Cell Reports, Volume 39

Supplemental information

Germinal center expansion but not plasmablast differentiation is proportional to peptide-MHCII density via CD40-CD40L signaling strength Zhixin Jing, Mark J. McCarron, Michael L. Dustin, and David R. Fooksman

A

Supplemental Figure 1. Differential pMHCII density can be controlled by α DEC-OVA targeting. Related to Figure 1.

(A), Experimental setup to examine antigen uptake level of GC B cells with differential DEC205 surface level by α DEC-Texas Red targeting. (B), Experimental setup to examine the level of cognate peptide presentation on MHCII of GC B cells with differential DEC205 surface level by α DEC-OVA-E α targeting. (C), Frequency and (D), Log-transformed absolute numbers of GC B cells with differential pMHCII level conferred by α DEC-OVA targeting compared to contralateral untreated footpad of the same mouse or untreated footpad of control mice that received no treatment. All bars show mean (C) or mean ± SEM (D). *, P< 0.05; **, P< 0.01; exact p values, ns, non-significant by Mann Whitney U test (between treated mice to untreated mice) or paired Student's t test (between treated footpad and untreated footpad in the same mouse). All graphs show pooled data from at least two independent experiments. (C-D, n = 5-10)

Number of α-DEC205-OVA treatment

Number of α-DEC205-OVA treatment

Supplemental Figure 2

Supplemental Figure 2. GC B cells with intermediate pMHCII density are not outcompeted by ones with high pMHCII density by multiple rounds of αDEC-OVA targeting. Related to Figure 2.

(A), Experimental setup for measuring EdU incorporation of GC B cells with differential pMHCII level conferred by α DEC-OVA targeting. (B), Experimental setup for direct competition of GC B cells with differential pMHCII density conferred by multiple α DEC-OVA targeting given every 3 days, each timepoint were analyzed by flow cytometry 3 days after the each α DEC-OVA treatment (i.e. Day 0, no treatment; Day 3, 1 treatment; Day 6, 2 treatments; Day 9, 3 treatments). (C), Kinetics of frequency and (D), absolute numbers of GC B cells with differential pMHCII level over multiple α DEC-OVA targeting. All graphs show pooled data from at least two independent experiments. (C-D, n = 11-16)

<u>Supplemental Figure 3. T cell help is temporarily delivered to GC B cells early after</u> <u>aDEC-OVA targeting. Related to Figure 3.</u>

(A), Experimental setup for imaging kinetics of GC TFH and B cell dynamics post α DEC-OVA treatment by two-photon laser scanning microscopy. (B), Example of single timepoint snapshot of dynamics of TFH (red) and B cell (blue) interactions in the GC. Scale bar is 50µm. (C), Kinetics of TFH track velocity post α DEC-OVA treatment. (D) Log-transformed absolute numbers of total GC B cells in mice treated with isotype control antibody or neutralizing α CD40L at Day 0 or Day 1 after α DEC-OVA treatment. (E), Example of single timepoint snapshot of *in vitro* morphology and dynamics of GFP⁺ B cell blasts (green) with or without agonist anti-CD40 by internal reflection microscopy (IRM). Scale bar is 30µm. (F), Track velocity and (G), Cell area under fluorescence channel and IRM channel of GFP⁺ B cell blasts with or without agonist anti-CD40. All bars show mean (C,D, and G) or mean ± SEM (F). **, P< 0.01; ****, P< 0.0001 by Mann Whitney U test (F, and G) or unpaired Student's t test (D). All data are pooled data from (C and D) or representative of (F and G) at least two independent experiments. (C, n =2-3; D, n = 13-17; F, n = 1; G, n = 1)

А

Supplemental Figure 4. IRF4^{hi} GC B plasmablast precursors are Bcl6^{lo}. Related to Figure 5.

(A), IRF4, IRF8, and Bcl6 co-staining of mesenteric GC B cells for GC B plasmablast precursors.

Supplemental Figure 5. Migration of plasmablast to bone marrow and spleen are independent of pMHCII density. Related to Figure 6.

(A), Experimental setup for tracking migration of plasmablasts generated from B cells with differential pMHCII density conferred by α DEC-OVA targeting. (B), Representative plot of plasmablasts originated from DEC205^{+/+} and DEC205^{+/-} GC B cells in the draining lymph node, spleen, and bone marrow of mice receiving α DEC-OVA treatment compared to PBS-treated mice. (C), Absolute numbers of DEC205^{+/+} and DEC205^{+/-} plasmablasts in the draining lymph node, spleen, and bone marrow of mice receiving α DEC-OVA treatment compared to PBS-treated mice. (D), Bone marrow of mice receiving α DEC-OVA treatment compared to PBS-treated mice. (D), Bone marrow/lymph node and (E), spleen/lymph node ratio of plasmablast numbers in mice treated with α DEC-OVA or PBS. All bars show mean. ns, non-significant by paired Student's t test. All graphs show pooled data from at least two independent experiments. (C-E, n = 7)