Biological Evaluation, Molecular Docking Analyses and ADME Profiling of Certain New Quinazolinones as Anti-colorectal Agents

Nahed N. E. El-Sayed^{a*}, Norah M. Almaneai^b, Abir Ben Bacha^{c,d}, Mohamed K. El-Ashrey^{e,f}, Maha I. Al-Zaben^b, Zainab M. Almarhoon^{b*}

^aNational Organization for Drug Control and Research, Egyptian Drug Authority, 51 Wezaret El-Zerra St., Giza 35521, Egypt

^bDepartment of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

^eBiochemistry Department, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia

^dLaboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, Sfax 3038, Tunisia

^ePharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo 11562, Egypt

^fMedicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai, Egypt

*Corresponding authors

Email address: nahed.elsayed@edaegypt.gov.eg; nnelsayed@gmail.com (Nahed Nasser Eid El-Sayed); zalmarhoon@ksu.edu.sa

Supplementary information

Table S1. The values of the minimized total energies of *E* and *Z* isomers of Schiff bases **3a-g** and compound **5**

Compound #	Cathepsin-B	Collagenase	Thrombin	Elastase	Trypsin
1a	24.00±2.83	27.00±1.41	2.30±0.42	2.30±0.28	2.00±0.00
1c	28.50±2.12	2.50±0.71	14.00±1.41	15.50±2.12	17.50±2.12
3a	36.61±1.83	47.69±1.59	83.65±4.78	34.04±1.83	69.85±3.40
3b	12.94±1.09	24.86±1.47	18.77±0.91	56.06±2.38	82.08±1.09
3c	24.12±1.09	18.52±1.56	37.34±4.39	100.36±5.51	109.85±1.77
3d	39.36±2.69	57.83±2.69	77.24±1.74	34.34±1.36	20.50±1.74
<u>3e</u>	27.93±1.89	53.45±3.07	11.00±1.55	37.97±1.72	44.50±2.056
3f	55.77±1.85	43.57±3.01	21.91±0.83	25.22±1.18	17.17±0.83
3g	13.00±2.83	18.00±1.41	16.50±2.12	14.50±0.71	18.00±1.41
5	23.50±2.12	32.50±2.12	23.00±1.41	26.50±2.12	24.50±2.12
7b	9.00±1.41	12.50±2.12	24.00±4.24	25.50±2.12	28.00±1.41
8	23.00±1.41	24.50±0.71	0.225±0.04	0.20±0.00	0.55±0.07
9	19.50±0.71	4.00±1.41	23.50±2.12	26.00±1.41	21.5±2.12
10	29.50±2.12	28.50±2.12	2.35±0.35	1.80±0.28	1.75±0.35
12	30.50±2.12	34.00±2.83	27.50±3.54	25.00±1.41	23.50±2.12
Cocktail	0.175±0.04	0.15±0.07	0.25±0.07	0.125±0.04	0.215±.04

Table S2. The mean IC₅₀ values (μ g/mL) of the synthesized derivatives against selected proteases. Results are the mean values of two separate determinations \pm SD.

Table S3. The mean IC ₅₀ values (μ M) of the synthesized derivatives against selected
phospholipases. Results are the mean values of two separate determinations \pm SD.

	Mean IC50 values (µM)				
Compound #	hsPLA ₂ -G-IIA	hsPLA ₂ -G-V	hsPLA ₂ -G-X		
1a	22.05±2.23	16.14±0.85	21.84±0.64		
1c	31.97± 0.85	26.26±0.57	24.55±0.42		
3a	58.61±3.40	71.29±2.73	109.5±5.01		
3b	68.10±4.74	33.01±1.37	43.37±1.66		
3c	100.83±6.16	93.67±3.52	131.48±5.51		
3d	30.13±1.14	65.43±1.71	21.45±2.31		
3e	93.72±4.28	70.27±1.89	48.01±2.23		
3f	16.81±1.00	34.10±1.00	24.63±2.01		
3g	30.27±0.35	22.28±0.92	14.55±0.92		
5	49.73±2.12	49.73±0.71	41.15±1.56		
7b	127.42±2.12	112.36±1.49	105.90±1.41		
8	57.01±0.57	68.02±1.41	78.71±0.99		
9	104.21±8.34	151.39±2.12	88.47±2.12		
10	13.84±2.12	14.70±0.42	23.43±1.41		
12	69.31±2.83	113.20±1.41	77.39±2.12		
Oleanolic acid	11.50±0.35	16.42±0.71	16.53±0.64		

Table S4. The mean IC_{50} values expressed in (μM) of the synthesized derivatives
against α -amylase, α -glucosidase and xanthine oxidase. Results are the mean values
of two separate determinations \pm SD.

	Mean IC ₅₀ values μ M			
Compound #	Anti-α-amylase	α-Glucosidase	Xanthine oxidoreductase	
1 a	399.48±4.95	23.61±1.41	159.40±3.54	
1c	1093±4.95	59.93±2.12	339.63±4.95	
3 a	831.73±22.70	37.25±1.83	68.41±1.35	
3b	264.11±10.98	16.44±0.54	42.21±2.56	
3c	625.51±17.6	93.36±4.39	102.54±4.17	
3d	374.64±11.51	54.97±2.88	190.04±7.68	
3e	550.21±25.66	57.44±2.56	144.51±5.97	
3f	310.22±10.04	12.43±0.83	7.34±0.33	
3g	468.8±4.24	25.76±1.41	56.67±4.24	
5	357.85±4.95	13.65±1.41	32.18±2.12	
7b	440.16±7.07	19.86±1.41	233.32±2.12	
8	458.31±9.19	53.44±2.12	137.66±4.95	
9	580.00±3.54	62.91±1.41	151.39±4.95	
10	430.22±8.49	43.66±2.12	12.78±1.41	
12	400.82±6.36	21.03±1.27	28.88±2.12	
Quercetin	406.97±2.83	12.57±0.28		
Allopurinol			4.78±0.07	

Table S5. The cytotoxic effects of the studied quinazolinone derivatives. Results are expressed as mean values of % of viable cells at 200 μ g/mL and IC₅₀ values (concentrations required to reduce the viability of cancerous cells by 50% expressed in μ M). Results are the mean values of two separate determinations ± SD. ND: Not determined

Compound No.	LoVo cell line of CRC			HCT-116 cell line of CRC		
	% of Viable	IC ₅₀ µM		% Viable of	IC50 µM	
	cells			cells		
Positive control	0.00			0.00	-	
Triton X-100						
(0.1%)						
Negative control	$99.50{\pm}0.71$			100.00 ± 0.00	-	
(Assay medium)						
1a	62.9±1.56	1052.80 ± 64.01		48.25 ± 1.06	757.64±19.48	
1c	28.0±4.24	339.63±12.10		46.50±2.12	530.85±16.15	
3a	89.5±3.54	ND		86.5±2.12	ND	
3b	61.9±2.69	651.20±12.82		53.5±2.12	572.22±14.66	
3c	32.5±2.12	320.53±13.20		36.0±4.24	459.79±12.11	
3d	90.5±3.54	ND		90.0±5.66	ND	
3e	76.5±3.54	ND		74.5±2.12	ND	
3f	58.0±4.24	681.63±8.38		57.0±2.83	552.95±11.72	
3g	16.75±0.35	206.07±7.29		12.75±1.06	284.63±9.11	
5	80.0±2.83	ND		93.50±2.12	ND	
7b	89.5±3.54	ND		89.00±2.82	ND	
8	13.50±0.71	319.04±11.45		28.00±1.41	448.60±11.46	
9	63.0±2.83	831.66±19.46		73.50±2.12	1450.99±22.24	
10	22.00±1.41	272.62±9.04		4.75 ± 0.35	230.02±9.04	
12	59.5±3.54	607.59±13.07		54.5±2.12	573.13±8.17	

Target Protein	PDB Code	Cocrystallized ligand	
Thrombin	1ETR	Amino{ $[(4S)-5-[(2R,4R)-2-carboxy-4-methylpiperidin-$	
		$1-yl]-4-(\{[(3R)-3-methyl-1,2,3,4-tetrahydroquinolin-8-$	
		yl]sulfonyl}amino)-5-oxopentyl]amino}	
		methaniminium (MIT)	
Elastase	1EAT	2-[5-Methanesulfonylamino-2-(4-aminophenyl)-6-oxo-	
		1,6-dihydro-1-pyrimidinyl]-n-(3,3,3-trifluoro-1-	
		isopropyl-2-oxopropyl)acetamide (TFI)	
Trypsin	3AAV	3,3'-[ethane-1,2-diylbis(nitrilomethylylidene)] bis(4-	
		hydroxybenzenecarboximidamide) (A2C)	
sPLA ₂ -G-IIA	1KQU	6-Phenyl-4(<i>R</i>)-(7-phenyl-heptanoylamino)-hexanoic	
		acid (BR4)	
sPLA ₂ -G-X	5G3M	4-Benzylbenzamide (9JH)	
α-Glucosidase	2JKP	Castanospermine (CTS)	
Xanthine oxidoreductase	3ETR	2,4-Pteridinediol, Lumazine, (LUZ)	
α-Amylase	1B2Y	Acarbose (AC1)	

Table S6. The studied target proteins, their PDB code and cocrystallized ligands.

Target Protein	S-score (Kcal/mol)	RMSD values (Å)
Thrombin	-15.0807	1.0730
Elastase	-11.4465	0.9243
Trypsin	-14.3302	0.2877
hsPLA ₂ -G-IIA	-13.9194	0.5614
hsPLA ₂ -G-X	-8.9121	0.1342
α-Amylase	-19.7135	1.1470
α-Glucosidase	-15.3919	0.2274
Xanthine oxidoreductase	-12.5689	0.1073

Table S7. Binding score (S) of the cocrystallized ligands & root square deviation(RMSD) values

Comp. No.	Target	S (kcal/mol)	Amino acids	Interacting groups	Type of interaction
8	Thrombin	-10.4683	Ser195	O (C=O)	Conventional H-bond
			Trp215	Benzene	Amide-Pi Stacked
			Cys191	Pyrimidine	Amide-Pi Stacked
			Ala190	Cl	Pi-Alkyl interaction
			Val213	Cl	Pi-Alkyl interaction
			Tyr228	Cl	Pi-Alkyl interaction
8	Elastase	-9.8673	Gln192	O (C=O)	Conventional H-bond
			Gly193	O (C=O)	Conventional H-bond
			Asp194	O (C=O)	Conventional H-bond
			Ser195	O (C=O)	Conventional H-bond
			Val216	S	Conventional H-bond
			Val99	Benzene/Pyrimidine/CH3	Pi-Alkyl interaction
			His57	CH ₃	Alkyl interaction
			Trp172	Cl	Pi-alkyl interaction
			Arg217	Cl/Benzene	Pi-Alkyl interaction
8	Trypsin	-10.1979	Trp193	Benzene/Pyrimidine	Amide-Pi Stacked
			Ser195	Cl	Halogen bond
			Lys202	Cl	Halogen bond
			His40	CH_3	Pi-Alkyl interaction
			Val191	CH_3	Alkyl interaction
Oleanolic	hsPLA ₂ -G-IIA	-12.4222	Thr61	O (OH)	Conventional H-bond
acid			Lys62	O (C=O)	Conventional H-bond
			Thr51	CH_3	Alkyl interaction
			Lys52	CH ₃	Alkyl interaction
			His47	CH_3	Pi-Alkyl interaction
			Leu2	CH ₃	Alkyl interaction
			Phe5	CH ₃	Alkyl interaction
10	hsPLA ₂ -G-IIA	-12.3560	Gly29	NH	Conventional H-bond
			Gly31	O (C=O)	Conventional H-bond
			Lys62	O (C=O)	Conventional H-bond
			Asp48	Pyrimidine	Pi-Anion interaction
			Glu55	Benzene	Pi-Anion interaction
			His47	S	Pi-Cation interaction
			Phe5	S	Pi-Sulfur interaction
			Tyr51	CH_3	Pi-Pi T-Shaped
			Lys52	Benzene	Pi-Alkyl
			Cys44	Benzene	Pi-Alkyl
			Ala17	Benzene	Pi-Alkyl
			Ala18	Benzene	Pi-Alkyl
			Leu2	Pyrimidine	Pi-Alkyl
Oleanolic	hsPLA ₂ -G-X	-13.1880	Gly28	O (C=O)	Conventional H-bond
acid			His46	OH	Conventional H-bond
			Leu5	CH_3	Alkyl interaction
			Ala6	CH ₃	Alkyl interaction
			Pro17	CH_3	Pi-Alkyl interaction
			Ile18	CH ₃	Alkyl interaction
			Met21	CH_3	Alkyl interaction
			Leu29	CH ₃	Alkyl interaction
			Tyr50	CH ₃	Pi-Alkyl interaction

Table S8. Docking results

3g	hsPLA ₂ -G-X	-11.7267	Leu29	N (Pyrimidine)	Carbon-hydrogen bond
			His46	O (C=O)	Carbon-hydrogen bond
			Lys61	Phenyl/Pyrimidine	Pi-cation interaction
			Asp47	Phenyl/Pyrimidine	Pi-anion interaction
			Leu5	Phenyl	Pi-alkyl interaction
			Leu29	CH ₃	Alkyl interaction
Quercetin	α-Glucosidase	-16.1296	Glu194	ОН	Conventional H-bond
			Lys467	O (C=O)	Conventional H-bond
			His507	OH	Conventional H-bond
			Glu532	OH	Conventional H-bond
			Glu439	Pyran	Pi-Anion
3f	α-Glucosidase	-14.5846	Glu439	Benzene	Pi-Anion interaction
			Phe401	Pyrimidine	Pi-Pi Stacked
			Trp341	Benzene	Pi-Pi Stacked
			Phe536	CH ₃	Pi-Alkyl interaction
			Val471	Benzene	Pi-Alkyl interaction
Allopurinol	Xanthine	-9.1790	Glu802	NH	Conventional H-bond
	oxidoreductase		Arg880	O (C=O)	Conventional H-bond
			Thr1010	O (C=O)	Conventional H-bond
			Phe914	Benzene	Pi-Pi Stacked
			Phe1009	Benzene	Pi-Pi Stacked
			Ala1078	Benzene	Pi-Alkyl interaction
			Ala1079	Benzene	Pi-Alkyl interaction
3f	Xanthine	-14.9338	Arg912	N (Pyrimidine)	Conventional H-bond
	oxidoreductase		Ser1080	O (C=O)	Conventional H-bond
			Phe914	Benzene	Pi-Pi Stacked
			Phe1009	Benzene	Pi-Pi Stacked
			Ala910	Benzene	Pi-Alkyl interaction
			Ala1079	Benzene	Pi-Alkyl interaction
Quercetin	α-Amylase	-10.2531	Trp59	Benzene	Pi-Pi Stacked
			Trp59	Pyridine	Pi-Pi Stacked
			His305	O (C=O)	Carbon-H bond
3b	α-Amylase	-11.4264	Arg195	O (C=O)	Conventional H-bond
			Arg195	O (OH)	Conventional H-bond
			Trp62	Benzene	Pi-Pi Stacked
			Gln63	Benzene	Pi-donor H-bond
			His305	CH ₃	Pi-Alkyl interaction
			Trp59	CH_3	Pi-Alkyl interaction

Compound No.	Properties	Comment
	• Log $P = 1.58 (<5)$	
10	• Molecular weight = 254.08 g/mol (<500)	Na sialatian
1a	• No of H-bond donor groups $(OHs + NHs) = 2 (\le 5)$	INO VIOIALIOII
	• No of H-bond acceptor atoms $(Os + Ns) = 4 (\le 10)$	
	• Log $P = 0.92 (<5)$	
1.	• Molecular weight = $175.19 \text{ g/mol} (<500)$	No violation
IC	• No of H-bond donor groups $(OHs + NHs) = 2 (\le 5)$	NO VIOIATION
	• No of H-bond acceptor atoms $(Os + Ns) = 4 (\le 10)$	
	• Log $P = 3.05 (<5)$	
2h	• Molecular weight = 386.20 g/mol (<500)	No violation
50	• No of H-bond donor groups (OHs + NHs) = $1 (\le 5)$	NO VIOIALIOII
	• No of H-bond acceptor atoms $(Os + Ns) = 6 (\le 10)$	
	• $Log P = 2.83 (<5)$	
20	• Molecular weight = 321.33 g/mol (<500)	No violation
50	• No of H-bond donor groups (OHs + NHs) = $1 (\le 5)$	NO VIOIATION
	• No of H-bond acceptor atoms $(Os + Ns) = 6 (\le 10)$	
	• Log $P = 2.11 (<5)$	
24	• Molecular weight = 368.34 g/mol (<500)	No violation
Ju	• No of H-bond donor groups (OHs + NHs) = $1 (\le 5)$	NO VIOIATION
	• No of H-bond acceptor atoms $(Os + Ns) = 9 (\le 10)$	
	• Log $P = 4.32 (<5)$	
2f	• Molecular weight = 388.22 g/mol (<500)	No violation
51	• No of H-bond donor groups $(OHs + NHs) = 1 (\le 5)$	NO VIOIATION
	• No of H-bond acceptor atoms $(Os + Ns) = 5 (\le 10)$	
	• Log $P = 2.94 (<5)$	
3a	• Molecular weight = 388.22 g/mol (<500)	No violation
Jg	• No of H-bond donor groups (OHs + NHs) = $1 (\le 5)$	NO VIOLATION
	• No of H-bond acceptor atoms $(Os + Ns) = 5 (\le 10)$	
	• Log $P = 5.09 (>5)$	T 1
5	• Molecular weight = $512.78 \text{ g/mol} (> 500)$	I wo violations in
5	• No of H-bond donor groups (OHs + NHs) = $0 (\le 5)$	molecular weight
	• No of H-bond acceptor atoms $(Os + Ns) = 6 (\le 10)$	
	• $\text{Log P} = 1.92 (<5)$	
8	• Molecular weight = $308.74 \text{ g/mol} (<500)$	No violation
0	• No of H-bond donor groups $(OHs + NHs) = 1 (\le 5)$	No violation
	• No of H-bond acceptor atoms $(Os + Ns) = 6 (\le 10)$	
	• Log P = $3.39 (<5)$	
10	• Molecular weight = $469.52 \text{ g/mol} (<500)$	No violation
10	• No of H-bond donor groups $(OHs + NHs) = 1 (\le 5)$	No violation
	• No of H-bond acceptor atoms $(Os + Ns) = 8 (\le 10)$	
	• Log P = 2.35 (<5)	
12	• Molecular weight = $432.86 \text{ g/mol} (<500)$	No violation
	• No of H-bond donor groups (OHs + NHs) = $2 (\le 5)$	
	• No of H-bond acceptor atoms $(Os + Ns) = 9 (\le 10)$	

Table S9. Drug-likeness of the most biologically active compounds

Figure S1. The 2D representation of the interactions of MIT within THR active site

Figure S2. The 2D & 3D representations of the interactions of compound 8 within Thrombin active site

Figure S3. The 2D representation of the interactions of TFI within Elastase active site

Figure S4. The 2D & 3D representations of the interactions of compound 8 within Elastase active site

Figure S5. The 2D representations of the interactions of A2C within Trypsin active site

Figure S6. The 2D & 3D representations of the interactions of compound 8 within Trypsin active site

Figure S7. The 2D representation of the interactions of BR4 within hsPLA₂-G-IIA active site

Figure S8. The 2D representation of the interactions of Oleanolic acid within hsPLA₂-G-IIA active site

Figure S9. The 2D & 3D representations of the interactions of compound 10 within hsPLA₂-G-IIA active site

Figure S10. The 2D representation of the interactions of 9JH within hsPLA₂-G-X active site

Figure S11. The 2D & 3D representations of the interactions of Oleanolic acid within hsPLA₂-G-X active site

Figure S12. The 2D & 3D representations of the interactions of compound 3g within hsPLA₂-G-X active site

Figure S13. The 2D representation of the interactions of CTS within α -Glucosidase active site

Figure S14. The 2D representation of the interaction of the Quercetin within α -Glucosidase active site

Figure S15. The 2D & 3D representations of the interactions of compound 3f within α -Glucosidase active site

Figure S16. The 2D representation of the interactions of LUZ within Xanthine oxidoreductase active site

Figure S17. The 2D representations of the interactions of Allopurinol within Xanthine oxidoreductase active site

Figure S18. The 2D & 3D representations of the interactions of compound **3f** within **Xanthine oxidoreductase** active site

Figure S19. The 2D representations of the interactions of AC1 within α -Amylase active site

Figure S20. The 2D representations of the interactions of Quercetin within α -Amylase active site

Figure S21. The 2D & 3D representations of the interactions of compound 3b within α -Amylase active site

¹H and ¹³CNMR spectra of selected compounds

Compound 3a

¹H-NMR (500 MHz; CDCl₃) of compound 3a

Expanded ¹H-NMR (500 MHz; CDCl₃) of compound 3a

¹³C-NMR (150 MHz; CDCl₃) of compound 3a

Compound 3e

¹H-NMR (500 MHz; CDCl₃) of compound 3e

Expanded ¹H-NMR (500 MHz; CDCl₃) of compound 3e

¹³C-NMR (125 MHz; CDCl₃) of compound 3e

Compound 3g

¹H-NMR (600 MHz; DMSO-*d*₆) of compound 3g

S37

¹³C-NMR (150 MHz; DMSO-*d*₆) of compound 3g

S39

¹H-NMR (850 MHz; CDCl₃) of compound 5

S41

¹³C-NMR (213 MHz; CDCl₃) of compound 5

Expanded ¹³C-NMR (213 MHz; CDCl₃) of compound 5

¹H-NMR (850 MHz; CDCl₃) of compound 8

Expanded ¹³C-NMR (213 MHz; CDCl₃) of compound 8

The ¹H-NMR (850 MHz; CDCl₃) of compound 10

The ¹H-NMR (850 MHz; CDCl₃) of compound 12

The ¹³C-NMR (213 MHz; CDCl₃) of compound 12

