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Web Appendix A: Accounting for Time to Evaluate Response

The following model elaboration accounts for settings where Y may be observed before Z can be

evaluated. For example, if Z is scored at week 12, then it is possible that a patient may die before

Z is evaluated. This is especially important for rapidly fatal diseases. Let T0 be a latent survival

time following the distribution F0 with probability density function f0, and let t0 denote the time

required to evaluate Z. To account for this possible complication the probability density function

of Y may be formulated more generally as

f(y|G,x) = f(y|G,x, Y < T0) Pr(Y < T0|G,x)

+
1∑
z=0

f(y|Z = z,G,x, Y > T0) Pr(Z = z|G,x, Y > T0) Pr(Y > T0|G,x).

Since Z is defined only if Y > T0, we have Pr(Z = z|G,x, Y > T0) = Pr(Z = z|G,x). Let W

be the indicator variable that Z is observed, and denote Wn = (W1, · · · ,Wn) for n observations.

This gives the generalized likelihood

Ln(On,Wn,Gn,Xn|θZ ,θY )

=
n∏
i=1

[{
f0(Y

o
i |Gi,xi,θY )

}δi{1− F0(Y
o
i |Gi,xi,θY )

}1−δi]1−Wi

×
[
Φ
(
x̃>i βZ +Gix̃

>
i γZ

)Zi
{

1− Φ
(
x̃>i βZ +Gix̃

>
i γZ

)}1−Zi
{
f(Y o

i − T0|Zi, Gi,xi,θY )
}δi

×
{

1− F (Y o
i − T0|Zi, Gi,xi,θY )

}1−δi{1− F0(T0|Gi,xi)}
]Wi .

Web Appendix B: Joint distribution of λZ,j and λY,j

The following describes the bivariate distribution of λZ,j and λY,j for j = 1, . . . , 2p + 1. For

notational brevity, we suppress the index j. Let pZ = Pr(λZ = 1), pY = Pr(λY = 1) and let ρ

denote the odds ratio. Let B(pZ , pY , ρ) denote the joint Bernoulli distribution of binary variables
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λZ and λY , whose probability mass function is

pab11 p
a(1−b)
10 p

(1−a)b
01 p

(1−a)(1−b)
00 ,

where pab ≡ Pr(λZ = a, λY = b), a, b = 0, 1 are represented by three parameters, the marginal

probabilities and the odds ratio, of the distribution: p10 is the solution of the quadratic equation

(1− ρ)p210 − p10
{

1− pY + pZ + ρ(pY − pZ)
}
− (1− pY )pZ = 0,

with p00 = 1−pY −p10, p01 = pY −pZ+p10 and p11 = pZ−p10, provided that max{0, pZ−pY } 6

p10 6 min{1− pY , pZ}.

Web Appendix C: Details regarding generation of the Markov Chain for variable selection

To identify the subset of promising predictor variables, the Stochastic Search Variable Selection

(SSVS) uses the sampler from the full conditional distribution of the parameters. We generated a

Markov Chain of length L on parameter λZ ,λY ,pZ ,pY ,ρ, ψZ , ψZ,0,ψY , αY ,φ for fixed hyper-

parameters. We arbitrarily choose initial values of parameters with l = 1. For each l = 2, . . . , L,

we iterated through Steps 1 - 5, described below.

Step 1 Generate indicator variables λ(l)
Z and λ(l)

Y by using the Metropolis-Hastings sampler on

λ
(l)
Z =

(
λ
(l)
Z,1, . . . , λ

(l)
Z,2p+1

)
and λ(l)

Y =
(
λ
(l)
Y,1, . . . , λ

(l)
Y,2p+1

)
. For j = 1, . . . , p + 1, let p(l)Z,j =

Pr(λ(l)Z,j = 1) and p(l)Y,j = Pr(λ(l)Y,j = 1). Then, each binary vector is obtained componentwise

according to the Bernoulli distribution with probabilities

Pr
(
λ
(l)
Z,j = 1|else

)
=

p
(l−1)
Z,j fN

(
ψ

(l−1)
Z,j |0, u2Z,jτ 2Z,j

)
p
(l−1)
Z,j fN

(
ψ

(l−1)
Z,j |0, u2Z,jτ 2Z,j

)
+
(
1− p(l−1)Z,j

)
fN
(
ψ

(l−1)
Z,j |0, τ 2Z,j

)
and

Pr
(
λ
(l)
Y,j = 1|else

)
=

p
(l−1)
Y,j fN

(
ψ

(l−1)
Y,j |0, u2Y,jτ 2Y,j

)
p
(l−1)
Y,j fN

(
ψ

(l−1)
Y,j |0, u2Y,jτ 2Y,j

)
+
(
1− p(l−1)Y,j

)
fN
(
ψ

(l−1)
Y,j |0, τ 2Y,j

) ,
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where fN(·|a, b) denotes the density of normal distribution with mean a and variance b. For

j = p + 2, . . . , 2p + 1, λ(l)Z,j and λ(l)Y,j are generated from the Bernoulli distribution with

probabilities

Pr
(
λ
(l)
Z,j = 1|else

)
= Pr

(
λ
(l)
Z,j−p−1 = 1|else

)
Pr
(
λ
(l)
Z,p+1 = 1|else

)
min

{
Pr
(
λ
(l)
Z,j−p−1 = 1|else

)
,Pr
(
λ
(l)
Z,p+1 = 1|else

)}
and

Pr(λ(l)Y,j = 1|else)

= Pr(λ(l)Y,j−p−1 = 1|else)Pr(λ(l)Y,p+1 = 1|else) min{Pr(λ(l)Y,j−p−1 = 1|else),Pr(λ(l)Y,p+1 = 1|else)}.

Step 2 Generate p(l)Z = (p
(l)
Z,1, . . . , p

(l)
Z,p+1), p(l)Y = (p

(l)
Y,1, . . . , p

(l)
Y,p+1) and ρ(l) = (ρ

(l)
1 , . . . , ρ

(l)
p+1)

from

P (pZ,j|else) ∝ p
(1−λZ,j)(1−λY,j)
00,j p

(1−λZ,j)λY,j

01,j p
λZ,j(1−λY,j)
10,j p

λZ,jλY,j

11,j p
lZ1,j−1
Z,j (1− pZ,j)lZ2,j−1,

where p00,j, p01,j, p10,j and p11,j are obtained from p
(l−1)
Z,j , p(l−1)Y,j and ρ(l−1)j ,

P (pY,j|else) ∝ p
(1−λZ,j)(1−λY,j)
00,j p

(1−λZ,j)λY,j

01,j p
λZ,j(1−λY,j)
10,j p

λZ,jλY,j

11,j p
lY 1,j−1
Y,j (1− pY,j)lY 2,j−1,

where p00,j, p01,j, p10,j and p11,j are obtained from p
(l)
Z,j , p

(l−1)
Y,j and ρ(l−1)j ,

P (ρj|else)

∝ p
(1−λZ,j)(1−λY,j)
00,j p

(1−λZ,j)λY,j

01,j p
λZ,j(1−λY,j)
10,j p

λZ,jλY,j

11,j exp
{
−(log ρj − r1j)2/(2r22j)

}
ρ−1j ,

where p00,j, p01,j, p10,j and p11,j are obtained from p
(l)
Z,j , p

(l)
Y,j and ρ(l−1)j , j = 1, . . . , p+ 1.
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Step 3 Generate ψ(l)
Z from

f(ψZ |else)

∝ Ln(On,Gn,Xn|θZ ,θY )f(ψZ |λ(l)
Z = 1)

∝
n∏
i=1

Φ
(
ψZ,0 + x>Z,G,iψZ,λ

)Zi
{

1− Φ
(
ψZ,0 + x>Z,G,iψZ,λ

)}1−Zi exp(−ψ>Z,λΣ−1Z,λψZ,λ/2),

where xZ,G,i denotes the predictor vector (x>i , Gx̃
>
i )> corresponding to the selected sub-

set of {1, . . . , 2p + 1} based on short-term endpoint data for the ith observation; ψZ,λ

denotes the vector of coefficients for the subset and ΣZ,λ denotes the restricted variance;

and covariance matrix ΣZ , which is a diagonal matrix with u2Z,1τ
2
Z,1, . . . , u

2
Z,2p+1τ

2
Z,2p+1,

corresponding to the selected subset. Also, ψ(l)
Z,0 is generated from

f(ψZ,0|else)

∝ Ln(On,Gn,Xn|θZ ,θY )f(ψZ,0)

∝
n∏
i=1

Φ
(
ψZ,0 + x>Z,G,iψZ,λ

)Zi
{

1− Φ
(
ψZ,0 + x>Z,G,iψZ,λ

)}1−Zi exp{−(ψZ,0 − u0)2/(2τ 20 )}.

Step 4 Generate ψ(l)
Y from

f(ψY |else)

∝ Ln(On,Gn,Xn|θZ ,θY )f(ψY |λ(l)
Y = 1)

∝
n∏
i=1

f(Yi|Zi, Gi,xY,i,θY )δi
{

1− F (Yi|Zi, Gi,xY,i,θY )
}1−δi exp

(
−ψ>Y,λΣ−1Y,λψY,λ/2

)
,

where xY,i denotes the selected predictors for the ith observation based on long-term end-

point data, ψY,λ denotes the vector of coefficients for the selected subset of {1, . . . , 2p+ 1}

and ΣY,λ denotes the restricted variance and covariance matrix ΣY , which is a diagonal

matrix with u2Y,1τ
2
Y,1, . . . , u

2
Y,2p+1τ

2
Y,2p+1, corresponding to the selected subset. Generate α(l)

Y
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from

f(αY |else)

∝
n∏
i=1

f(Yi|Zi, Gi,xY,i,θY )δi
{

1− F (Yi|Zi, Gi,xY,i,θY )
}1−δi exp

{
−(αY − ua)2/(2τ 2a )

}
.

Step 5 Generate φ(l) = (φ
(l)
1 , . . . , φ

(l)
M ) from

f(φm|else)

∝
n∏
i=1

f(Yi|Zi, Gi,xY,i,θY )δi
{

1− F (Yi|Zi, Gi,xY,i,θY )
}1−δiφc̃φ̃∗m−1m exp(−c̃φm),

for m = 1, . . . ,M .

For implementation, the hyperparameters are specified as follows. We choose large uZ,j and

small τZ,j in the spike-and-slab prior so that λZ,j = 1 implies that a nonzero estimate of ψZ,j is

included, whereas λZ,j = 0 implies that the covariate corresponding to ψZ,j has a negligible effect.

In our simulations, uZ,j = 100 and τZ,j = 0.1 were chosen for j = 1, . . . , 2p + 1. Similar choices

were applied to the regression coefficient for survival in order to obtain sparse vectors of coefficient

estimates for the long-term endpoint Y . In our simulations, uY,j = 100 and τY,j = 0.1 were chosen

for j = 1, . . . , 2p + 1. A sensitivity analysis for u·,j and τ·,j is presented in Web Appendix F. The

results of the sensitivity analysis show that the operating characteristics of the design are similar

to the case uZ,j = uY,j = 100 and τZ,j = τY,j = 0.1. In practice, it is useful to perform preliminary

simulations to calibrate these values to obtain the appropriate sparsity in terms of the interpretation

and performance of the proposed method or design. Previous research on the target disease might

provide a sense of sparsity among a large number of possible clinical covariates. Assuming that a

few markers are predictive to characterize the treatment-sensitive patients, a parsimonious model is

appropriate. In general, when τ·,j is small, the prior concentrates its mass on parsimonious models,
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whereas when τ·,j is large, the prior encourages models with many variables and thus is more likely

to include noninformative covariates. Also, u·,j needs to be large enough to include informative

covariates. In our experience, except for the computational burden and interpretation of the models

with many covariates, the performance of the proposed design is good if informative covariates are

included for enrichment of the trial population and monitoring of treatment effects.

For the remaining parameters used for variable selection, we considered noninformative normal

priors on ψZ,0, αY and log ρj, with the hyperparameters u0 = 0, τ0 = 10, ua = 0, τa = 10,

r1j = 0 and r2j = 100. We considered φm ∼ Gamma(c̃φ̃m, c̃), m = 1, . . . ,M , which has mean

φ̃m and variance φ̃m/c̃. The parameter c̃ controls the amount of smoothness. The small value of c̃

provides less information in the smoothing of φm. In the simulation study, we used φ̃m = 1 and

c̃ = 0.01 so that mean of φm is 1 and variance of φm is 100. For beta priors on pZ,j and pY,j ,

lZ1,j = lZ2,j = lY 1,j = lY 2,j = 1, j = 1, . . . , p+ 1, are prespecified to make them noninformative.

Web Appendix D: Calibration of design parameters in the enrichment criteria

The enrichment criteria involve the two designs parameters v and g. At the beginning of the trial at

the first interim decision, there are few observed events for the long-term endpoint Y . As a result,

ω1 is small and thus the enrichment rule can be approximated as

Ω(x | D1) ≈ Pr
{

∆Z(x
(k)
Z ,θZ) > ε1 | D1

}
> v(n1/N)g.

At the end of the trial, many events are observed, thus ωK is close to 1 and the enrichment rule can

be approximated as

Ω(x | DK) ≈ Pr
{

∆Y (x
(k)
Y ,θY ) < ε2 | DK

}
> v.
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These approximations may not be very accurate, but they are sufficient here because the purpose

of the approximations is to facilitate determination of the tuning parameters v and g. The above

equations motivate the following procedure for calibrating the values of v and g :

Step 1 Elicit from the clinicians two probability cutoffs p1 and p2, where p1 represents the event that

there is more than a p1 × 100% chance that a patient is expected to benefit from E in terms of

the short-term endpoint, and thus it is desirable to enroll that patient into the trial. p2 represents

the event that there is more than a p2 × 100% chance that a patient is expected to benefit from

E in terms of the long-term endpoint, and thus it is desirable to enroll that patient into the trial.

Typically, we require that p1 6 p2, so a relatively low cutoff is used at the beginning.

Step 2 Calculate v and g from

v = p2 and g =
log(p1/p2)

log(n1/N)
.

The explicit forms of v and g are obtained from the solution of two equations by setting the cutoff

at the first interim value v(n1/N)g to be p1, and setting the cutoff at the end of the trial v to be p2

from Step 1.

Step 3 Run preliminary simulations and present the operating characteristics of the design to the clin-

icians. If needed, adjust the values of p1 and p2, and repeat Step 1 until desirable operating

characteristics are obtained.

As a example, consider a trial with two interim tests, i.e., K = 3, and cohort sizes c1 = 200 and

c2 = c3 = 100. Suppose p1 = 60% and p2 = 76.6% are elicited from clinicians. Then, v = 0.766

and g = log(0.6/0.766)/ log(200/400) = 0.352.
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Web Appendix E: Elicitation rule and calibration of cutoffs for the Bayesian sequential

monitoring rule

The Bayesian sequential monitoring rule involves two design parameters, B1 and B2, where B1

controls the type I error rate and B2 controls the type II error rate. To calibrate their values, first

specify decision rule cutoffs of b1 and b2 to denote the minimal improvement in survival and elicit

targeted type I and II error rates, say α and β, from the clinicians. For complicated adaptive designs

such as the proposed adaptive enrichment design, it is not possible to calculate the type I and II

error rates analytically. Thus, simulation is used to determine the empirical type I and II errors.

In our setting, we assign initial values for B1 and B2, and perform simulations to calculate the

type I and II error rates for the given values of b1 and b2. If the empirical type I error rate is

lower/higher than the specified level, we decrease/increase the value of B1, and if the calculated

type II error rate is lower/higher than the desirable level, we decrease/increase the values of B2.

We repeat this calibration process until the specified type I and II error rates are obtained. Based

on our experience, reasonable initial values of (B1, B2) are B1 = 1− α, B2 = 1− β, and it takes

several rounds of calibration to achieve the target type I and II error rates.

Web Appendix F: True model parameters used in the simulation study

Each scenario in Simulation study is generated from the regression models (8) and (9) using Web

Table 1 and αY = −0.5.

[Web Table 1 about here.]

We assume that ten covariates are generated from Bernoulli distributions with response probabili-

ties 0.5, 0.5, 0.5, 0.1, 0.2, 0.2, 0.4, 0.6, 0.8, 0.8. Under the null distribution, we consider π(x, 1,θZ) =

π(x, 0,θZ) = 0.5 (i.e., ∆Z(x,θZ) = 0) and ∆Y (x,θY ) = 1 for all x. However, under the alter-
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native distribution, the sample consists of E-sensitive patients and E-insensitive patients, and the

response rates and the survival times for E and C differ according to the biomarker profile pattern.

For example, in scenario 2, we generated responses for E-sensitive patients with x1 = 1 from

∆Z(x,θZ) = 0.65−0.46 = 0.19 and for theE-insensitive patients with x1 = 0 from ∆Z(x,θZ) =

0.46 − 0.5 = −0.04. Survival time was generated from ∆Y (x,θY ) = 0.6/1.22 = 0.49 for E-

sensitive patients and ∆Y (x,θY ) = 1.22/1 = 1.22 for E-insensitive patients. In scenario 3, there

are four different biomarker profiles according to the values of x1 and x2. When x1 = 1 and

x2 = 1 representing the E-sensitive patients, we considered ∆Z(x,θZ) = 0.65 − 0.42 = 0.23

and ∆Y (x,θY ) = 0.49/0.82 = 0.6; When either x1 = 1 and x2 = 0 or x1 = 0 and x2 = 1,

∆Z(x,θZ) = 0.46 − 0.46 = 0 and ∆Y (x,θY ) = 0.95/0.91 = 1.04; When x1 = 0 and

x2 = 0, ∆Z(x,θZ) = 0.28 − 0.5 = −0.22 and ∆Y (x,θY ) = 1.82/1 = 1.82. In scenario 4,

responses and survival times for E-sensitive patients with x1 = 1 and x2 = 0 were generated from

∆Z(x,θZ) = 0.65− 0.46 = 0.19 and ∆Y (x,θY ) = 0.54/0.91 = 0.59. For E-insensitive patients,

when x1 = 1 and x2 = 1, ∆Z(x,θZ) = 0.42 − 0.42 = 0 and ∆Y (x,θY ) = 0.84/0.82 = 1.02;

When x1 = 0 and x2 = 1, ∆Z(x,θZ) = 0.26− 0.46 = −0.2 and ∆Y (x,θY ) = 2.83/0.91 = 3.11;

When x1 = 0 and x2 = 0, ∆Z(x,θZ) = 0.48 − 0.5 = −0.02 and ∆Y (x,θY ) = 1.82/1 =

1.82. In scenario 5, there are eight biomarker profiles determined by the values of x1, x2 and

x3. When (x1, x2, x3) = (1, 1, 1), which characterizes the marker profile of E-sensitive patients,

we considered ∆Z(x,θZ) = 0.65 − 0.44 = 0.21 and ∆Y (x,θY ) = 0.45/0.74 = 0.61; When

(x1, x2, x3) = (1, 1, 0), (1, 0, 1), (0, 1, 1), ∆Z(x,θZ) = 0.46 − 0.46 = 0 and ∆Y (x,θY ) =

0.83/0.82 = 1.01; When (x1, x2, x3) = (1, 0, 0), (0, 1, 0), (0, 0, 1), ∆Z(x,θZ) = 0.27 − 0.48 =

−0.21 and ∆Y (x,θY ) = 1.54/0.91 = 1.69; When (x1, x2, x3) = (0, 0, 0), ∆Z(x,θZ) = 0.14 −

0.5 = −0.36 and ∆Y (x,θY ) = 2.86/1 = 2.86. In scenario 6, when (x1, x2, x3) = (1, 1, 0), which
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indicates the marker profile of E-sensitive patients, we considered ∆Z(x,θZ) = 0.65 − 0.46 =

0.19 and ∆Y (x,θY ) = 0.49/0.82 = 0.60, and for E-insensitive patients, when (x1, x2, x3) =

(1, 0, 0) or (0, 1, 0), we considered ∆Z(x,θZ) = 0.42−0.48 = −0.06 and ∆Y (x,θY ) = 1.18/0.91 =

1.30; when (x1, x2, x3) = (0, 0, 1), we considered ∆Z(x,θZ) = 0.09 − 0.48 = −0.39 and

∆Y (x,θY ) = 4.39/0.91 = 4.82; when (x1, x2, x3) = (1, 1, 1), we considered ∆Z(x,θZ) =

0.43 − 0.44 = −0.01 and ∆Y (x,θY ) = 0.75/0.74 = 1.01; when (x1, x2, x3) = (1, 0, 1) or

(0, 1, 1), we considered ∆Z(x,θZ) = 0.26 − 0.46 = −0.2 and ∆Y (x,θY ) = 1.82/0.82 = 2.22;

when (x1, x2, x3) = (0, 0, 0), we considered ∆Z(x,θZ) = 0.22− 0.5 = −0.28 and ∆Y (x,θY ) =

2.86/1 = 2.86. In scenario 7, when (x1, x2, x3) = (1, 0, 0), which indicates the marker profile

of E-sensitive patients, we considered ∆Z(x,θZ) = 0.65 − 0.48 = 0.17 and ∆Y (x,θY ) =

0.54/0.91 = 0.59, and for E-insensitive patients, when (x1, x2, x3) = (1, 1, 1), we considered

∆Z(x,θZ) = 0.27 − 0.48 = −0.21 and ∆Y (x,θY ) = 0.83/0.82 = 1.01; when (x1, x2, x3) =

(0, 1, 0) or (0, 0, 1), we considered ∆Z(x,θZ) = 0.10−0.48 = −0.38 and ∆Y (x,θY ) = 4.35/0.91 =

4.78; when (x1, x2, x3) = (1, 1, 0), we considered ∆Z(x,θZ) = 0.45 − 0.46 = −0.01 and

∆Y (x,θY ) = 1.26/0.74 = 1.70; when (x1, x2, x3) = (1, 0, 1), we considered ∆Z(x,θZ) =

0.45 − 0.46 = −0.01 and ∆Y (x,θY ) = 0.83/0.82 = 1.01; when (x1, x2, x3) = (0, 1, 1), we

considered ∆Z(x,θZ) = 0.04 − 0.46 = −0.42 and ∆Y (x,θY ) = 6.62/0.82 = 8.07; when

(x1, x2, x3) = (0, 0, 0), we considered ∆Z(x,θZ) = 0.22 − 0.46 = −0.24 and ∆Y (x,θY ) =

2.86/1 = 2.86.

Web Appendix G: Comparison results of simulation study

We added comparison results of simulation study (Section 3) with the four designs. Web Table 2

shows the results of probability that stop early due to superiority and futility obtained from 1000
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simulated datasets when survival time follows a Weibull distribution with deceasing hazard. AED

is more likely than CGS to correctly conclude that E is more effective than C in the identified

sensitive subgroups and stop the trial early for superiority, and AED also is less likely to incorrectly

stop the trial for futility when E actually is effective for the sensitive subgroup.

[Web Table 2 about here.]

Web Appendix H: Sensitivity to different hazard functions

As sensitivity analyses, Web Table 3 shows the results for AED when Y is generated from a

Weibull distribution with scale parameter 1 and shape parameter 2 to obtain an increasing hazard,

and Web Table 4 shows the results for AED when Y is generated from a log-logistic distribution

with a ∩-shaped hazard. The results are generally similar to those reported when Y is generated

from a Weibull distribution with a decreasing hazard.

[Web Table 3 about here.]

[Web Table 4 about here.]

Web Appendix I: Further investigation of the performance of AED

We evaluated the AED with larger maximum sample size, more covariates, consideration of addi-

tional main effect of covariate, covariates effect associated with Y but not with Z, no treatment-

covariate interaction effects, design parameters for enrichment, and sparsity parameters. Assume

that survival time follows a Weibull distribution with a decreasing hazard, which is the same

simulation setting as Tables 2-3.

Simulations with a larger sample of size 800 We generated the data under the same settings in the

simulation study (Section 3), but increased the maximum sample size to 800. Two interim analyses
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were performed when the total accrual reached 400 and 600 patients. The results are provided in

Web Table 5. The (generalized) power is larger compared to one with n = 400, while the other

results are generally similar to each other.

[Web Table 5 about here.]

Simulations with a larger number of covariates We used the same settings as the simulation

study (Section 3) except that we added 40 more covariates, generated from a Bernoulli distribution

with response probability 0.5. The true model parameters for the first ten covariates are the same

as in Web Table 1 and the model parameters of the last 40 covariates in the true model are set to

0 for all scenarios. The results were provided in Web Table 6, which is similar to those reported

when only the first ten biomarkers only were used.

[Web Table 6 about here.]

Simulations for consideration of additional main effect of covariate We chose scenario 2 of the

simulation study (Section 3), which has E-sensitive patients with x1 = 1. In our simulation study,

main and interaction effects of x1 were considered. To consider additional main effect of covariate,

we used the same simulation setting as the simulation study, but replaced βZ,2 = βY,2 = 0 with

βZ,2 = 0.5 and βY,2 = 0.8. Thus, main/interaction effects of x1 and main effect of x2 are included.

The results were provided in Web Table 7, which is similar to those reported when no additional

main effect of x2 is considered.

[Web Table 7 about here.]

Simulations for consideration of effects associated with Y but not associated with Z We

chose scenario 2 of the simulation study (Section 3), which has E-sensitive patients with x1 = 1.
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In our simulation study, the covariate x1 was associated with both Y and Z. Specifically, we used

βY,1 = 0.2, γY,1 = −0.911, βZ,1 = −0.1, and γZ,1 = 0.585. To investigate the performance of the

proposed design when covariate effects are associated with Y but not associated with Z, we forced

βZ,1 and γZ,1 to be zero, but still had nonzero βY,1 and γY,1 (i.e., βY,1 = 0.2, γY,1 = −0.911). Our

methods are likely to detect estimates of main and interaction effects βY,1, βZ,1, γY,1 and γZ,1 when

the covariate effects are associated with both Y and Z (i.e., (Y, Z) case). However, they rarely

detect the effects, βZ,1 and γZ,1, when the covariate effects are associated with Y but not associated

with Z (i.e., Y only case). The results were provided in Web Table 8. Compared with (Y, Z) case,

Y only case did not borrow information from the binary response at early of trial, which makes

less enrich the E-sensitive patients and less reject the null hypothesis.

[Web Table 8 about here.]

Simulations for consideration of no treatment-covariate interaction effect We performed ad-

ditional simulations to evaluate the performance of AED and compare it to the all comer CGS

design when there are no treatment-covariate interactions, since CGS is appropriate in this case.

We generated the data from regression models (8) and (9) with regression coefficients βZ,1 = −0.1,

γZ,0 = 0.4, βY,1 = 0.2 and γY,0 = −0.8, with all other regression coefficients set to 0. We

considered three prevalence of x1 = 1: 65%, 50%, and 35%, and generated the other covariates,

x2, . . . , x10, from Bernoulli distributions with response probabilities 0.5, 0.5, 0.1, 0.2, 0.2, 0.4,

0.6, 0.8, 0.8. Simulation results are shown in Web Table 9. In this case, the GP and power are

essentially identical, since there is no E-sensitive subgroup. The results show that, when there are

no treatment-covariate interactions, AED performs well and has properties very similar to those of

CGS.
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[Web Table 9 about here.]

Simulations with different design parameters Scenario 2 of the simulation study (Section 3) was

considered for the sensitivity analysis of the design parameters v and g regarding enrichment. In

the simulation study, we used v = 0.766 and g = 0.352, which correspond to a > 60% chance that

a patient is expected to benefit from E in terms of the short-term endpoint and > 70% chance that

a patient is expected to benefit from E in terms of the long-term endpoint. Here, we considered

v = 0.85 and g = 0.503, so that there is a > 60% chance that a patient is expected to benefit from

E in terms of the short-term endpoint and > 74% chance that a patient is expected to benefit from

E in terms of the long-term endpoint. The results were provided in Web Table 10. This change in

tuning parameters allows us to enroll more E-sensitive patients in 2nd and 3rd cohorts, and thus

increases the power up to 6%.

[Web Table 10 about here.]

Simulations with different sparsity parameters We again considered scenario 2 of the simulation

study (Section 3) for this sensitivity analysis. In the simulation study, we used uZ,j = uY,j = 100

and τZ,j = τY,j = 0.1 for j = 1, . . . , 2p + 1. Here, sensitivity analyses for the parameters uZ,j ,

uY,j , τZ,j and τY,j were performed with relatively smaller or bigger values to uZ,j = uY,j = 100

and τZ,j = τY,j = 0.1. The results were provided in Web Table 11 and are similar to those reported

when uZ,j = uY,j = 100 and τZ,j = τY,j = 0.1.

[Web Table 11 about here.]

Received 000 000. Revised 000 000. Accepted 000 000.
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Web Table 1: True model parameters used in the simulation study for Tables 2-3. In all scenarios,
βZ,j = γZ,j = βY,j = γY,j = 0 for j = 4, . . . , 10.

Scenarios
2 3 4 5 6 7

βZ,0 0 0 0 0 0 0
βZ,1 −0.1 −0.1 −0.1 −0.05 −0.05 −0.05
βZ,2 0 −0.1 −0.1 −0.05 −0.05 −0.05
βZ,3 0 0 0 −0.05 −0.05 −0.05
γZ,0 −0.1 −0.59 −0.050 −1.10 −0.78 −0.78
γZ,1 0.585 0.588 0.535 0.545 0.633 1.215
γZ,2 0 0.588 −0.490 0.545 0.633 −0.45
γZ,3 0 0 0 0.545 −0.5 −0.45
βY,1 0.2 −0.1 −0.1 −0.1 −0.1 −0.1
βY,2 0 −0.1 −0.1 −0.1 −0.1 −0.1
βY,3 0 0 0 −0.1 −0.1 −0.1
γY,0 0.2 0.601 0.601 1.050 1.05 1.05
γY,1 −0.911 −0.556 −1.112 −0.520 −0.781 −1.561
γY,2 0 −0.556 0.540 −0.520 −0.781 0.52
γY,3 0 0 0 −0.520 0.53 0.52
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Web Table 2: Results of probability that stop early due to superiority and futility obtained from
1000 simulated datasets when survival time follows a Weibull distribution with deceasing hazard.

% sensitive Prob that Stop Early
patients in superiority (futility)

Scen 1st cohort AED GSED InterAdapt Simon CGS

1 0 0.05(0.72) 0.05(0.69) 0.06(0.94) 0.05(0.69) 0.05(0.06)

2 0.65 0.67(0.12) 0.70(0.08) 0.65(0.35) 0.64(0.10) 0.65(0.25)
0.50 0.64(0.17) 0.46(0.26) 0.65(0.35) 0.39(0.27) 0.51(0.46)
0.35 0.62(0.18) 0.35(0.45) 0.62(0.38) 0.18(0.46) 0.10(0.65)

3 0.65 0.63(0.25) 0.35(0.27) 0.69(0.31) 0.51(0.20) 0.58(0.34)
0.50 0.59(0.27) 0.23(0.43) 0.58(0.42) 0.26(0.39) 0.53(0.38)
0.35 0.54(0.30) 0.23(0.46) 0.42(0.58) 0.08(0.55) 0.46(0.41)

4 0.65 0.68(0.20) 0.36(0.26) 0.68(0.32) 0.48(0.24) 0.58(0.42)
0.50 0.63(0.24) 0.21(0.48) 0.66(0.34) 0.30(0.33) 0.44(0.54)
0.35 0.57(0.32) 0.17(0.59) 0.63(0.37) 0.11(0.50) 0.02(0.75)

5 0.65 0.79(0.07) 0.31(0.47) 0.40(0.60) 0.20(0.43) 0.24(0.14)
0.50 0.78(0.08) 0.19(0.66) 0.37(0.63) 0.15(0.48) 0.21(0.26)
0.35 0.73(0.14) 0.07(0.86) 0.23(0.77) 0.09(0.54) 0.21(0.40)

6 0.65 0.83(0.04) 0.29(0.39) 0.36(0.64) 0.37(0.26) 0.09(0.41)
0.50 0.83(0.09) 0.13(0.61) 0.28(0.72) 0.23(0.44) 0.09(0.49)
0.35 0.77(0.10) 0.04(0.83) 0.17(0.84) 0.07(0.60) 0.07(0.50)

7 0.65 0.91(0.05) 0.23(0.46) 0.36(0.64) 0.61(0.12) 0.04(0.53)
0.50 0.80(0.14) 0.16(0.56) 0.25(0.75) 0.32(0.32) 0.02(0.63)
0.35 0.80(0.17) 0.07(0.74) 0.16(0.84) 0.20(0.46) 0.01(0.67)
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Web Table 3: Simulation results obtained from 1000 simulated datasets for the proposed AED
when survival time follows a Weibull distribution with increasing hazard.

% sensitive Prob
patients in cohort identify Power Pr(Stop Early) Mean

Scen 1st 2nd 3rd target popn traditional generalized Superiority Futility sample size

1 0 0 0 NA 0.05 NA 0.05 0.87 213

2 0.65 0.89 0.90 0.94 0.87 0.84 0.52 0.13 274
0.50 0.80 0.82 0.88 0.86 0.81 0.48 0.14 279
0.35 0.71 0.73 0.80 0.82 0.74 0.38 0.16 291

3 0.65 0.82 0.85 0.88 0.77 0.69 0.58 0.23 251
0.50 0.64 0.71 0.73 0.70 0.57 0.49 0.28 251
0.35 0.61 0.62 0.71 0.66 0.56 0.49 0.31 251

4 0.65 0.79 0.79 0.81 0.85 0.77 0.52 0.14 272
0.50 0.71 0.71 0.74 0.82 0.73 0.52 0.18 271
0.35 0.53 0.55 0.61 0.80 0.71 0.49 0.20 271

5 0.65 0.75 0.83 0.89 0.83 0.49 0.81 0.12 214
0.50 0.72 0.78 0.81 0.82 0.47 0.79 0.14 225
0.35 0.63 0.67 0.69 0.77 0.47 0.75 0.20 230

6 0.65 0.87 0.94 0.98 0.93 0.72 0.81 0.07 235
0.50 0.86 0.90 0.94 0.89 0.68 0.71 0.11 254
0.35 0.80 0.84 0.90 0.73 0.49 0.52 0.27 255

7 0.65 0.90 0.94 0.97 0.95 0.81 0.89 0.02 232
0.50 0.87 0.96 0.96 0.85 0.72 0.85 0.15 227
0.35 0.82 0.86 0.94 0.83 0.68 0.80 0.17 220
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Web Table 4: Simulation results obtained from 1000 simulated datasets for the proposed AED
when survival time is generated from a log-logistic distribution.

% sensitive Prob
patients in cohort identify Power Pr(Stop Early) Mean

Scen 1st 2nd 3rd target popn traditional generalized Superiority Futility sample size

1 0 0 0 NA 0.05 NA 0.05 0.92 205

2 0.65 0.83 0.84 0.91 0.77 0.68 0.42 0.23 273
0.50 0.76 0.76 0.85 0.75 0.64 0.38 0.25 279
0.35 0.67 0.68 0.79 0.69 0.61 0.33 0.30 276

3 0.65 0.80 0.81 0.86 0.66 0.60 0.35 0.31 274
0.50 0.76 0.77 0.81 0.62 0.54 0.35 0.39 264
0.35 0.66 0.67 0.73 0.59 0.50 0.31 0.39 265

4 0.65 0.75 0.77 0.80 0.76 0.67 0.50 0.23 261
0.50 0.64 0.67 0.72 0.73 0.64 0.48 0.26 259
0.35 0.51 0.52 0.59 0.71 0.62 0.39 0.28 273

5 0.65 0.88 0.88 0.89 0.77 0.57 0.70 0.18 241
0.50 0.81 0.83 0.87 0.74 0.49 0.66 0.19 243
0.35 0.72 0.72 0.78 0.70 0.47 0.58 0.20 256

6 0.65 0.91 0.91 0.94 0.89 0.60 0.74 0.11 244
0.50 0.86 0.88 0.94 0.84 0.57 0.62 0.16 257
0.35 0.76 0.77 0.80 0.82 0.57 0.62 0.18 261

7 0.65 0.92 0.92 0.94 0.91 0.79 0.85 0.06 222
0.50 0.82 0.86 0.91 0.86 0.72 0.79 0.14 221
0.35 0.76 0.72 0.78 0.71 0.58 0.71 0.26 215
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Web Table 5: Simulation results obtained from 1000 simulated datasets for the proposed AED
when survival time follows a Weibull distribution with deceasing hazard when n = 800.

% sensitive Prob
patients in cohort identify Power Pr(Stop Early) Mean

Scen 1st 2nd 3rd target popn traditional generalized Superiority Futility sample size

1 0 0 0 NA 0.05 NA 0.05 0.66 500

2 0.65 0.91 0.92 0.94 0.90 0.89 0.73 0.09 489
0.50 0.85 0.86 0.90 0.90 0.89 0.73 0.10 485
0.35 0.75 0.78 0.83 0.89 0.87 0.68 0.10 502

3 0.65 0.83 0.83 0.85 0.76 0.72 0.67 0.24 457
0.50 0.75 0.75 0.79 0.74 0.71 0.60 0.26 485
0.35 0.59 0.60 0.63 0.73 0.66 0.53 0.27 502

4 0.65 0.82 0.83 0.83 0.84 0.82 0.68 0.16 477
0.50 0.73 0.73 0.74 0.81 0.80 0.64 0.18 483
0.35 0.59 0.61 0.61 0.80 0.79 0.63 0.20 483

5 0.65 0.77 0.89 0.96 0.90 0.62 0.83 0.11 438
0.50 0.76 0.84 0.91 0.85 0.61 0.73 0.19 443
0.35 0.70 0.76 0.83 0.79 0.56 0.67 0.21 454

6 0.65 0.93 0.94 0.97 0.96 0.70 0.77 0.14 469
0.50 0.88 0.90 0.94 0.91 0.66 0.76 0.19 468
0.35 0.80 0.84 0.92 0.90 0.64 0.75 0.19 467

7 0.65 0.94 0.95 0.97 0.97 0.96 0.91 0.03 460
0.50 0.89 0.92 0.93 0.91 0.91 0.91 0.09 419
0.35 0.81 0.88 0.89 0.88 0.88 0.88 0.12 419
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Web Table 6: Simulation results obtained from 1000 simulated datasets for the proposed AED
when survival time follows a Weibull distribution with deceasing hazard when p = 50.

% sensitive Prob
patients in cohort identify Power Pr(Stop Early) Mean

Scen 1st 2nd 3rd target popn traditional generalized Superiority Futility sample size

1 0 0 0 NA 0.05 NA 0.05 0.70 233

2 0.65 0.82 0.85 0.88 0.94 0.68 0.84 0.06 235
0.50 0.74 0.76 0.80 0.91 0.65 0.76 0.09 248
0.35 0.63 0.69 0.71 0.89 0.64 0.76 0.11 248

3 0.65 0.76 0.77 0.80 0.86 0.65 0.80 0.14 229
0.50 0.67 0.67 0.71 0.77 0.64 0.66 0.23 242
0.35 0.53 0.54 0.58 0.72 0.53 0.59 0.27 249

4 0.65 0.83 0.85 0.86 0.83 0.56 0.76 0.17 232
0.50 0.74 0.75 0.77 0.78 0.51 0.67 0.22 244
0.35 0.62 0.63 0.66 0.74 0.43 0.64 0.25 245

5 0.65 0.77 0.78 0.87 0.92 0.70 0.91 0.04 219
0.50 0.77 0.78 0.85 0.82 0.55 0.81 0.13 231
0.35 0.64 0.69 0.74 0.76 0.46 0.68 0.14 252

6 0.65 0.83 0.89 0.92 0.94 0.79 0.87 0.06 233
0.50 0.83 0.85 0.87 0.93 0.66 0.83 0.06 230
0.35 0.70 0.75 0.87 0.86 0.53 0.80 0.14 227

7 0.65 0.90 0.93 0.97 0.95 0.82 0.90 0.03 232
0.50 0.86 0.87 0.92 0.92 0.80 0.90 0.08 206
0.35 0.85 0.87 0.87 0.90 0.80 0.90 0.11 208
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Web Table 7: Simulation results obtained from 1000 simulated datasets for the proposed AED
when survival time follows a Weibull distribution with deceasing hazard when a main effect of x2
is added to scenario 2 of Simulation study (i.e., the case where there are main/interaction effects
of x1 only).

% sensitive Prob
patients in cohort identify Power Pr(Stop Early) Mean

Scen 1st 2nd 3rd target popn traditional generalized Superiority Futility sample size

Main/Interaction 0.65 0.88 0.89 0.91 0.87 0.79 0.67 0.12 250
effect of x1 0.50 0.81 0.81 0.85 0.84 0.73 0.64 0.17 244

0.35 0.70 0.72 0.79 0.82 0.73 0.62 0.18 248

Main/Interaction 0.65 0.90 0.90 0.91 0.83 0.77 0.68 0.17 245
effect of x1 + 0.50 0.84 0.85 0.85 0.80 0.77 0.65 0.20 239

Main effect of x2 0.35 0.75 0.77 0.81 0.80 0.69 0.65 0.20 247
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Web Table 8: Simulation results obtained from 1000 simulated datasets for the proposed AED
when survival time follows a Weibull distribution with deceasing hazard when covariate x1 is
associated with Y and Z or associated with Y only in scenario 2 of Simulation study.

% sensitive Prob
Effect of x1 patients in cohort identify Power Pr(Stop Early) Mean

associated with 1st 2nd 3rd target popn traditional generalized Superiority Futility sample size

(Y,Z) 0.65 0.88 0.89 0.91 0.87 0.79 0.67 0.12 250
0.50 0.81 0.81 0.85 0.84 0.73 0.64 0.17 244
0.35 0.70 0.72 0.79 0.82 0.73 0.62 0.18 248

Y only 0.65 0.83 0.87 0.89 0.82 0.61 0.63 0.17 248
0.50 0.75 0.79 0.82 0.82 0.59 0.62 0.18 247
0.35 0.60 0.63 0.66 0.76 0.58 0.56 0.25 247
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Web Table 9: Simulation results for cases with no treatment-covariate interactions.

Pr(Stop early) Mean
Power Superiority Futility Sample Size

Pr(x1 = 1) AED CGS AED CGS AED CGS AED CGS

0.65 0.80 0.78 0.24 0.23 0.19 0.21 308 319
0.50 0.79 0.79 0.25 0.22 0.21 0.22 302 314
0.35 0.80 0.80 0.23 0.20 0.19 0.18 307 321
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Web Table 10: Simulation results obtained from 1000 simulated datasets for the proposed AED
when survival time follows a Weibull distribution with deceasing hazard when different tuning
parameters are used in scenario 2 of Simulation study.

% sensitive Prob
patients in cohort identify Power Pr(Stop Early) Mean

(v, g) 1st 2nd 3rd target popn traditional generalized Superiority Futility sample size

(0.77, 0.35) 0.65 0.88 0.89 0.91 0.87 0.79 0.67 0.12 250
0.50 0.81 0.81 0.85 0.84 0.73 0.64 0.17 244
0.35 0.70 0.72 0.79 0.82 0.73 0.62 0.18 248

(0.85, 0.50) 0.65 0.88 0.90 0.94 0.93 0.83 0.74 0.07 246
0.50 0.82 0.85 0.91 0.89 0.75 0.68 0.12 250
0.35 0.75 0.77 0.83 0.88 0.75 0.65 0.12 257
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Web Table 11: Simulation results obtained from 1000 simulated datasets for the proposed AED
when survival time follows a Weibull distribution with deceasing hazard when different sparsity
parameters are used in scenario 2 of Simulation study.

% sensitive Prob Mean
patients in cohort identify Power Pr(Stop Early) sample

(u·,j , τ·,j) 1st 2nd 3rd target popn traditional generalized Superiority Futility size

(100, 0.1) 0.65 0.88 0.89 0.91 0.87 0.79 0.67 0.12 250
0.50 0.81 0.81 0.85 0.84 0.73 0.64 0.17 244
0.35 0.70 0.72 0.79 0.82 0.73 0.62 0.18 248

(100, 0.05) 0.65 0.84 0.86 0.89 0.88 0.77 0.69 0.12 262
0.50 0.79 0.80 0.88 0.82 0.75 0.62 0.18 271
0.35 0.67 0.68 0.73 0.81 0.70 0.47 0.19 275

(100, 0.5) 0.65 0.88 0.88 0.91 0.86 0.77 0.64 0.14 249
0.50 0.81 0.82 0.86 0.83 0.76 0.53 0.15 271
0.35 0.70 0.71 0.77 0.80 0.72 0.51 0.19 267

(100, 1) 0.65 0.88 0.89 0.92 0.86 0.76 0.61 0.14 256
0.50 0.82 0.83 0.85 0.86 0.75 0.48 0.14 280
0.35 0.71 0.71 0.77 0.82 0.75 0.40 0.17 287

(10, 0.1) 0.65 0.84 0.87 0.88 0.89 0.85 0.40 0.11 302
0.50 0.73 0.82 0.88 0.86 0.78 0.37 0.14 294
0.35 0.67 0.69 0.72 0.83 0.76 0.34 0.16 304

(50, 0.1) 0.65 0.88 0.90 0.93 0.89 0.85 0.67 0.12 253
0.50 0.80 0.81 0.86 0.85 0.75 0.60 0.13 267
0.35 0.71 0.74 0.79 0.82 0.74 0.59 0.15 247


