzed by one-tailed *t* tests. All data are representative of two independent experiments.

61

62





Fig. S6. Oxidative stress inhibited *Usp26* expression in MSCs. (A and B) Dose- and time-dependent expression of *Usp26* in MSCs exposed to  $H_2O_2$ . \*\*\**P*<0.001. *P*-values were analyzed by one-way ANOVA. All data

<sup>67</sup> are representative of two independent experiments.

68



Fig. S7. Estrogen induced Usp26 expression in BMMs and MSCs. (A and B) Dose- dependent expression of Usp26 in BMMs (A) and MSCs (B) exposed to estrogen. \*\*P < 0.01, \*\*\*P < 0.001. *P*-values were analyzed by one-way ANOVA. All data are representative of two independent experiments. Table S1. Primer sequences for real time-PCR 

| Gene                |         | Primer sequence (5'-3')  |
|---------------------|---------|--------------------------|
| Trap                | FORWARD | CACTCCCACCCTGAGATTTGT    |
|                     | REVERSE | CATCGTCTGCACGGTTCTG      |
| C-Fos               | FORWARD | CGGGTTTCAACGCCGACTA      |
|                     | REVERSE | TTGGCACTAGAGACGGACAGA    |
| Cathepsin k         | FORWARD | GAAGAAGACTCACCAGAAGCAG   |
|                     | REVERSE | TCCAGGTTATGGGCAGAGATT    |
| DC-STAMP            | FORWARD | GGGGACTTATGTGTTTCCACG    |
|                     | REVERSE | ACAAAGCAACAGACTCCCAAAT   |
| V-atpase $\alpha 3$ | FORWARD | CACAGGGTCTGCTTACAACTG    |
|                     | REVERSE | CGTCTACCACGAAGCGTCTC     |
| Nfatc 1             | FORWARD | GACCCGGAGTTCGACTTCG      |
|                     | REVERSE | TGACACTAGGGGACACATAACTG  |
| Osterix             | FORWARD | ATGGCGTCCTCTCTGCTTG      |
|                     | REVERSE | TGAAAGGTCAGCGTATGGCTT    |
| Runx2               | FORWARD | CCACCACTCACTACCACACG     |
|                     | REVERSE | GGACGCTGACGAAGTACCAT     |
| Osteocalcin         | FORWARD | CCTGACTGCATTCTGCCTCT     |
|                     | REVERSE | AGGTAGCGCCGGAGTCTATT     |
| Bmp-2               | FORWARD | GAAGCCAGGTGTCTCCAAGA     |
|                     | REVERSE | GGATGTCCTTTACCGTCGTG     |
| Alp                 | FORWARD | GACAAGAAGCCCTTCACAGC     |
|                     | REVERSE | ACTGGGCCTGGTAGTTGTTG     |
| Col2a1              | FORWARD | CCACACCAAATTCCTGTTCA     |
|                     | REVERSE | ACTGGTAAGTGGGGCAAGAC     |
| Aggrecan            | FORWARD | AGGACCTGGTAGTGCGAGTG     |
|                     | REVERSE | GCGTGTGGCGAAGAA          |
| Sox9                | FORWARD | CCACGGAACAGACTCACATCTCTC |
|                     | REVERSE | CTGCTCAGTTCACCGATGTCCACG |
| Usp1                | FORWARD | ACAGATGAACTTGCTACACAGC   |
|                     | REVERSE | AGGAGTTGGCATGTTTCTTGAA   |
| Usp2                | FORWARD | CACAGCAGTCTTTTCCCTTCG    |
|                     | REVERSE | CATCTGTGTAGCGGGACGAT     |
| Usp3                | FORWARD | ACAGTGTGTATGGATTGCAGTAG  |
|                     | REVERSE | CCTGTCCGCTGTAAAGGCT      |
| Usp4                | FORWARD | GGGGCGCAGTGGTATCTTATT    |
|                     | REVERSE | GAAACAGGTTATGCTCCCCGA    |
| Usp5                | FORWARD | TGTCAGTGTTACCGACGATCC    |
|                     | REVERSE | CCGGCGTGTCGAAAGAGAAA     |
| Usp6                | FORWARD | TCCGACCAGGATGTAGCACTC    |
|                     | REVERSE | CTTCCCAGGGCTCGATCTCT     |
| Usp7                | FORWARD | CCACAAGGAAAACGACTGGG     |
|                     | REVERSE | GTAACACGTTGCTCCCTGATT    |

| Usp8  | FORWARD | CTGCTAGTTGGATTGAAGCAAAC |
|-------|---------|-------------------------|
|       | REVERSE | AGTGCATCTTTCAGACTCCGTA  |
| Usp9  | FORWARD | AGCCATCCGAATGGTTCGC     |
|       | REVERSE | ACAAGTGTTTTCCACGAAATGC  |
| Usp10 | FORWARD | GTCATCGAACCTAGTGAGGGG   |
|       | REVERSE | CCAAGGATAAATTCGGGTGCC   |
| Usp11 | FORWARD | GGCTGTATCAACAATGCTGGG   |
|       | REVERSE | TCATCTCCTTCTAGCAGTCTCTC |
| Usp12 | FORWARD | CAGTCTCCAAATTCGCCTCCA   |
|       | REVERSE | GTGCTCGTTGACCGGAAACT    |
| Usp13 | FORWARD | CACATGGGAAAACGAAGTGCC   |
|       | REVERSE | GCCGTCAGTCAGATTCAACCA   |
| Usp14 | FORWARD | ATGCCACTCTACTCTGTTACAGT |
|       | REVERSE | AACACCATTGGAGGTTCATCAG  |
| Usp15 | FORWARD | GACGCTGCTCAAAACCTCG     |
|       | REVERSE | CGATGGGTCCAGGATAGACATT  |
| Usp16 | FORWARD | CTGCCAAGACTGTAAGACTGAC  |
|       | REVERSE | GGTGTCGTGTAGTGCTTCAAG   |
| Usp17 | FORWARD | CCAGAAGAGACTGGAGGGGA    |
|       | REVERSE | ACCACCATGTCTCCAAAGACC   |
| Usp18 | FORWARD | CAGGAGTCCCTGATTTGCGT    |
|       | REVERSE | CAGAGGCTTTGCGTCCTTATC   |
| Usp19 | FORWARD | TGAACCAGAGCAGTGTACGTT   |
|       | REVERSE | CTGCACCTCGTGTAGCAGG     |
| Usp20 | FORWARD | TGGACTGCATAGGGGAGGTG    |
|       | REVERSE | ACTGGCAGGTTCCCTTAGATT   |
| Usp21 | FORWARD | AACTCCATGTTACGACCTTTGC  |
|       | REVERSE | AAGGGGACCTCTAGGACGAGA   |
| Usp22 | FORWARD | TCTTTCTGTCGGATAGGCACC   |
|       | REVERSE | GCCCTGAGTAAAACTCCTGGA   |
| Usp24 | FORWARD | GCTGGAAAGCCGCGTTTTG     |
|       | REVERSE | CAAGTCTGGCTAAGTAGGTGGA  |
| Usp25 | FORWARD | GGAGGAGACAGGCTATTACCA   |
|       | REVERSE | TCAAGGCAATCGCTCTCTGAA   |
| Usp26 | FORWARD | CTCAAGTCCAGATGTGGAGTGC  |
|       | REVERSE | CTGGTCTTCGCCATAGGTTTG   |
| Usp27 | FORWARD | CGACCAAACCTGAACTAGAACTT |
|       | REVERSE | CGTAAGCCGATGGTAAAGCTG   |
| Usp28 | FORWARD | GGGTCCGAGAAGGAAAGCC     |
|       | REVERSE | CACGGAACGATCCGAAGGAAG   |
| Usp29 | FORWARD | TCCGCAGCACAAACAGGAG     |
|       | REVERSE | CTCACCACTAACCACTACGCC   |
| Usp30 | FORWARD | GGGAGTGATCGGTGGGATTG    |
|       | REVERSE | TCTTCCTCTCTGTAATGGGACC  |

| Usp31 | FORWARD | GGAGTACACCCCGCAACAC     |
|-------|---------|-------------------------|
|       | REVERSE | TGCTTTACAGCATGGTTGAGG   |
| Usp32 | FORWARD | AGTGAATCCGGGAGCTATGTT   |
|       | REVERSE | TTCCTGAGTGTATCTGGGACTTT |
| Usp33 | FORWARD | GCGCTTGTCAGGACTGTAAAG   |
|       | REVERSE | CAGCCAACATAGGAGCACC     |
| Usp34 | FORWARD | GATATTGGTGGTCGTTCATGTGT |
|       | REVERSE | TTGGCAAATTCGTAAAGGAAAGC |
| Usp35 | FORWARD | GGGAAGAACATTGACAAGTGGA  |
|       | REVERSE | GCGAAACCTCGATCAAGATGC   |
| Usp36 | FORWARD | CCAACAGCGGCAATGCTATC    |
|       | REVERSE | CATCGCATCAATGGTGTACCG   |
| Usp37 | FORWARD | TGCAGACTGGGATTACAAAGTG  |
|       | REVERSE | ACGAGCAGGCTGACTCTATTG   |
| Usp38 | FORWARD | GCCCCTCAAGCGGATGATT     |
|       | REVERSE | GGGTCGTCAGGTCAAACATGG   |
| Usp39 | FORWARD | GTCACTGCCCGTACTTGGATA   |
|       | REVERSE | GTATGCGTTGATGTGCGAGAG   |
| Usp40 | FORWARD | TGACCGACTGGTTAAAGCAGC   |
|       | REVERSE | GCTAGTATCCTTGTAGCGTTCAC |
| Usp42 | FORWARD | AGGCGGTCTCACCTGAAGA     |
|       | REVERSE | CACTGGCCCTAATGGAAGTGT   |
| Usp43 | FORWARD | GACTTGTCCACACTGCCTAAAA  |
|       | REVERSE | AGTGACACTCAAGAATCTCGTCT |
| Usp44 | FORWARD | AATGGTACTGTATGGTCTGCAAC |
|       | REVERSE | TTCAGTGCGTGCTCTTGGATG   |
| Usp45 | FORWARD | ATGCGGGTAAAAGATCCATCAAA |
|       | REVERSE | ACGTTAGACCTACAGCAATGTCA |
| Usp46 | FORWARD | ATGACTGTCCGAAACATCGCC   |
|       | REVERSE | TTGACCAATCCGAAGTAGTGTTC |
| Usp47 | FORWARD | GATGTGATTCCCTTGGATTGCT  |
|       | REVERSE | AACCCCATTGGTGTATCTTCTTC |
| Usp48 | FORWARD | TGTGGGCTTGACTAACCTGG    |
|       | REVERSE | AAGCTCCAAGTTGAGGAACCA   |
| Usp49 | FORWARD | AGTTCCGGGAATGTTTCCTGA   |
|       | REVERSE | CTCCTTACTGACAACTCTGCG   |
| Usp50 | FORWARD | GCCTACCTGATGACAGATATGTG |
|       | REVERSE | TGCCAACAGCCGACAGAAAT    |
| Usp51 | FORWARD | CCCACGTCGGAGAACTTAACA   |
|       | REVERSE | GACAAGCAGCCGGGATAGAAG   |
| Usp52 | FORWARD | CAGAGGTGGAACCGCTTCAT    |
|       | REVERSE | TGAGCAGAAACTGCCTCCAG    |
| Usp53 | FORWARD | AAGCCTAGCGGCAATCTTGG    |
|       | REVERSE | GTTCTGCCCTGGCTCGTTTA    |

| Usp54          | FORWARD | CCTGAGCTCGAATGGGTTGT   |
|----------------|---------|------------------------|
|                | REVERSE | GAGACACCACAAGCCGAGAA   |
| $\beta$ -actin | FORWARD | GGCTGTATTCCCCTCCATCG   |
|                | REVERSE | CCAGTTGGTAACAATGCCATGT |

# 95 Table S2. shRNA oligonucleotides

|                         | 5'         | Stem             | Loop   | Stem                  | 3'     |
|-------------------------|------------|------------------|--------|-----------------------|--------|
| Usp18 shRNA             |            |                  |        |                       |        |
| Usp18-shRNA-1 F         | CCGG       | GATGGCTGACTTTGGT | CTCGAG | TAATGACCAAAGTCAGCCATC | TTTTTG |
|                         |            | CATTA            |        |                       |        |
| Usp18-shRNA-1 R         | AATTCAAAAA | GATGGCTGACTTTGGT | CTCGAG | TAATGACCAAAGTCAGCCATC |        |
|                         |            | CATTA            |        |                       |        |
| Usp18-shRNA-2 F         | CCGG       | GCTGCATTTCAACGA  | CTCGAG | TTATTCTCGTTGAAATGCAGC | TTTTTG |
|                         |            | GAATAA           |        |                       |        |
| Usp18-shRNA-2 R         | AATTCAAAAA | GCTGCATTTCAACGA  | CTCGAG | TTATTCTCGTTGAAATGCAGC |        |
|                         |            | GAATAA           |        |                       |        |
| Usp18-shRNA-3 F         | CCGG       | CAGGTTCTGAAGCTG  | CTCGAG | ATGAGTCAGCTTCAGAACCTG | TTTTTG |
|                         |            | ACTCAT           |        |                       |        |
| Usp18-shRNA-3 R         | AATTCAAAAA | CAGGTTCTGAAGCTG  | CTCGAG | ATGAGTCAGCTTCAGAACCTG |        |
|                         |            | ACTCAT           |        |                       |        |
| Usp21 shRNA             |            |                  |        |                       |        |
| Usp21-shRNA-1 F         | CCGG       | ATGGCTCCTTCCACAT | CTCGAG | ATATCATGTGGAAGGAGCCAT | TTTTTG |
|                         |            | GATAT            |        |                       |        |
| Usp21-shRNA-1 R         | AATTCAAAAA | ATGGCTCCTTCCACAT | CTCGAG | ATATCATGTGGAAGGAGCCAT |        |
|                         |            | GATAT            |        |                       |        |
| <i>Usp21-</i> shRNA-2 F | CCGG       | GTGCTCCATCTGAACC | CTCGAG | AAATCGGTTCAGATGGAGCAC | TTTTTG |
|                         |            | GATTT            |        |                       |        |
| Usp21-shRNA-2 R         | AATTCAAAAA | GTGCTCCATCTGAACC | CTCGAG | AAATCGGTTCAGATGGAGCAC |        |
|                         |            | GATTT            |        |                       |        |
| Usp21-shRNA-3 F         | CCGG       | CCTAAGGTTAAGTCG  | CTCGAG | CGAGGGCGACTTAACCTTAGG | TTTTTG |
|                         |            | CCCTCG           |        |                       |        |
| Usp21-shRNA-3 R         | AATTCAAAAA | CCTAAGGTTAAGTCG  | CTCGAG | CGAGGGCGACTTAACCTTAGG |        |
|                         |            | CCCTCG           |        |                       |        |
| Negative control        |            |                  |        |                       |        |
| shRNA Scramble F        | CCGG       | CCTAAGGTTAAGTCG  | CTCGAG | CGAGGGCGACTTAACCTTAGG | TTTTTG |
|                         |            | CCCTCG           |        |                       |        |
| shRNA Scramble R        | AATTCAAAAA | CCTAAGGTTAAGTCG  | CTCGAG | CGAGGGCGACTTAACCTTAGG |        |
|                         |            | CCCTCG           |        |                       |        |

# 98 Table S3. siRNA oligonucleotides

|                  | sense (5'-3')         | antisense (5'-3')     |
|------------------|-----------------------|-----------------------|
| Usp4 siRNA-1     | CGCAGUGGUAUCUUAUUGATT | UCAAUAAGAUACCACUGCGTT |
| Usp4 siRNA-2     | GAGCAAGCUAGACAACACUTT | AGUGUUGUCUAGCUUGCUCTT |
| Usp4 siRNA-3     | GCGUAAAGAAGAAGCCUUATT | UAAGGCUUCUUCUUUACGCTT |
| Negative control | UUCUCCGAACGUGUCACGUTT | ACGUGACACGUUCGGAGAATT |