Supplementary Information for:

Ancient plant-like terpene biosynthesis in corals

Immo Burkhardt¹, Tristan de Rond^{1§}, Percival Yang-Ting Chen^{1,#}, Bradley S. Moore^{1,2}*

¹Scripps Institution of Oceanography, University of California San Diego; 9500 Gilman Dr., La Jolla, CA 92093, USA.

²Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego; 9500 Gilman Dr., La Jolla, CA 92093, USA.

§Present address: School of Chemical Sciences, University of Auckland; Private Bag 92019, Auckland 1142, New Zealand.

#Present address: Morphic Therapeutics; 35 Gatehouse Drive, A2, Waltham, MA 02451, USA

*Corresponding author. Email: bsmoore@ucsd.edu

Contents

Supplementary Tables	3
Supplementary Figures	
Supplementary Note 1 – Structure elucidation	
Diterpene product of HcTC-3 (2)	
Diterpene product of BaTC-2 (4)	
Diterpene product of ErTC-2 (6)	38
Diterpene product of XsTC-1 (7)	39
Diterpene product of RmTC-1 (8)	40
Sesquiterpene product of HcTC-3 (9)	41
Sesquiterpene product of TmTC-2 (10)	42
Sesquiterpene product of CiTC-2 (11)	43
NMR spectra	44
Supplementary Note 2 – Sequences	
Capnella imbricata mutS sequence	
TC Sequences	
Supplementary References	

Supplementary Tables

Supplementary Table 1. Uniprot accession numbers of TC sequences used for constructing the TC profile HMM.

A0A1L7U8F2	A1C8C3	A8NCM9
A0A1L7VZE7	A8NE23	B2J4A4
E4MYY0	Q96WT2	B5GRC8
A0A0H5BN61	Q9UR08	I1S104
A0A0H5BN57	Q03471	M1V9Q0
D9XDR8	B6H063	M1VDX3
K0K750	Q82RR7	A0A0B4EB91
B5GS26	M4VQY9	A0A1B8A5N9
C7PLV2	E4N7E5	A1DN30
A0A0L6WFN4	A0A0B4G3Q7	A0A2Z6AQX7
A0A2N3Y098	A0A0B4IF96	A0A348DU52
A0A0L6WRL8	E9E766	E3VWJ0
E8W6C7	A0A0B4GN88	Q82IY4
B1W019	A0A0B4FWC3	Q55012
E4N7E5	A0A1B4XBG5	B2DBF0
SODX56	P9WEV7	A0A2L0VXR0
A9FZ87	С9К1Х5	Q6WP50
A8NU13	Q9UVY5	P0DL13
A7NH01	SOEA85	B5H7H3
A0A0L6WB32	O13284	A0A2Z6AQX6
B5GW45	Q5KSN4	B5HDJ6
D5SL78	Q9K499	P0DPK6
B5GMG2	A0A169T193	A0A5S9I252
A4FG19	A0A1Y1C7Q5	Q9AJE3
A3KI17	A0A0P0ZEM1	034707
Q9F1Y6	A0A0P0ZD79	P13513
D2B747	A0A1U9WTL2	I2N045
D9XD61	C9K2Q3	A2PZA5
A0A1L9UKS1	A2PZA5	A0A1Q5UFC3
E9F8R9	Q9X839	

Supplementary Table 2. Public genome assemblies used for genome mining.

<u>Coral species</u>	<u>Number of</u> <u>TC genes</u> (number including paralogs)	<u>Acc no.</u>	<u>reference</u>
Dendronephthya gigantea	2 (2)	NCBI acc no.: GCA_004324835.1	1
Renilla muelleri	1 (1)	Downloaded from: http://rmue.reefgenomics.org/	2
Renilla reniformis	1 (1)	NCBI acc no.: GCA_900177555.1	3
<i>Xenia</i> sp.	1 (2)	Downloaded from: https://cmo.carnegiescience.edu/data	4
<i>Trachythela</i> sp. YZ-2020	6 (12)	NCBI acc no.: GCA_016169945.1	5
Paramuricea clavata	4 (8)	Downloaded from: https://denovo.cnag.cat/pclavata	6

Supplementary Table 3. Public data used for transcriptome mining.

<u>Species</u>	<u>Numbe</u> <u>r of TC</u>	Assembly info	SRA dataset	<u>reference</u>	<u>Terpenoids</u> <u>reported</u>
Alcyonium palmatum	0	Assembled in this work	SRR3407216	7	Yes ⁸
Acanthogorgia aspera	1 (1 partial)	NCBI acc no.: GEXC01	SRR3303654	-	From genus
Briareum asbestinum	2	NCBI acc no.: GHBD02	SRR7895344	10	Yes 11,12
Callogorgia delta	3	Assembled in this work	SRR13925246	13	No
Clavularia sp.	1 (1 partial)	NCBI acc no.: GHAW01	SRR8102779, SRR8102780	14	From genus
Corallium rubrum	1	Downloaded from: https://doi.org/10.5 061/dryad.31f77	SRR1552945	17	From genus
Dendronephthya gigantea	2 (1 partial)	Assembled in this work	SRR8293935	1	From genus
Eleutherobia rubra	2	NCBI acc no.: GHFI01	SRR8486076	21	From genus
Eunicea calyculata	1	Assembled in this work	SRR6039601	23	Yes ²⁴
Eunicea flexuosa	1	Assembled in this work	SRR12876635	-	From genus
Eunicella cavolinii	1 (1 partial)	Assembled in this work	SRR1324943	25	Yes ²⁶
Gorgonia ventalina	3	Assembled in this work	SRR935083	-	Yes 27
Heliopora coerulea	3	NCBI acc no.: IABP01	DRR072217, DRR072218, DRR072219	28	Yes ²⁹
Paramuricea biscaya	2	Assembled in this work	SRR7521178	30	From genus
Paramuricea clavata	3 (1 partial)	Assembled in this work	ERR3664728	6	From genus
Paramuricea type B3	1 (1 partial)	Assembled in this work	SRR13925244	13	From genus
Pinnigorgia flava	0	Assembled in this work	ERX4193767	32	no
Renilla koellikeri	1 (1 partial)	Assembled in this work	SRR7495167	-	From genus
Renilla reniformis	0	Assembled in this work	ERR2808321	2	Yes ³³
Sarcophyton trocheliophorum	1	Assembled in this work	SRR12573946	-	Yes ³⁴
Sinularia cruciata	1 (1 partial)	Assembled in this work	ERR3026434	35	From genus
Tubipora musica	2	Assembled in this work	ERR3026435	35	Yes 37
Xenia sp.	1	Assembled in this work	SRR9278441	4	From genus

scaffold	Organism and reference	length (kbp)	coded TC	GC content (%)	coverage (avg. Reads per base)	Dataset used for transcript mapping	Dataset used for long read mapping
NW_021163036	D. gigantea ¹	2263	DgTC-1	38	90 (pacbio)	SRR8293935	SRR8293699
NW_021163042	D. gigantea ¹	2228	DgTC-2	37	100 (pacbio)	SRR8293935	SRR8293699
HiC_scaffold_25	Xenia sp.4	4749	XsTC-1	35	88 (ONP)	SRR9278441	SRR9278438

Supplementary Table 4. Details for TC coding contigs from octocoral genomes.

Sequence	GC%	# exons	Region (bp)	Best scoring BLAST hit:	Sequence name	organism	E-value	NCBI accession no.
XsTC-1	39	8	402750-		uncharacterized	Acropora	1×10^{-128}	XP_044181808.1
-1			397351		protein LOC122962660	millepora		
XsTC-1	42	1	421582- 420354		terpene synthase family protein	Streptosporang ium nondiastaticum	0.1	WP_106680131.1
XsTC-1 +1	38	1	426242- 425778		hypothetical protein KOW79	Hemibagrus wyckioides	0.076	KAG7326961.1
XsTC-1 +2	40	1	426516- 427094		no hit	n jenuerues		
XsTC-1 +3	53	5	436341- 433328		no hit			
XsTC-1 +4	50	5	442821- 440118		microspherule protein 1-like	Plakobranchus ocellatus	8x10- ³¹	GFN97869.1
XsTC-1 +5	39	23	445833- 486627		transmembrane protein 87A-like	Actinia tenebrosa	0.0	XP_031573117.1

Supplementary Table 5. Genetic context of XsTC-1 on contig HiC_scaffold_25.

Sequence	GC%	# exons	Region (bp)	Best scoring BLAST hit:	Sequence name	organism	E-value	NCBI accession no.
-3	47	15	1163131- 1171572		rho GTPase-activating protein 39-like	Acropora millepora	5x10- ¹⁵⁴	XP_029180732.2
-2	43	10	1178909- 1174089		ubiquitin thioesterase otulin-like	Zootermopsis nevadensis	3x10- ³⁷	XP_021939107.1
-1	45	1	1180563- 1179595		retinol dehydrogenase 12-like	Crassostrea gigas	5x10 ⁻¹¹¹	XP_011420247.2
DgTC-1	46	1	1181590- 1182822		HEAT repeat domain- containing protein	Cand. Lokiarchaeota archaeon	0.57	NMC08674.1
+1	46	14	1191885- 1199119		suppressor of hairless protein	Saccoglossus kowalevskii	0.0	NP_001158483.1
+2	46	16	1201421- 1221069		ABC transporter G family member 24	Nematostella vectensis	0.0	XP_001642016.2

Supplementary Table 6. Genetic context of DgTC-1 on contig NW_021163036.

Sequence	GC%	# exons	Region (bp)	Best scoring BLAST hit:	Sequence name	organism	E-value	NCBI accession no.
-2	41	10	1129642- 1131952		protein-glutamine gamma- glutamyltransferase K	Phallusia mammillata	7x10 ⁻¹⁷³	CAB3266928.1
-1	42	3	1144401- 1150450		uncharacterized protein LOC110068857	Orbicella faveolata	1x10 ⁻¹⁸	XP_020631939.1
DgTC-2	39	1	1154905- 1153709		nucleotidyltransferase family protein	Oscillospirace ae bacterium	8.9	MBR3419154.1
+1	41	6	1156399- 1158527		15- hydroxyprostaglandin dehydrogenase	Cyprinodon variegatus	4x10 ⁻⁵¹	XP_015226913.1
+2	37	6	1164817- 1167808		peroxisomal biogenesis factor 19- like	Acropora millepora	1x10 ⁻⁵⁶	XP_029188873.2
+3	37	1	1169969- 1171558		zinc finger protein 271-like	Acyrthosiphon pisum	5x10 ⁻¹⁰⁸	XP_008180596.1
+4	39	9	1172532- 1177997		proton-coupled amino acid transporter 1-like	Orbicella faveolata	6x10- ¹¹⁰	XP_031553692.1

Supplementary Table 7. Genetic context of DgTC-2 on contig NW_021163042.

Enzyme	$\Delta^{i}G$ (kcal/mol)	Interface (Å ²)	State in solution	reference
ErTC-2 (7s5l)	-6.5	597		This work
epi-isozizaene synthase (41z0)	-2.2	485	monomeric	39
2-MIB synthase (4la6)	-37.2	2549	parallel homodimeric	40
trichodiene synthase (2q9z)	-40.9	2606	antiparallel homodimeric	41

Supplementary Table 8. PISA server results.

Supplementary Table 9. RSMDs of ErTC2 with microbial (red) plant (green) and IDS (black) structures.

•

RMSD	41z0	40km	4kux	5eau	3p5r	1rqj	4jzb	5ja0
$(Å)^a$	EIZS				TXDS			FPPS
ErTC2	4.190	4.630	4.707	4.221	5.011	9.723	7.665	16.417

Supplementary Table 10. Accession numbers for non-coral sequences used for phylogenetic analysis.

E2E2N7	WP_014153723	XP_001836356	KAE9533555
B6SCF5	B1W019	EIM83755	AAX78434
I6RAQ6	XP_023427124	EIM91001	XP_029182012
J7LQ09	WP_012241161	EIM88705	XP_028399803
Q5SBP3	KAG5727529	EIM82223	P14324
P59287	KAG5733850	EIM91236	P08836
P0CJ43	XP_001836356	PODL13	APB88773
O48935	WP_012119179	BBD74517	APB88774
Q4KSH9	WP_003956090	XP_645958	APB88775
Q84UU4	WP_003963519	XP_645125	APB88776
B3TPQ6	WP_003952918	XP_644874	APB88777
Q41594	WP_011874125	XP_642676	APB88778
B5A434	WP_053126184	XP_640697	APB88779
Q9FXY7	WP_011031839	XP_638489	APB88780
H8ZM70	D2B747	XP_642261	AVZ23977
C7E5V7	WP_003994861	XP_629084	AYD76069
024475	XP_007824857	XP_642260	ALL35411
Q6PWU2	XP_001832925	XP_002679043	ALL35417
A4FVP2	Q9UR08	XP_002682659	ALL35420
C5YHH7	XP_038933630	AXN72983	ALL35414
O49853	XP_002557473	AZO92733	
Q84LF0	WP_010981512	AZO92734	
J7LH11	BAJ27126	ASV63464	
B1B1U3	KID95099	ASV63466	
081191	A0A1B4XBG5	ASV63465	
064404	40MG_A	Q43315	
G1JUH1	WP_011030119	Q54BK1	
Q6Q3H2	AQY56778	Q9LIA0	
B9S9Z3	KFG77771	B2DBE9	
Q94G53	EAU89322	A0A2L0VXR5	
Q8GUE4	WP_012410187	P22939	
B9RXW0	KAG8664989	Q8WMY2	
I6QPS5	XP_011319367	P0AD57	
G5CV45	M1VDX3	J7FIX8	
B0FGA9	WP_143632835	A0A1B4XBK0	
E2E2P0	WP_010984429	A0A140JWS2	
064961	Q55012	Q7XYS9	
Q29VN2	XP_024552383	064905	
C7ASI9	WP_005320742	024241	
XP_041688448	QJQ03973	P49351	
XP_031085895	WP_005317515	053507	
WP_014133196	WP_030261827	Q3IPL1	
D9XDR8	A0A5S9I252	P48368	
WP_015102836	P13513	P54976	
WP_003954606	WP_006348/11	P39464	
WP_012/92334	QGA30878	P45204	
KNZ/43//	AP_001832573	XP_001958742	
WP_010314578	AP_001836556	XP_022808076	
WP_020663213	XP_001832925	ALL35400	

Supplementary Table 11. Data collection and model refinement statistics of coral terpene synthases.

	Cd(II)-ErTC-2	ErTC-2
PDB ID	-	7S5L
Beamline	UCSD X-ray Crystallography Facility	SSRL 12-2
Wavelength (Å)	1.54178	0.97946
Space Group	C2	C2
Cell dimensions (Å)	a = 82.75,	a = 85.69,
	b = 99.70,	b = 101.65,
	c = 46.48,	c = 46.34,
	β = 92.29°	$\beta = 90.60^{\circ}$
Resolution	33.98-2.57 (2.67-2.57)	40.0-1.58
		(1.67-1.58)
# unique reflections	23522 (2453)	54425 (8769)
Completeness (%)	99.6 (96.8)	96.1 (94.1)
Redundancy	15.3 (8.8)	3.9 (3.9)
<l sigl=""></l>	20.8 (3.9)	14.7 (2.6)
R _{sym}	0.073 (0.376)	0.046 (0.390)
CC _{1/2}	*	(0.90)
D		
Resolution		37.97-1.58
# unique reflections		52284
Rwork (%) / Rfree (%)		16.1/19.2
RMS bond length		0.005
(A) DMC hand angles		0.007
RIVIS bond angles		0.697
() # of otomo		
# 01 alonis		2152
Diphosphata		5152
Ethylono divcol		- 12
Water molecules		12
Ma ²⁺		-
		1
Average B-factor		
$(Å^2)$		
Protein Atoms		30
Diphosphate		-
Ethylene glycol		38
Water molecules		39
Mg ²⁺		-
CI		28
Ramachandran plot		
Favored (%)		98.12
Allowed (%)		1.88
Outliers (%)		0.00
Rotamer outliers (%)		0.00
Residues modeled		2-195, 201-381, 389-391
(1-393)		

Supplementary Figures

		DDXXD		NSE/DTE	RY	
		90	100	260		350
coral sequences	Dg_TPS-1_scaffold_NW_021163036 Dg_TPS-2_scaffold_NW_021163042	HFVISLYCSD HFLVMGYVID	DRTELECDL DTIE.KYSE	VCIIVNDLYSYKRETME FCVVINDLYSYERDKLD	EEGND <mark>RY</mark> KYVVF <mark>R</mark> Y	KDSPWRVSLT VSSPFQIAVV
	Xs_TS-1_scaffold_25 S_coelicolor_epi-isozizaene_synthase	EFLIVLYLCD DYSAWFFVWD	DELEAKCNL DRHDR	C C M V T N D V Y S Y H R E C N E F A A W Y N D L C S L P K E I A G	DQGVPR Y HHESG <mark>R</mark> Y	SDSPWRLNLV
microbial TS ≺	S_exfoliatus_pentalenene_synthase T_atroviride_trichobrasilenol_synthase	DLMSWFFLFD QFLYWIFFWD	DLFD.GPRG DEIDTGGEL	VNLLLNDIASLEKEEAR LTILLNEILSLQKEFRV	REALE <mark>RY</mark> SYNCE <mark>R</mark> Y	
	F_poae_koraiol_synthase S_araneosa_cycloaraneosene	DWNGWVFAFD DWCIWAFVFD	DPFDEGSFA DQFDEGPMR	LITLQNDLCSYRKDLIQ LTWLVNDVLSYKKDLAF	S L T T F R <mark>Y</mark> S F K S G R <mark>Y</mark>	LGDEGP LNAEQGR
	A_terreus_aristolochene_synthase K_setae_hedycaryol_synthase	RLLTVLFLID KWIALTFRID	DLLEYM DQIDEDDTA	H L S VVND I Y S Y E K E L Y T H I A L V N D V F S V E R E T L V	SQTTLR Y : HSSVE <mark>R</mark> Y	SVVVDAVD
	S_melanosporafaciens_cyclooctat-9-en-7 N_tabacum_5-epi-aristolochene_synthase	VLNCVT <mark>FV</mark> WD KTISMISIVD	DM DTFDAYGTV	G L T I V N D F Y S Y D R E V S L I C R V I D D T A T Y E V E K S R	TTSNK <mark>RY</mark> IHNLDG <mark>Y</mark>	
plant TS 🖌	G_hirsutum_delta-cadinene_synthase T_brevifolia_taxadiene_synthase	KVIAMASIVD KIGCLQVLFD	D T Y D S Y A T Y D M A D I F A T L	I C R F M D D V T E H K F K H R R S W R L T N D T K T Y Q A E K A R	REG.DG <mark>Y</mark> YKFIDG <mark>Y</mark>	

Supplementary Fig. 1. Regions from alignments with newly identified coral sequences with microbial and plant terpene synthase (TS) sequences that show the conserved motifs. Plant-like terpene synthases show more diversity in the NSD/DTE motif and do not have the RY motif.

Supplementary Fig. 2. SDS PAGE analysis of recombinant TmTC-1, TmTC-2, XsTC-1, ErTC-1, ErTC-2, PbTC-1, RmTC-1, CiTC-1. The image shows representative bands after Ni-NTA purification. All expressions were carried out at least twice on different days. No attempts failed.

Supplementary Fig. 3. SDS PAGE analysis of recombinant DgTC-1, DgTC-2, HcTC-1, HcTC-2, HcTC-3, BaTC-1, BaTC-2. The image shows representative bands after Ni-NTA purification. All expressions were carried out at least twice on different days. No attempts failed.

Supplementary Fig. 4. GCMS analysis of BaTC-1 with the substrates GGPP (top) FPP (middle) and GPP (bottom). Mass spectra for major peaks are shown. The absolute configuration of **6** produced by this enzyme was not determined.

Supplementary Fig. 5. GCMS analysis of BaTC-2 with the substrates GGPP (top) FPP (middle) and GPP (bottom). Mass spectra for major peaks are shown. *: Compound 4 rearranges/decomposes in the GC injector and elutes as multiple products as a broad peak. Mass spectrum A

is averaged over the whole signal.

Supplementary Fig. 6. GCMS analysis of CiTC-1 with the substrates GGPP (top) FPP (middle) and GPP (bottom). Mass spectra for major peaks are shown.

Supplementary Fig. 7. GCMS analysis of DgTC-1 with the substrates GGPP (top) FPP (middle) and GPP (bottom). Mass spectra for major peaks are shown. The absolute configuration of **9** produced by this enzyme was not determined.

Supplementary Fig. 8. GCMS analysis of DgTC-2 with the substrates GGPP (top) FPP (middle) and GPP (bottom). Mass spectra for major peaks are shown. The absolute configuration of **6** produced by this enzyme was not determined.

Supplementary Fig. 9. GCMS analysis of ErTC-1 with the substrates GGPP (top) FPP (middle) and GPP (bottom). Mass spectra for major peaks are shown.

Supplementary Fig. 11. GCMS analysis of HcTC-1 with the substrates GGPP (top) FPP (middle) and GPP (bottom). Mass spectra for major peaks are shown.

Supplementary Fig. 12. GCMS analysis of HcTC-2 with the substrates GGPP (top) FPP (middle) and GPP (bottom). Mass spectra for major peaks are shown. The absolute configuration of **9** produced by this enzyme was not determined.

spectra for major peaks are shown.

Supplementary Fig. 14. GCMS analysis of PbTC-1 with the substrates GGPP (top) FPP (middle) and GPP (bottom). Mass spectra for major peaks are shown.

spectra for major peaks are shown.

TmTC-1

spectra for major peaks are shown. The absolute configuration of 6 produced by this enzyme was not determined.

spectra for major peaks are shown.

Supplementary Fig. 18. GCMS analysis of XsTC-1 with the substrates GGPP (top) FPP (middle) and GPP (bottom). Mass spectra for major peaks are shown.

ErTC-2		ηι αι	α2 α3 2000 0000000000 0.000
ErTC-2 DgTC-1 DgTC-2 ErTC-1 BaTC-2 XsTC-1 HcTC-1 HcTC-2 HcTC-3 RmTC-1 TmTC-1 TmTC-1 TmTC-2 CiTC-1 PbTC-1	MS.GKIVRABS MYCGKLEVRVB S.S.WYCGKLEVRVB MSISOMYFSKELRV0 MFSKPIHABR MFRPFEVTABT MSEKNVVRD MACSKEMYID MACSKEWRAB MCSSKEVRABS MCSSKEVRABS MSCSKEVRABS MSCSKEVRABS MSCSKEVRABS	NWTTPHKKWL& DED(COMAVLECEVLKE.KPD KWTISHKKWLAENEED EEWSKYHFDIVKE.PID (KWVEKGKGLLDE.EVD INVVKHARVLSQ.PPI KKWGRIEREILIQ.NTI (KWAEKAKGVISM.NEE KKWYOROEMQKV.VKD EWSKYHHAIVNE.VKD EWSKYHAIVNE.PPQ EWSKYHAIVNE.PID EWSKYHAIVNE.GPD EWSKYHAIVNE.GPD EWSKYHAIVNE.GPD EWSKYMAIVNE.GPD INSKVOWNCLKI.PQD.AVI	DELIAFDKILSWYSETGVG.TE.EQA PELVDIDGMIKMITECDIV.DE.NVV PELVDIDGMIKMITECDIV.DE.NVV PELFSDELFDWYEDLGLTDDK.SVV PELFSDELFDWYEDLGLTDDK.SVV PELFSDELFDWYEDLGLTDDK.AGT NFIRHEQLINNGVACGVT.NC.AGT PELVDTNRLISVVKECNLA.DE.ALV QLVGMDELINVVACCLA.GLA.GE.ATV NDLSMDELINVVACCLA.DE.ATV NLISMDELINVVACCLA.DE.AV SLLDFELANWIGLGLS.DK.PAT NLISMDELINVVACUALDDICNDK.SVV SLLDFELANWIRGCVT.DDQCKV SLLDFELANWIRGCVT.DDQCKV DDFGPQELINVLEDCGLC.DK.ANV SKLISMNELFELVIECGLC.DK.TST
ErTC-2	α4 α5	2	u6 2000000000000000000000000000000000000
ErTC-2 DgTC-1 DgTC-2 ErTC-1 BaTC-2 XsTC-1 HcTC-2 HcTC-2 HcTC-2 HcTC-2 RmTC-1 TmTC-1 TmTC-1 TmTC-1 PbTC-1	50 KLVFKKINAYEYLRCI KLVFKKINAYEYLRCI KSVFDNINAYKYLRCI KSVFDNINAYKYLRCI KSVFOKNAYYLRCA KSFPCKNAYYLRCA KSFPCKNAYYLRCA KSFPCKNAYYLRCA KSVFDNINAYKHFSRI KSVFCHFKNYA KSVFCHFKNYA KMYLRFYHFSRI KKYVERINYCFMWTI KXYVERINYCFMWTI KYVERINYCFMWTI KYVERINYCFM KYVELINYYYATRAL KYYELINYYYATRAL KKYVELINYYYATRAL KKYVELINYYYATRAL KKYVELINYYYATRAL	* 70 PVV1.PR.DPK5KKF01 YPV1.PR.DPK5KKF01 YPV1.PR.DQTGKKLF01 MVFF1FK.NS1FKLF01 NVFF1FK.NS1FKLFV1 NP11.PD.TK1GREVFKA MVF1.D.N1CCKFFKV1 AV1V.PS.NP1CRNFFKT IPTV.PS.NP1CRNFFKT IPTV.PS.DQW0FEIFKT FYKLKRD.NP1IAS1YE1 EVFL.SKEDALCKKLFKM LVV.PS.N1CCRMFKFT IPIV.PE.N1CRELCKV VDTV.PA.SQYAEEIFKS	90 HIFLLIGYIIDDAIE.KYMENEWKE PLHFVISLYCSDDRTELECDLDDIVK HIFLLIGYIIDDTE.KYSEREWQE AHLVESVTUDDIE.KYSEREWQE AHLVESVTUDDIE.KYSEREWQE AHLVESKYUDDIE.KISEREWQE AHLVESKYUDDIE.KISEREWQE UHFTTAGIFIADDIME.KQFEESIEK UHFTTAGIF.ADDIME.KYSEREMNE ILHASISIYIADDQLE.SYSEKOMKE ASVIVIGFIMDDVLE.SYSEKOMKE ASVIVIGFIMDDVLE.SYSEKOMKE AAHIAINVFISDVLE.ESKTEMGQ ICYTIIIDDVLE.BHYELEVIKE GIHFMTIFVIDDLMEENSFEDMRK SLHFLCALFIVDDAVE.SYSANEMQD
ErTC-2	α7 000000000000000	α8 0000000	α9 η ²
ErTC-2 DgTC-1 DgTC-2 ErTC-1 BaTC-1 BaTC-2 XsTC-1 HcTC-2 HcTC-2 HcTC-3 RmTC-1 TmTC-1 TmTC-1 TmTC-1 CiTC-1 PbTC-1	110 * 120 C A GYN LL O S OVS E TE MC D AYBNILKE P VF EME LI D GYN L O N OVS XI L C D GYBELAG QIRG QI MC T TE A HID A KSR 0.5F C C G YD MLE KEVS X LE VC S AYD FLD EKL KC C ACA AHARI D O OSI K KE VS D SF DML NE QI S ERE MS D AYD MLE KEVC S NI DH TF R FT O NWL SF LE I C Y AYD OLD G KL L C GE I I A ALNO LNE KL S EFE I S R SYD TLE KEVC K TE	130 ***1 1 ***1 1 1	10 150 160 NDFSKSAITTMFDYVNKTTLILE DSKLIS9VVJCMDPVNKVTSCVIEY NKFSRAIVTVDYVNTTMILE. DEKLIPHTIHLMDFANVAKSIIQH NKFSIAAITMVMDYNNSALFIQH NKFSIAAITMVMDYNNSALFIQH NKFSIAAITMVMDFNNSALFIQH NKFSIAAITMVMDFNNSALFIQH NKFSIAAITMVMDFNNSALFIQ NKFSIAAITMVMDFNNSALFIQ NKFSIAAITMVMDFNNSALFIQ NKFSIAAITMVMDFNNSALFIQ NKFSIAAITMVMDFNNSALFIQ NKFSIAAITMVMDFNNSALFIQ NKFSIAAITMVNDFNNSALFIQ NKFSIAAITMVNDFNNSALFIQ NKFSIAAITMVNDFNNSALFIQ NKFSIAAITMVNDFNNSALFIQ NKFSIAAITMVNDFNNSALFIQ NKFSIAAITMVNDFNNSALFIQ NKFSIAAITMVNDFNNSALFIQ NKFSIAAITMVNDFNNSALFIQ NKFSIAAITMVNDFNNSALFIQ NKFSIAAITMVNDFNNSALFIQ NKFSIAATTNI NKFSIAA
ErTC-2	0 0000000000000000000000000000000000000	α10 200000000000000000000000000000000000	α11 α12 0000000 0000000
ErTC-2 DgTC-1 DgTC-2 ErTC-1 BaTC-2 XsTC-1 HcTC-2 HcTC-3 RmTC-1 TmTC-1 TmTC-1 TmTC-2 CiTC-1 PbTC-1	170 GEIAEHNGLNYRKELS GEYSETAVLDFRREI GEYSETAVLDFRREI GEISEBSVNEYWREN SIPIBSVNEYWREN GUFSESVKEYREI SVFPQBSVFDFRCFR SVFPQBSVFDFRCFR GNWNGNVADFRLANS GDFSEDVVADFRCN STPQNVADFRCN GNYSEDVVADFRREI SGFPQNVADFRC GNYSEDVVADFRREI GNYSEDVVADFRREI GNYSEDVVADFRREI GNYSEDVVADFRREI GNYSEDVVEN STPC	190 * NN (JAV)* POALLSKTRT SN NT IEFYLRGLEMEKKM SN ALAVY* POALLSKTRT SN ALAVY* POALOASKTRT SN ALST SN ALST	200 210 220 GE ISD GAMLWRRCFD GALALAVYN I T RKDTBNKTLWRRICFD GALALAVYN I T RKDTBNKTLWRRICFD ALSIAVYN ST VRSYEBU VNTGVFTVAYLLHPCL CKITGGMMLWRRAFGGVVFTVLTA GGVISNKLLWRRAFGGVVFTVLTA GGVISNKLLWRRIFGGVAAPYSSLA VVVTTDDFMLRIFGGVAAPYSSLA SNVTGDBMLWRRVYDGUVTLYVFF GGSVYSKDLWRFLWRFT GGSVYSLTUNG SNVTGDFTLWRRIFFGGAAVTWRLFG GSVYSLTUNG SNVTGDFTLWRRFFGGAAVTWRLFG SNVTGDFTLWRRVFGGAAVTWRLFG SNVTGDFTLWRRVFGGAAVTWRLFG SNVTGDFTLWRRVFGGAAVTWRLFG SNTVCEALWRVFGGAAVTWRLFG SSIJISHEWLWRRVFDGUVTLYVFG
B		α13	α14 α15
ErTC-2 DgTC-1 DgTC-1 BaTC-1 BaTC-1 BaTC-2 XsTC-1 HcTC-2 HcTC-2 HcTC-2 HcTC-1 TmTC-1 TmTC-1 TmTC-1 CiTC-1 PbTC-1	220 230 2 EVFSKTLVKNHTLPVG USSF.SLGKVEGHIP EVFSKTLVRNQMLPTS EILSG.ANGKTTEHNS EIFSG.ANGKTTEHNS EIFSG.ANGKTEHNS EIFSG.ANGKTENS EIFSG.ANGKTENS EIFUG.ELGKCKHVK ELVIG.LLADADVPST EVFIG.LLADADVPST EVFIG.LLADADVPST EVPSG.ALGKTSEHNT EVSSF.SLGKQONALLA EVSSF.SLGKQONALLA ELSSF.SLGKQOHLA	140 250 157 250 158 158 158 158 158 158 151 250 151 250 151 250 151 250 151 158 151 158 151 158 151 158 151 158 151 158 151 150 151 150 151 150 151 150 151 150 151 150 151 150 151 150 151 150 151 150 151 150 151 150 151 150 152 150 154 150 155 150 150 150 151 150 152	CONVENSION CONVENSION 260 270 270 270 280 270 280 270 290 270 290 270 291 280 292 270 293 286 293 286 294 294 295 294 295 294 294 294 295 294 295 294 295 294 295 294 295 294 295 294 295 294 295 294 295 294 295 294 295 294 295 294 295 294 295 294 295 294 295 294 295 294 295 294

	0	16	η3 α17	
ErTC-2	2 2222222222222	222222222222222222	2222222222222222222222222	ll
ErTC-2 DgTC-1 DgTC-1 BaTC-1 BaTC-1 BaTC-2 XsTC-1 HcTC-1 HcTC-2 HcTC-3 RmTC-1 TmTC-1 TmTC-2 CiTC-1 PbTC-1	280 OVER ALL STATISKVSKT DJ DEK LISSMEE AC EKVSKT DJ DEK LISSMEE AC EKVSKT DJ DEK LISSMEE AC EKVSKT DJ SKEVTT ADE AL IKNVEL FJ OKEVIST LEE AA AVKET DJ OKEVIST LEE AA AVKET DJ KKOTASVE VED AVSKT LOT IN KKOTASVE VED AVSKT LOT IN KKEVISE VED AVSKT LOT IN KKEVISE VED AVSKT LOT IN SKEVISE VED AVSKT DJ DI SKEVISE VED AVSKT J SKEVISE SKAVKT SI I LOT SKEVISE SKAVKT SI LOT IN OKEVIAN LTV AA GKVAST I LO EKTINSE LSEAT ARGS OT DJ	JOO TIQOMYLFVEBCGRARH TVQ YMEEKVQ RVKLDYPNS TIQOMYLFVKESCH IVK YMYQ RIEKAKQENQTI MQYLVKVBEDGKEPNN TIQIMYEKVEBCKEPN AVK YMLXVSMKSEYPNN TILIMYKKABOUKLOFPD IIKYMYQ TIEKTKEYPD VMQYHHERVERICSIPG TIKYMYQ TIEKTKEYPD VKLMYQKIETAKQKNEN TIKYTYEQVRFKASYPNS ISKYYYKKGEKMKAENPTN ISKYYYKKGEKMKAENPT	PELSERFERTAYMTYWITY PELSERFERTAYMTYWITY PELSERFERTARMYTTWHIY RELLYCLYWCRMTY RELHYCLYWCRMTY STOLE PELSERFERTARMYTS PELSERFETAR NILLYTCHYCRMTYS NILLYTCHYCRMTY NILLYTCHYCRMTY PELSELLETTYTTY SELHOLFDDIGCGTYWYY PELSELLETTYTTYWIR SELHOLFDDIGCGTYWYY PELSELETTYTTYWIR	IMIWAVMLVAVEFLS
	α18 β2	η4 α19 α2	.0 η5	
ErTC-2	2 <u>2020</u>	، مقمققه معقققق ا	2000000000	~
	340 350	360 370	380 390	
ErTC-2 DgTC-1 DgTC-2 ErTC-1 BaTC-1 BaTC-2 XsTC-1 HcTC-1 HcTC-2 HcTC-3 RmTC-1 TmTC-1 TmTC-1 TmTC-1 PbTC-1	KIVUPRYVSDP.FQLEVVBJ EGMDRYKDDP.RKVSLTA KYVUPRYVSDP.FQLAVVS HYLDRYVSDP.FQLAVVS NITAAPRYLESP.YQVVLRBJ QGVPRYSDDP.WRLNLVDJ DCGVPRYSDDP.WRLNLVDJ CALPRYQGDP.WRLNLVDJ KVUPRYSDDP.WRLNLVDJ TAVVPRYSDDF.LXKVHLVSJ TAVVRYSEDF.LXKVHLVSJ HYSRIKIDDSA.WRLSLVS CINPRYKESN.VR.SMKDJ HYCRRYKDDTAIKUGIKEI TIVUPRYSDQ.LKMALVSJ	HENNISNILKKDAYGQN REDKIGENISCKDSYGFB KDEMIPDNLTEKDAYGET KDEMIPDNLTEKDAYGET EDELKEWRKCEEEPPK EDKDLGWIKCEEEPPK EDKDLGWILENKNEFGRY DEDEIFKNLSEKGKYGSK DEDEIFKNLSEKGKYGSK DEDEIFKNLSEKGKYGSK NEWEIKENKSADEKYSD EESDLTTFECKNHYGRS AARGKEEVNLKGTAFGKK DDDELAEVOKCDEEGYGKN KGKELKQNLAEKDPYGNN KGKELKQNLAEKDEYGNN	VVQCELKNLNDPQKKNIM LINGFLAS.N.PKABKIIDA LINGFLAS.N.PKABKIIDA LIFPVLLDBS.QIAKKINDA JEFPVLLDHS.QIAKKINDA JUDGFKYS.N.LDAKKFIDS VIQELMELVQERMADGKMDA VIQELMELVQERMADGKMDA VIQUPLLYFN.AKGKEIIDA VIQUPLLYFN.AKGKEIIDA VMEFELMEG.ERAEEMNK SVMPLLLNYS.QKANEISDI VKQFLASUD.AKAKRINDA VKNFLVDHS.IVAKNFVDVI VVEKFMETLNDEKHKGLLDA	LY LG LG LG LG LG LG LG LG LG LG LG LG LG
ErTC-2				
ErTC-2 DgTC-1 ErTC-1 BaTC-1 BaTC-2 XsTC-1 HcTC-2 HcTC-3 RmTC-1 TmTC-2 CiTC-1 PbTC-1	DE	VVIPDTICCTSSIV VAEKEDGLYKII		

Supplementary Fig. 20: GC-vs-coverage blob plot created using Blobtools⁴² for contigs 1 kilobasepairs and larger in our assembly for Capnella imbricata. Contigs are colored by kingdom as classified by Diamond⁴³ blastx against the NCBI nr database. Circles are sized in proportion to contig length on a square-root scale, ranging from 1,000 to 22,827. Histograms show the distribution of contig length sum along each axis. Most Symbiodinium genomic and plastid DNA did not assemble into contigs > 1 kilobasepairs. The large spread in coverage is likely due to contigs representing repetitive elements. The contig

containing CiTC-1 is shown. It also contains a fragment of a gene with an immunoglobulin domain, however this is sometimes not present when assembled using other parameters or assemblers. Only one full-length terpene cyclase gene could be detected in this and any other assembly of *C. imbricata*, and the sequence of CiTC-1 synthesized was a consensus of that in various assemblies.

Dataset: capnella_imbricata_1k

Supplementary Fig. 21: Snail plot created using Blobtools for contigs 1 kilobasepairs and larger in our assembly for *Capnella imbricata*. The main plot is divided into 1,000 size-ordered bins around the circumference with each bin representing 0.1% of the 79,762,010 bp assembly. The distribution of record lengths is shown in dark grey with the plot radius scaled to the longest record present in the assembly (22,827 bp). Orange and pale-orange arcs show the N50 and N90 record lengths (1,772 and 1,104 bp), respectively. The pale grey spiral shows the cumulative record count on a log scale with white scale lines showing successive orders of magnitude. The blue and pale-blue area around the outside of the plot shows the distribution of GC, AT and N percentages in the same bins as the inner plot. The assembly has been filtered to only include contigs classified as Metazoa or Unclassified by Diamond blastx against the NCBI nr database.

Supplementary Note 1 – Structure elucidation

Diterpene product of HcTC-3 (2)

Structure of elisabethatriene (2). COSY correlations are shown as bold lines, key HMBC correlations are shown as single headed arrows. Key NOE correlations are shown as double headed arrows. **Purification by column chromatography**: Pentanes (100%), **yield**: 1.9 mg. **Optical rotary power**: $[\alpha]_D^{25.0} = +56.8 (c \ 0.055, MeOH)$. **NMR**: See table. **EI-MS** (70 eV): m/z (%) = 273 (7), 272 (31), 257 (4), 201 (8), 190 (4), 189 (11), 188 (17), 187 (14), 162 (20), 161 (100), 160 (11), 159 (33), 147 (7), 146 (6), 145 (9), 134 (4), 133 (11), 132 (5), 131 (8), 129 (5), 128 (4), 121 (4), 120 (8), 119 (27), 118 (5), 117 (11), 115 (7), 109 (5), 107 (7), 106 (6), 105 (42), 104 (3), 103 (4), 95 (7), 93 (13), 92 (4), 91 (31), 82 (5), 81 (20), 79 (12), 77 (9), 69 (27), 67 (9), 65 (4), 55 (14), 53 (5). The relative configuration in agreement with structural revision⁴⁴ after first the report ⁴⁵. The absolute configuration derived from enantioselectively synthesized oxidized derivatives ⁴⁶

С	¹³ C	¹ H
1	37.1	$2.24 (q, {}^{3}J = 6.0)$
2	27.5	1.63-1.58 (m)
		1.53-1.44 (m)
3	29.8	2.36 (ddd, ${}^{2}J = 14.1$, ${}^{3}J = 9.1$, ${}^{3}J = 4.6$)
		2.21-2.15 (m)
4	143.9	-
5	127.5	6.14 (s)
6	144.02	-
7	50.0	1.83-1.79 (m)
8	23.2	1.67-1.69 (m, 2H)
9	29.6	1.75-1.67 (m)
		1.21 (ddt, ${}^{2}J = 12.4$, ${}^{3}J = 3.1$, ${}^{3}J = 3.1$)
10	35.5	1.79-1.75 (m)
11	31.9	1.74-1.70 (m)
12	17.7	0.9 (d, ${}^{3}J = 6.6, 3H$)
13	35.2	1.56-1.52
		1.04 (ddt, ${}^{2}J = 13.2$, ${}^{3}J = 9.4$, ${}^{3}J = 4.9$)
14	25.9	2.15-2.09 (m)
		2.00-1.90 (m)
15	125.6	5.12 (ddsept, ${}^{3}J = 7.1$, ${}^{3}J = 7.1$, ${}^{4}J = 1.5$)
16	131	-
17	25.9	1.65 (s, 3H)
18	17.8	1.59 (s, 3H)
19	109.0	$4.86 (s, H_E)$
		4.78 (s, H _Z)
20	15.2	0.86 (s, 3H)
Diterpene product of BaTC-2 (4)

Structure of klysimplexin R (4). COSY correlations are shown as bold lines, key HMBC correlations are shown as single headed arrows. Key NOE correlations are shown as double headed arrows. **Purification by column chromatography**: Hexanes/EtOAc (4:1), **yield**: 1.1 mg. **Optical rotary power**: $[\alpha]_D^{25.0} = -23.6 (c \ 0.09, CHCl_3)$. **NMR**: See table. **EI-MS** (70 eV): m/z (%) = 290 (5), 281 (9), 272 (17), 257 (11), 230 (13), 229 (83), 229 (12), 207 (29), 207 (15), 205 (14), 202 (16), 201 (9), 191 (9), 190 (9), 189 (42), 187 (16), 175 (9), 173 (21), 164 (17), 164 (10), 163 (47), 162 (14), 162 (10), 161 (38), 161 (14), 160 (9), 159 (35), 155 (9), 150 (19), 149 (40), 148 (19), 148 (15), 147 (33), 147 (21), 145 (24), 137 (10), 136 (15), 136 (12), 135 (48), 134 (19), 134 (14), 133 (50), 131 (17), 127 (15), 124 (9), 123 (46), 123 (27), 122 (42), 122 (32), 121 (100), 120 (15), 119 (46), 119 (20), 117 (13), 113 (13), 111 (26), 110 (16), 109 (56), 109 (50), 108 (26), 108 (12), 107 (69), 107 (46), 106 (14), 105 (82), 99 (20), 97 (12), 96 (13), 95 (72), 94 (13), 93 (48), 93 (46), 92 (9), 92 (11), 91 (58), 91 (25), 85 (44), 84 (15), 83 (19), 83 (11), 82 (15), 81 (77), 81 (31), 80 (12), 79 (80), 77 (35), 77 (16), 71 (82), 70 (14), 69 (77), 68 (13), 68 (10), 67 (45), 67 (11), 65 (10), 58 (15), 57 (54), 56 (14), 55 (9), 55 (64), 53 (24).

Absolute configuration set after optical rotation ⁴⁷. NMR spectra show several minor conformers.

С	¹³ C	¹ H
1	37.1	2.94-2.88 (m)
2	131.5	5.23-5.27 (m)
3	133.7	-
4	32.9	2.18-2.11 (m)
		1.77-1.71 (m)
5	26.1	2.25-2.20 (m)
		1.98-1.91 (m)
6	125.2	5.34-5.29 (m)
7	138.0	-
8	40.5	2.20-2.14 (m)
		1.91-1.84 (m)
9	24.6	1.50-1.45 (m)
		1.27-1.22 (m)
10	47.3	1.96-1.91 (m)
11	72.7	-
12	36.3	1.41-1.35 (m, 2H)
13	20.6	1.57-1.50 (m)
		1.42-1.36 (m)
14	45.6	0.99-0.94 (m)
15	26.9	1.92-1.86 (m)
16	22.4	$0.94 (d, {}^{3}J = 6.8, 3H)$
17	18.2	$0.84 (d, {}^{3}J = 6.7, 3H)$
18	25.2	1.68 (s, 3H)
19	17.5	1.54 (s, 3H)
20	26.7	1.13 (s, 3H)

Diterpene product of ErTC-2 (6)

Structure of cembrene A (6). COSY correlations are shown as bold lines, key HMBC correlations are shown as single headed arrows. Key NOE correlations are shown as double headed arrows. Purification by column chromatography: Pentanes (100%), yield: 3.4 mg. Optical rotary power: $[\alpha]_{D}^{25.0} = -28.0 \ (c \ 0.02, \text{CHCl}_3)$. NMR: See table. EI-MS (70 eV): m/z (%) = 272 (7), 272 (3), 258 (6), 257 (21), 229 (4), 216 (6), 215 (6), 207 (5), 203 (4), 201 (7), 191 (4), 190 (4), 189 (17), 187 (6), 176 (5), 175 (7), 175 (6), 173 (6), 163 (5), 162 (8), 161 (4), 161 (17), 160 (4), 159 (5), 159 (4), 149 (9), 148 (15), 147 (25), 145 (6), 137 (3), 136 (6), 136 (4), 135 (21), 134 (20), 133 (33), 131 (4), 123 (16), 122 (17), 121 (66), 120 (22), 119 (6), 119 (25), 117 (3), 109 (25), 108 (33), 107 (70), 106 (13), 105 (28), 96 (5), 95 (33), 94 (36), 93 (93), 92 (4), 92 (15), 91 (37), 82 (9), 81 (67), 80 (17), 79 (48), 78 (3), 77 (25), 69 (22), 68 (100), 67 (76), 66 (4), 65 (11), 55 (31), 53 (33).

	1	- 1 -
С	¹³ C (δ in ppm)	1 H (δ in ppm,)
1	46.5	2.25-2.19 (m)
2	33.0	2.19-2.13 (m)
		2.05-1.99 (m)
3	124.5	5.35-5.30 (m)
4	134.9	-
5	39.4	2.18-2.12 (m, 2H)
6	25.3	2.32-2.24 (m)
		2.17-2.10 (m)
7	126.5	5.10-5.05 (m)
8	133.5	-
9	39.9	2.12-2.06 (m, 2H)
10	24.2	2.18-2.12 (m, 2H)
11	122.3	5.28-5.23 (m)
12	137.8	-
13	34.3	2.07-2.00 (m)
		1.98-1.90 (m)
14	28.5	1.84-1.77 (m)
		1.45-1.36 (m)
15	149.2	-
16	110.8	4.84-4.82 (m, 2H)
17	19.4	1.68 (s, 3H)
18	15.6	1.55 (s, 3H)
19	15.4	1.54 (s, 3H)
20	18.3	1.61 (s, 3H)

The absolute configuration was set after optical rotation ⁴⁸

Diterpene product of XsTC-1 (7)

Structure of xeniaphyllene (7). COSY correlations are shown as bold lines, key HMBC correlations are shown as single headed arrows. Key NOE correlations are shown as double headed arrows. **Purification by column chromatography**: Pentanes (100%), **yield**: 2.5 mg. **Optical rotary power**: [α]_D^{25.0} = -12.1 (*c* 0.18, CHCl₃). **NMR**: See table. **EI-MS** (70 eV): m/z (%) = 272 (3), 257 (7), 230 (4), 229 (17), 203 (6), 201 (4), 190 (5), 189 (13), 188 (4), 187 (10), 175 (7), 173 (6), 162 (6), 161 (24), 160 (4), 159 (11), 149 (10), 148 (18), 147 (29), 146 (5), 145 (9), 137 (8), 136 (20), 135 (21), 134 (25), 133 (72), 132 (3), 131 (9), 123 (21), 122 (11), 121 (30), 120 (37), 119 (36), 118 (4), 117 (8), 115 (5), 109 (23), 108 (10), 107 (45), 106 (26), 105 (48), 103 (4), 96 (4), 95 (34), 94 (13), 93 (66), 92 (18), 91 (63), 83 (6), 82 (10), 81 (52), 80 (12), 79 (51), 78 (8), 77 (29), 70 (6), 69 (100), 68 (10), 67 (32), 66 (4), 65 (10), 55 (28), 53 (17).

The absolute configuration was derived from enantioselectively synthesized oxidized derivatives '	49.
NMR spectra show several minor conformers.	

С		¹³ C	¹ H
1		52.6	1.85-1.78 (m)
2		30.3	1.51-1.44 (m)
			1.44-1.33 (m)
3		40.3	2.08-2.02 (m)
			1.98-1.92 (m)
4		135.1	-
5		124.9	5.39 (dd, ${}^{3}J = 9.4, 5.4$)
6		29.0	2.36-2.32 (m)
			2.02-1.96 (m)
7		35.0	2.16-2.11 (m)
			2.00-1.94 (m)
8		154.7	
9		49.0	2.35-2.30 (m)
10	0	39.7	1.79-1.69 (m, 2H)
11	1	36.2	-
12	2	44.6	1.51-1.44 (m)
			1.43-1.37 (m)
13	3	23.4	2.06-1.98 (m, 2H)
14	4	125.8	5.27-5.20 (m)
15	5	130.8	-
16	6	25.2	1.70 (s, 3H)
17	7	17.7	1.60 (s, 3H)
18	8	20.1	0.98 (s, 3H)
19	9	112.3	$5.05 (s, H_Z)$
			$4.87 (s, H_E)$
20	0	16.5	1.58 (s, 3H)

Diterpene product of RmTC-1 (8)

Structure of cembrene C (**8**). COSY correlations are shown as bold lines, key HMBC correlations are shown as single headed arrows. Key NOE correlations are shown as double headed arrows. **Purification by column chromatography**: Pentanes (100%), **yield**: 1.1 mg. **NMR**: See table. **EI-MS** (70 eV): m/z (%) = 273 (4), 272 (18), 258 (3), 257 (20), 229 (15), 201 (6), 189 (9), 187 (6), 177 (4), 176 (4), 175 (14), 173 (8), 163 (6), 162 (15), 161 (21), 159 (9), 150 (5), 149 (20), 148 (13), 147 (22), 145 (8), 137 (6), 136 (22), 135 (31), 134 (16), 133 (32), 131 (5), 123 (15), 122 (32), 121 (100), 120 (13), 119 (36), 117 (5), 115 (3), 109 (19), 108 (18), 107 (55), 106 (10), 105 (39), 103 (3), 95 (21), 94 (13), 93 (64), 92 (7), 91 (39), 83 (6), 82 (4), 81 (34), 80 (8), 79 (36), 78 (3), 77 (23), 69 (15), 68 (24), 67 (46), 65 (8), 57 (3), 55 (21), 53 (22).

С	¹³ C	¹ H
1	124.74	-
2	31.0	2.91 (d, ${}^{3}J = 7.0, 2H$)
3	125.3	5.18 (tq, ${}^{3}J = 6.9, {}^{4}J = 1.4$)
4	133.7	-
5	39.3	2.14-2.10 (m, 2H)
6	25.3	2.17 (dt, ${}^{3}J = 6.3$, ${}^{3}J = 8.7$, 2H)
7	126.8	5.05 (tq, ${}^{3}J = 6.5$, ${}^{4}J = 1.4$)
8	133.1	-
9	40.4	2.09-2.05 (m, 2H)
10	24.3	2.11-2.08 (m, 2H)
11	124.66	5.16 (tq, ${}^{3}J = 6.9, {}^{4}J = 1.4$)
12	134.8	-
13	37.9	2.10-2.07 (m, 2H)
14	31.9	2.30 (t, ${}^{3}J = 7.7, 2H$)
15	131.7	-
16	20.7	1.67 (s, 3H)
17	20.9	1.70 (s, 3H)
18	15.4	1.56 (s, 3H)
19	15.1	1.52 (s, 3H)
20	16.0	1.61 (s, 3H)

Sesquiterpene product of HcTC-3 (9)

.

Structure of nephthene (9). COSY correlations are shown as bold lines, key HMBC correlations are shown as single headed arrows. Key NOE correlations are shown as double headed arrows. **Purification by column chromatography**: Pentanes (100%), **yield**: 1.3 mg **Optical rotary power**: $[\alpha]_D^{25.0} = +5.3$ (*c* 0.19, CHCl₃). **NMR**: See table. **EI-MS** (70 eV): m/z (%) = 204 (20), 162 (15), 161 (100), 147 (5), 133 (9), 131 (3), 120 (7), 119 (19), 117 (8), 115 (6), 107 (4), 106 (4), 105 (27), 103 (3), 93 (10), 92 (4), 91 (24), 81 (9), 79 (9), 77 (8), 69 (4), 67 (4), 65 (3), 55 (4).

The absolute configuration was derived from 2., sample contains a second sesquiterpene (~20%) of unknown structure, which is not separable by column chromatography.

С	¹³ C	¹ H
1	37.1	2.13-2.07, (m)
2	27.5	1.62-1.53 (m)
		1.53-1.44 (m)
3	30.1	2.35 (ddd, <i>J</i> = 14.5, 8.4, 4.6 Hz)
		2.19-2.12 (m)
4	144.1	-
5	127.3	6.09 (s)
6	144.2	-
7	51.5	1.69-1.62 (m)
8	23.1	1.70-1.64 (m)
		1.64-1.56 (m)
9	29.6	1.70-1.63 (m)
		1.25-1.17 (m)
10	35.2	1.78-1.75 (m)
11	27.5	1.75-1.69 (m)
12	21.0	0.79 (d, <i>J</i> = 6.4, 3H)
13	21.5	0.88 (d, <i>J</i> = 6.3, 3H)
14	108.9	$4.88 (s, H_E)$
		$4.80 (s, H_Z)$
15	15.0	0.84 (d, <i>J</i> = 7.0, 3H)

Sesquiterpene product of TmTC-2 (10)

Structure of a-muuroladiene (**10**). COSY correlations are shown as bold lines, key HMBC correlations are shown as single headed arrows. Key NOE correlations are shown as double headed arrows. **Purification by column chromatography**: Pentanes (100%), **yield**: 2.5 mg. **Optical rotary power**: $[\alpha]_D^{2^{5,0}} = +55.0 (c \ 0.25, CHCl_3)$. **NMR**: See table. **EI-MS** (70 eV): m/z (%) = 205 (5), 204 (33), 189 (12), 162 (10), 161 (60), 160 (5), 149 (3), 148 (6), 147 (11), 145 (6), 135 (3), 134 (6), 133 (14), 131 (6), 129 (5), 128 (5), 123 (5), 121 (10), 120 (5), 119 (25), 117 (8), 115 (7), 107 (10), 106 (17), 105 (100), 103 (3), 95 (8), 94 (27), 93 (31), 92 (8), 91 (30), 81 (18), 80 (3), 79 (18), 78 (4), 77 (16), 69 (5), 67 (5), 65 (5), 55 (8), 53 (6).

The absolute configuration was set after optical rotation ⁵⁰.

С	¹³ C	¹ H
1	39.4	2.02-1.96 (m)
2	25.0	1.82-1.74 (m)
		1.53-1.43 (m)
3	30.7	1.90-1.79 (m, 2H)
4	134.4	-
5	124.7	5.59-5.55 (m)
6	37.2	2.16-2.10 (m)
7	41.5	1.57-1.48 (m)
8	24.9	1.91-1.84 (m)
		1.82-1.74 (m)
9	122.6	5.47-5.44 (m)
10	136.1	-
11	27.0	2.07 (dsept, ${}^{3}J = 6.9, {}^{3}J = 4.4$)
12	21.6	$0.88 (d, {}^{3}J = 6.9, 3H)$
13	16.1	$0.87 (d, {}^{3}J = 6.8, 3H)$
14	21.9	1.70 (s, 3H)
15	24.1	1.67 (s, 3H)

Sesquiterpene product of CiTC-2 (11)

Structure of capnellene (11). COSY correlations are shown as bold lines, key HMBC correlations are shown as single headed arrows. Key NOE correlations are shown as double headed arrows. **Purification by column chromatography**: Pentanes (100%), **yield**: 2 mg. **Optical rotary power**: $[\alpha]_D^{25.0} = -93.7 (c \ 0.16, CHCl_3)$. **NMR**: See table. **EI-MS** (70 eV): m/z (%) = 204 (6), 189 (14), 163 (7), 149 (3), 148 (21), 147 (6), 136 (6), 135 (46), 134 (18), 133 (45), 121 (3), 120 (3), 119 (12), 117 (4), 115 (4), 111 (4), 110 (6), 109 (42), 107 (13), 106 (9), 105 (15), 95 (18), 94 (9), 93 (19), 92 (5), 91 (28), 81 (25), 80 (100), 79 (30), 78 (5), 77 (18), 69 (10), 67 (9), 65 (6), 55 (11), 53 (7).

С	^{13}C	¹ H
1	42.2	-
2	41.7	1.44 (m, 2H)
3	40.6	1.52 (m, 2H)
4	53.2	-
5		1.61 (m)
	47.9	1.23 (dd, <i>J</i> = 13.1, 9.4 Hz)
6	46.1	2.44 (m)
7		1.63 (m)
	29.0	1.43 (m)
8		2.46 (m)
	31.5	2.34 (m)
9	158.3	-
10	52.3	2.67 (dt, <i>J</i> = 7.8, 2.6 Hz)
11	69.0	1.8 (d, <i>J</i> = 2.2 Hz)
12		5.04 (q, $J = 2.4$, H_E)
	105.4	4.97 (q, <i>J</i> = 2.4, H _{<i>Z</i>})
13	31.8	1.22 (s, 3H)
14	30.7	1.07 (s, 3H)
15	25.8	0.96 (s, 3H)

The absolute configuration set after optical rotation ⁵¹.

¹³C NMR spectrum (125 MHz) of **2**.

¹H, ¹H COSY spectrum (600 MHz) of **2**.

¹H, ¹³C HSQC spectrum (600 MHz) of **2**

¹H, ¹³C HMBC spectrum (600 MHz) of **2**

¹H, ¹H NOESY spectrum (600 MHz) of **2**.

¹H NMR spectrum (600 MHz) of **4**.

¹³C NMR spectrum (125 MHz) of 4.

¹H, ¹H COSY spectrum (600 MHz) of **4**.

¹H, ¹³C HSQC spectrum (600 MHz) of **4**.

¹H, ¹³C HMBC spectrum (600 MHz) of **4**.

¹H, ¹H COSY spectrum (500 MHz) of **6**.

 1 H, 13 C HSQC spectrum (500 MHz) of **6**.

 1 H, 13 C HMBC spectrum (500 MHz) of **6**.

¹H, ¹H COSY spectrum (600 MHz) of **7**.

¹H, ¹³C HSQC spectrum (600 MHz) of **7**.

¹H, ¹³C HMBC spectrum (600 MHz) of **7**.

¹H, ¹³C HSQC spectrum (600 MHz) of 8.

¹H, ¹H NOESY spectrum (500 MHz) of **8**.

¹H, ¹H COSY spectrum (500 MHz) of **9**.

¹H, ¹H COSY spectrum (500 MHz) of **10**.

¹H, ¹³C HMBC spectrum (500 MHz) of **10**.

¹H, ¹H NOESY spectrum (500 MHz) of **10**.

¹H, ¹³C HMBC spectrum (500 MHz) of **11**.

¹H, ¹H NOESY spectrum (500 MHz) of **11**

Supplementary Note 2 – Sequences

Capnella imbricata mutS sequence.

>C. imbricata mutS

TC Sequences

All characterized sequences are given as nucleotide sequences that are codon optimized for *E. coli* as used in this work and as amino acid sequences of the resulting proteins.

>BaTC-1 nucleotide codon opt

ATGGTGTTTAGCAAACCGATTCATGCGCCGAAAAAATGGGTGGAAAAAGGCAAAGGTCTTTTAGATGAAGAAGTT CGTAAATACCGTGGTAAATTGCGTCCGTATAACTTTACCCGTAGCTTAAATCCGATTATTCCTGAGACCAAACTT GGCCGTGAAGTATTCAAAGCCCTGGCGCATTTTACAATGGGGATTTTTATCGCTGATGACATTATGGAAAAACAA CCAGAGGAGGAAATCCGCAAGATGTGCACCACGTTTGCCCACTTGGACGCAAAGTCTCGCCAGAGTTTTCCGAGC TTTCCGGCGATTGATGATATTAAGGAAGTGGTGGATGCGAGCAGCGTTTCTAAAAATGTGGCGGGTCCCATCGTA TTTCTTGAACAGTTTCTTAACAAACAGGCAAGCTTGCTCCTGAGCCATGGTGATTTTTCGCTGTCTGATGTCAAG ATCTTTAGTGGTGCGATCGGCAAACTGAAAGAACATTATACCGCTCTGACCGAACTCTACGTGCTGGGAGGCATT TATGTGGCAACCTTAAATGATGTATTCTCCTATTATCGCGAGGCGCATACCGTGGCGGATAATGTTGTTAAAGCA ATGGTATCACAGAAAGAAGTGGAAACATTGGAAGAGGCCGCCGCGAACGTTGCTGAGTTTTTAGATAGCATTATG CAGTACCTGTATGAAAAAGTCGAAGAACTGCAACGCAAAGACCCTAACAATCGTGAACTCCACGTTTGCCTTGAC TATGTGGGCCGCATGACTGTAGGTTCCGTATATGCCCATTTATTGCCGCGTTACAAAGATACAACACTTTCATAT TACCTGGAAGAAGTCAAGGAAGACCAGTTATCGTCGTGGCTGAGCAAAAAGGGTGAGTACGGCACACGGATGCTG AAAAATATCCTTGAGGTCATTCACCAACGCATGGCAGACGGCCAGATGGAAGCATTGGCCGGTGCATTTCCGTAT TGCGGGAAATTTCTTGGAGTTGTAATTCCGGATACTATTTGCTGTACCTCTAGCATCGTGTAA

>BaTC-1 amino acid

MVFSKPIHAPKKWVEKGKGLLDEEVDEQLEGLQEIIDTFIQCDLCDETTVRKYRGKLRPYNFTRSLNPIIPETKL GREVFKALAHFTMGIFIADDIMEKQPEEEIRKMCTTFAHLDAKSRQSFPSFPAIDDIKEVVDASSVSKNVAGPIV FLEQFLNKQASLLLSHGDFSLSDVKEFRLRGYNMMAIYFLRVLEETEIQKKPGSIEVIWRRAFGGCVPFYLLTAE IFSGAIGKLKEHYTALTELYVLGGIYVATLNDVFSYYREAHTVADNVVKAMVSQKEVETLEEAAANVAEFLDSIM QYLYEKVEELQRKDPNNRELHVCLDYVGRMTVGSVYAHLLPRYKDTTLSYYLEEVKEDQLSSWLSKKGEYGTRML KNILEVIHQRMADGQMEALAGAFPYCGKFLGVVIPDTICCTSSIV*

>BaTC-2 nucleotide codon opt

ATCGAGAACTTCATCCGTATGGAACAACTGATCAACTGGGGGCGTTGCTTGTGGAGTAACGAATGAAGCCGGCATC AGCGCGGAAATGTTCCGCATTAACCTTCACTTTACGACAGCCGGCTATATCGTGGATGACCGGATTGAGCGCTAC ACGATGGAAGAAATGAATGAACTCTGCGACGGATACGACATGTTAGAAAAAGAAGTTTCTAAATTATTTCCGAAA GTGATGGACTTTGTAAACCAATCAGCGTTATTTTTCTTACGTCAAGGCAAAACAAGCCGCGACCGTGTTGATAAT TTCCGTAAGCGTCTGTCCAATGCAGTGACCATTTATTATCAGGCGGTCCGTAATAAGGTTAAAACGGGTTGCAAA ATCACTGAAGGTGAAATGCTGTGGCGCCGTTGCTTCGATGTTTTGGCCGTACCTTCATATCTGGCGCCGGAGAGC TTCACGCACGCCGTTGAAAAACAGGAATGGCCACTGGAAATGCTGTACGAATTGTACATGCTCGGCATTCTGTAT TCCACAGTTATTAATGACCTGTATAGCTATCACCGTGAGAAGCTTGATGATTGTGATAATGTCATTAAAGTGTGG ATGCAAGAAAACAGTGTCTCTAGCATTGAAGAAGCTAACGAAAAAATTTGTATGATCTTGGATGCCATCCTGCAA ATTATGTATGAAAAAATTGAAAAGGCAAAAGCGCAGTATTCCAAGTGCCCGGAACTTCAGCGCCTGTTAGACTAT ACCGGCATCGTCTGCTGGATGGATTTTTGTCCATAACACGGCGGCGCGCGGGTATCTTGAGAGCCCGTACCAG GTACGCCATTTTATGGAAACGATGAAGTCCGAGAAAGGCAAACCGGTTATGGATGCTATGTGCGGCTTCACAGAT GCCCGGAATATTCTTATCTGA

>BaTC-2 amino acid

MTKPFEVTAPTRWVKFHARVLSQPPIENFIRMEQLINWGVACGVTNEAGIRKSFQKLNAYVYLRCMYPLVADDAW SAEMFRINLHFTTAGYIVDDRIERYTMEEMNELCDGYDMLEKEVSKLFPKCPSIEEMRCRLQHLKNKFSIAAITM VMDFVNQSALFFLRQGKTSRDRVDNFRKRLSNAVTIYYQAVRNKVKTGCKITEGEMLWRRCFDVLAVPSYLAPES FTHAVEKQEWPLEMLYELYMLGILYSTVINDLYSYHREKLDDCDNVIKVWMQENSVSSIEEANEKICMILDAILQ IMYEKIEKAKAQYSKCPELQRLLDYTGIVSAGWIFVHNTAAPRYLESPYQVVLREIEDKDIQGWLENKNEFGWRV VRHFMETMKSEKGKPVMDAMCGFTDARNILI*

>CiTC-1_nucleotide_codon_opt

ATGTCCTGTTCCAAAGAGGTTCGTTTCCCGGAAACATGGTCCAAGGTTCAGTGGAATTGCTTAAAAACACCACGT GATGAAGATATCTTTGGCTTCCAGGAACTGATTAAATGGTTGGAAGATTGTGGGGGCGTCAGATGAAGCCAACGTC CGGAAGTACGAAGAAATTCTGAACGTGTACTATGCAACCCGTGCCATCATTCCGATCGTGCCTGAAAACATTCTG TGTAGTTTTGAAGATATGCGCAAAATCATTGCGGCGCTGAACCAGCTGAACGAGAAACTTTCACTGGAGTTTAAA AAGGTACCGAGCATTAAAGAAATGAAAAAGTATCTTCAGTACATGAGTGATGAACGTGCGATTTCTCTGGTTACC GTGTGCATGGATTTCATCAACCGTTGTACGCGCCACGCTGCTCCAGCACGGTAATGTCTCCGATGACGTGGTTTTT GATTACCGCAAACGTTGTTTTATCACCGTGAGTTTGTGGCTGCAAGGCGTGGCCATGGTCAAACGCGATGGTGCA GCCCAGGATACCGTAGTCGATGTCTTGTGGACACGCGTTCACGATGGCCTCCCAAGCGCCTTCATCTTATATACC GAAGTCAGCTCTTTTAGTTTGGGCAAACAGAATGCCCACATCGCGGAACTTACTGAACTGTATTGTTTATTTGGC ATTAAAATTTGGCTGAAAAACAAAGAGATTAATAACTTTAGCGAAGCGGCGCCGAAGATGGTCGCCATTTTAGAC GAGATCTCTAAATATGTTTACCGTAAAGGTGAGAAAATGAAAGCCGAAAAACCCGACCAATTTCGAACTCCATGAG ATGGTTGACCAGATCGGTTACGGTGTTGCAGGCAACTATTTCCTGCACCATCACGTTTGTAAACGGTACAAAGAT TACGGCTGGGATATTGTCAAGAATTTTCTGGTTGATCACAGCATCGTAGCCAAGAACTTTGTCGACGTTATGCGC GGCGTAACCCCACTGTCGGACGATTCACTGTTAAACAGCTTGAACAAATAA

>CiTC-1 amino acid

MSCSKEVRFPETWSKVQWNCLKTPRDEDIFGFQELIKWLEDCGASDEANVRKYEEILNVYYATRAIIPIVPENIL CRELCKVKIHFFMTTFVTDDLMEEHCSFEDMRKIIAALNQLNEKLSLEFKKVPSIKEMKKYLQYMSDERAISLVT VCMDFINRCTRTLLQHGNVSDDVVFDYRKRCFITVSLWLQGVAMVKRDGAAQDTVVDVLWTRVHDGLPSAFILYT EVSSFSLGKQNAHIAELTELYCLFGLYMVAINDFYSYTREMNDTIFSQSVIKIWLKNKEINNFSEAAPKMVAILD EISKYVYRKGEKMKAENPTNFELHEMVDQIGYGVAGNYFLHHHVCKRYKDTTAIKLGIKELKGKELKQWLAEKDP YGWDIVKNFLVDHSIVAKNFVDVMRGVTPLSDDSLLNSLNK*

>DgTC-1 nucleotide codon opt

ATGTGGTGCGGAAAAGAAGTTCGTGTGCCCCGTCAATGGGCTGTGCTGGAGCAAGAGGTGTTAAAGGAGAAACCC GATCCGGAATTGGTCGATATCGACGGCATGATCAAATGGATTACGGAATGCGATATCGTAGACGAAAACGTCGTT CGTGCCTATGTGAAGTTAGTGAAACCGTACTACTTTATTCGCCTGATTTATCCAATTCTTCCGAAAGATAAGTTG TGTGTCGAAGCCTGTAAAATTTTCCTGCATTTCGTTATTAGCCTTTACTGCAGTGATGACCGCACAGAACTGGAA TGCGACCTGGATGATATCGTGAAAATGTGCGACGCATATGAAAATTTAAAGGAACCGGTTTTCGAGATGTTTCCG AAATTCCCGACAATTAAAGAAATGCAGAGTAGCTTAAAATTTCTGTCGGACTCGAAATTGATTTCGCCAGTTGTA CTCTGTATGGATTTCGTTAACAAAGTTACCAGCTGCGTCATCGAATACGGTGAATATAGCGAAACAGCCGTTCTG GATTTTCGTCGCCGTTTCCTGAATACGATTGAATTCTACCTGCGGGGTCTGGAGATGGAAAAGAAAATGCACCGC AAAGACACGGAAAACAAGACTCTTTGGCGCCGTATTTTCGACGGTGGCCCGCTGTTTTTTCTTCCTTATGTAGAA ATTAGTAGCTTTTCATTGGGCAAAGTCGAGGGGGCACATCCCGACCATCTCTGAAATGTACATCGTTTCTGCTTTT ACAGTACAGTATATGTTCGAAAAAGTGCAGCGTGTCAAGCTTGACTATCCTAATAGCCCAGAAGCGCACGTCCTG CCATGGCGTGTCTCGCTGACCGAGGTGGAGGAGGAGAAAATTCAGGAATGGCTGAGTTGCAAAGATAGCTACGGA TTCGAAGCCTTGAACCAGTTCCTGGCCTCAAACCCAAAGGCCGAAAAAATTATTGACGCGCTGGGCGGCGACGAA ATTATTCATGGCGGTCTGATCAACGAATCCTCCTAA

>DgTC-1 amino acid

MWCGKEVRVPRQWAVLEQEVLKEKPDPELVDIDGMIKWITECDIVDENVVRAYVKLVKPYYFIRLIYPILPKDKL CVEACKIFLHFVISLYCSDDRTELECDLDDIVKMCDAYENLKEPVFEMFPKFPTIKEMQSSLKFLSDSKLISPVV LCMDFVNKVTSCVIEYGEYSETAVLDFRRFLNTIEFYLRGLEMEKKMHRKDTENKTLWRRIFDGGPLFFLPYVE ISSFSLGKVEGHIPTISEMYIVSAFVCIIVNDLYSYKRETMESINCDSVIKHWLSDEKISSMEEACEKVSRILNA TVQYMFEKVQRVKLDYPNSPEAHVLYEYIAHVTIGWLYMHEEGNDRYKDSPWRVSLTEVEEDKIQEWLSCKDSYG FEALNQFLASNPKAEKIIDALGGDEIIHGGLINESS*

>DgTC-2_nucleotide_codon_opt

ATGTTTTCTGACAATGTGCGGGTGCCGGAAAAATGGACGATTTCGCACAAAAAATGCTTGCGGAACATGAGGAA GGCAAAAAACTTTTTCAGCTGAATCTGCACTTTCTGGTGATGGGCTACGTGATGATGATACAATTGAAAAAATAT AGCGAAAAGGAAATGCGGGAACTGATTGACGGTTACAATTTTCTCCAGAATCAGGTATCTAAGACGTTCCCGAAA TTGCCGAGCATCTCAAAAGTTTGGAAACTTCTGGGTGAAGCCCGTAACAAGTTTAGTCGTTCGGCAATTGTCACC GTTGTAGATTACGTGAATCGTACCACCATGATTCTCTTGGAAGGCGAAATCTGCGAAGAAAGCGTTCTGAATTAT CGTAACCGTCTGTCTAACGCTATTGCGGTGTATTTTAACGCAATTCTTTCAAAAAACTAAAAACCGGCTGTAAAATT TCCGAAAACGAAATGCTGTACCGCCGTTGTTTCGATGCGTTAAGTATTGCAGTATATATGAGTACCGAAGTCTTC AGTAAAACTCTGGTGCGCAACCAGATGTTGCCGACGAGCGAACTGTATAAGTTCTACCTGCTGAGCACGCTGTTC TGTGTTGTGATTAATGATCTGTATTCATACGAACGTGACAAACTGGACGATACCGACTCTGTAATCAAAGTATGG TATGCACAGAACGAGGTCACGGATATGAAAGCCGCGACCACTAAAGTGAGCAAAATTCTGGATCGTATCATCCAA CAGATGTACCTGTTTGTGAAAGAAGGTAAATCGTGCCATCCAGAGCTGAGCGAATGGTTTGAACGCATTGCCGCT ATGACGGTTGGTTGGATCTACATTCACAAATACGTCGTTTTTCGTTATGTGTCGTCTCCGTTTCAAATCGCCGTG GTTGAAGTGAAAGATGAAATGATCCCCGGATTGGTTGACAGAAAAAGACGCCATATGGAGAGACCATTGTGCAGAAT TTCCTGGATGGTTTAGAATATCCTCATCAGAAAGATGTCCTGGATAGCCTGTACGGTTGCAATCGTCTGTAA

>DgTC-2 amino acid

MFSDNVRVPEKWTISHKKMLAEHEEDKELIALDKLLLWVKETGLTTEAASKSVFDNLNAYRYLRCLFPILPEDQT GKKLFQLNLHFLVMGYVIDDTIEKYSEKEMRELIDGYNFLQNQVSKTFPKLPSISKVWKLLGEARNKFSRSAIVT VVDYVNRTTMILLEGEICEESVLNYRNRLSNAIAVYFNAILSKTKTGCKISENEMLYRRCFDALSIAVYMSTEVF SKTLVRNQMLPTSELYKFYLLSTLFCVVINDLYSYERDKLDDTDSVIKVWYAQNEVTDMKAATTKVSKILDRIIQ QMYLFVKEGKSCHPELSEWFERIAAMTVGWIYIHKYVVFRYVSSPFQIAVVEVKDEMIPDWLTEKDAYGETIVQN FLDGLEYPHQKDVLDSLYGCNRL*

>ErTC-1 nucleotide codon opt

>ErTC-1 amino acid

MSISQMVFSKELRVPKEWSKYHFDIVKEPIDPELFSEDELFDWVEDLGLTDDKSVVTKYAQRTGGYLFLRLHMVF FPKNSLFKKLFKLWAHLVPSLFVTDDFLEATSEIEMRQVCDGFEFLAGQIRGQLPQFPTIAEMKQSLLLQKIDEK LIPHTIHLMDFANNVAKSIIQHSSIPIESVNEYWRRLVVVCSLYYAGVAFEVKHSVRSYSEDVWTGVFTVAYLLW LPCLEILSGAVGKTTEHLSLINELSFLATFSARVVNDIYSYNRELVLEHKPVSMVARIAESKEVTTADEALIKNV EILGAIVKVMYQRIEKAKQENQTNKELCKWLDNIGVGTIGVHFWHHYIPRYTSAPCRLSFVGVEEDELKEWRKCS EEEPPKELFPVLLDHSQIAKRINDAIISGVVPTQVKNVLCTD*

>ErTC-2 nucleotide codon opt

ATGTCGGGCAAAATTGTCCGTGCTCCATCGAACTGGACTACCCCCACATAAAAAAATGCTTAAAGAAGACGAAGAC ATCGTGTTCAAAAAAATCAACGCGTATTTCTACCTCCGGTGTCTTTATCCAGTGCTCCCTCGTGATCCAAAATCC ATGAAAAATTTTCCAGTTGAATCTCCACTTCTTAATTCTGGGCTACATTATCGATGATGCTATCGAAAAGTACAAC GAGAATGAAATGAAAGAGTTAATCGCGGGTTATAATCTTCTGCAGTCTCAGGTGTCCGAGACGTTTCCCAATTTT CCAAGTATCTTTGAAATGAAACAGCTGCTGGGAAATATGAAGAATGACTTTTCCAAAAGCGCAATTACCACGATG TTCGATTACGTGAATAAAACTACACTGATTCTGCTGGAAGAAGGTGAAATTGCAGAACACAACGTGCTGAACTAT CGTAAACGCTTGAGCAACGCAGTTGCTGTATATTTCGATGCTCTGTTGAGCAAGACCAAAACCGGGTGCGAAATC TCAGACGGTGCGATGTTATGGCGCCGTTGTTTTGATGCACTGGCTATCGCTGTGTACATGTTAACGGAGGTATTT TCTAAAAACCCTGGTTAAGAATCACACGTTGCCGGTCAGCGAATTTTATAAATTTTACCTCCTGTCTATTCTGTTT TGCGTGGTTATTAACGATTTACATTCTTACGAGCGTGACAAATTGGATGATACCGACTCCGTGGTTAAAGTCTGG TTCAAGGAAGGATCCGTGGCAAATATGGAAGCTGCGACCTCCAAAGTTTCCAAGATCCTGGATGCCATTATCCAG CAGATGTACCTCTTCGTGGAAGAAGGCAAAGCGCGCCATCCGGAACTCAGTGAATGGTTTGAACGTATTGCGTAT ATGACCGTGGGTTGGATTTACATCCACAAAACCGTGGTACCGCGCTACGTGAGTAGCCCGTTTCAAATCGAGGTC GTGGAAATTCACGAGAACATGATTTCTAACTGGCTTCTCAAGAAGGACGCCTTACGGCCAACGCGTGGTGCAGCAG TTTTTAAAAAATTTGAACGACCCTCAAAAGAAAAACATTATGCTGTATGACGAGTGA

>ErTC-2 amino acid

MSGKIVRAPSNWTTPHKKMLKEDEDQELIAFDKLLSWVSETGVGTEEQAKIVFKKINAYFYLRCLYPVLPRDPKS MKIFQLNLHFLILGYIIDDAIEKYNENEMKELIAGYNLLQSQVSETFPNFPSIFEMKQLLGNMKNDFSKSAITTM FDYVNKTTLILLEEGEIAEHNVLNYRKRLSNAVAVYFDALLSKTKTGCEISDGAMLWRRCFDALAIAVYMLTEVF SKTLVKNHTLPVSEFYKFYLLSILFCVVINDLHSYERDKLDDTDSVVKVWFKEGSVANMEAATSKVSKILDAIIQ QMYLFVEEGKARHPELSEWFERIAYMTVGWIYIHKTVVPRYVSSPFQIEVVEIHENMISNWLLKKDAYGQRVVQQ FLKNLNDPQKKNIMLYDE*

>HcTC-1 nucleotide codon opt

ATGGCATTCAGTAAGCCGATTTACGCGCCTAAAAAATGGGCTGAAAAAGCCAAAGGAGTTACATCAATGAACGAA GAAAAACAATTAGTGGGCATGGATGAACTGATTAACTGGGTCGCAGAGTGTGAACTGGCAGGGGAAGCCACGGTG CGGAAATATTGGGATACGGTGCGCCCTTATCATTTTATGCGTTGCTTGTATCCAGTGTTTCCGGACAACATCCTG AGCCGTGAAGAAGCTAAAATTGCATGTGCCGCGCATGCACGTATTGATCAGCAGGAGCACGAAGCGTTTTCCGAAT ${\tt CTGCCCACCATCCAGGAGATGAAACAGATCCTTAGCACGTTTTCTACGCCGTCGATTGTTGGCCCGACAACGATG$ TTTGCTGACTTCGGCAACCGCCTCGCAAAGGTGCTGCTGCTGCATGGTAATTGGAACGGGAACGTGGTGGCGGAT TTTCGTCTCCGTAATTCTAACTTAGTTAGTATGTATTTTCAAGCGATCCAGGCCGAAAAGACTCCGAATAAAAAG AACACCACGTTAGAGACCCTGTGGCGTCGGATCTTTGGTGGTGTCGCAGCCCCTTACTCTTCCCTGGCCGAAATC GCAAGCGGGGCAATTGAAAATTCAAAACAACACATTGCGGTCATCACTGATATGCATCTGCTGAGCGGCTTGTTT TCGACCACAATTAATGATCTGTATTCATATTTCTTGGAGAAGTCAAGTATCTGCGACAATGTAGTCGCAGCCCTG CTGCATGAAAAAACAGCGGAAAACGTGAGCGAAGCCGTTGATAAAGTTGCACAGATTCTGGACGCCATTTTGAAA ${\tt CTGATGTATAAAAAAGCGGAACAAATTAAACTGCAGTTCCCGGATAATCGCGAGCTGCGCGATTTTTTCGATTAC}$ GTTGGTCAGGTGACAGTCGGCTGGTACTATTTACACGAGTGCGCATTACCCCGTTATCAGGGTTCGCCTTGGCGT GTACATCTGGAAGAGATTGACGAAGACGAAATCCCGAAATGGTTAAGTGAGAAGGGCAAATACGGCTCTAAAGTC ATGCAGGAGTTGATGGAATTAGTGCAGGAACGCATGGCGGACGGTAAAATGGACGCGGTTCACGGGAAATTTCCG ATTAACGAAAAATACGTGGCAGAAAAAGAAGATGGCCTGTATAAAATTATTTAA

>HcTC-1 amino acid

MAFSKPIYAPKKWAEKAKGVTSMNEEKQLVGMDELINWVAECELAGEATVRKYWDTVRPYHFMRCLYPVFPDNIL CKEFFKVLLHASISIYIADDQLEKQSREEAKIACAAHARIDQQSTKRFPNLPTIQEMKQILSTFSTPSIVGPTTM FADFGNRLAKVLLLHGNWNGNVVADFRLRNSNLVSMYFQAIQAEKTPNKKNTTLETLWRRIFGGVAAPYSSLAEI ASGAIENSKQHIAVITDMHLLSGLFSTTINDLYSYFLEKSSICDNVVAALLHEKTAENVSEAVDKVAQILDAILK LMYKKAEQIKLQFPDNRELRDFFDYVGQVTVGWYYLHECALPRYQGSPWRVHLEEIDEDEIPKWLSEKGKYGSKV MQELMELVQERMADGKMDAVHGKFPINEKYVAEKEDGLYKII*

>HcTC-2 nucleotide codon opt

ATGGCATGCTCCAAAGAGATGTACATTCCTAAAGAGTGGACGAAATACCACCACGACATCGTGAAAGAGGTGAAA CGTGCAGACCTGGAAGCCGATGATGAGGTCGCGAAATGGGTGGTGGGTTTAGGCCTGAGCGATAAACCGGCAACC GAGAAATATATCGATAGTACTCGTCCTTATCATTTTATGCGCTGCATCGCTGTCCTGGTGCCATCTAATCCACTG TGTCGTAACATTTTCAAAAACCTGGCAGATCTACGTCACGGGTCTGTTCGTATCCGACGACTATCTGGAACAGACC TCCCTGGCGGAGGTAGTCCAAGTGAGCGATTCTTTCGATATGCTTAATGAACAGATCAGTGAGCGTTTTCCCGTG ATTCCAACCCACGCGCAAATTATGCGGTCGCTTAAAATCAACGAAAAATTGATCCCGCATGTGCTGGTCCAGATC GATTGGTTAAATACCATTGCTAACGACCTTCTGCAACACGGCGATTTTTCAGAAGATGATGTATGGGATTTTCGG TGTCGTATGTCGGCGTGGATCCGTGCGTATTTTGATGGGCTGAAAAGCCAGGTCCGGTCCGAAAGTAAAAGTTACG ACCGATGACTTTATGTGGCTGCGCATCATTGATGGAGGCGTCGGCCCGTTCCTGCTGATTAATGAAATCCTGGTG GGCGAGCTGGGTAAGTGCAAAGGTCATGTTAAACTTATTACGCAGCTGTACATCCTCTCTAGCTGCGTTTGCGTA CTGATCAACGATTGCTATTCGTATCATCGTGAAACCGTAGTGACCATCTACAACACAATTAAAGTCATTTAGAA AATAAAGAAGTGTCGGAAGTGCCAGATGCGGTTAGTAAACTGTTGCAGACGATTAACGCGATCATTAAATACATG TATCAGACCATTGAAAAAACGAAACATGAATATCCGGATAACCTGATGCTGAACAAACTGCTGGATGCTATCGGT GGTGCGACGGCGGGTTGGTTCTTTGTCCACGACAAAGTCTTGCCGCGTTATCAGGCGACCTCTTGGCGCTTCTCA CTGGTGGAAGTCGAAGAAATGGAGCTGAAAGAGTGGCGCAAAAGCGCTGATGAAAAGCCCTCAGATCTTGTACAA CGTATTGTGCCAGAGTGA

>HcTC-2 amino acid

MACSKEMYIPKEWTKYHHDIVKEVKRADLEADDEVAKWVVGLGLSDKPATEKYIDSTRPYHFMRCIAVLVPSNPL CRNIFKTWQIYVTGLFVSDDYLEQTSLAEVVQVSDSFDMLNEQISERFPVIPTHAQIMRSLKINEKLIPHVLVQI DWLNTIANDLLQHGDFSEDDVWDFRCRMSAWIRAYFDGLKSQVGPKVKVTTDDFMWLRIIDGGVGPFLLINEILV GELGKCKGHVKLITQLYILSSCVCVLINDCYSYHRETVVTIYNTIKVILENKEVSEVPDAVSKLLQTINAIIKYM YQTIEKTKHEYPDNLMLNKLLDAIGGATAGWFFVHDKVLPRYQATSWRFSLVEVEEMELKEWRKSADEKPSDLVQ PLLYRFNAKGKEIIDALAYVPKRSRRIVPE*

>HcTC-3 nucleotide codon opt

ATGAGCTGTAGCAAGGAGGTGCGCGCCCCCCGCAAATGGGTACAACGCCAGCGGGAAATGCAAAAGGTGAAAGTA GATGACAACTTGATTTCCATGGATGAGCTGATTGAGCTGGTCGTTGAGTGCGGTCTGTGTGACGAGGCCTCCGTG CACAAAATGTATGAACGTACCAACACCTATCAATTCATGTGGACGCTGATCCCTACAGTACCTAGCGATCAGTGG CAATTCGAGATTTTTAAAACCAGCTTGCACTTTCTTTGCGCACTGTTCCTGGTTGACGATGCGGTCGAGTCATAT TCTGAAAAACAGATGAAAGAGATGAGCGACGCGTATGATATGTTGGAGAAACAGGTTTGTGAAAACTTCCCGTGC TTCCCTAGTATTAACGAGATGAAACAGAGCCTGAAACACCTGAAAAATCCCTTTGATATCGCTTCAATTACGTTC TGCATGCATTATGTGAACAAAATTGCGAGCGTGTTAGTCAATGAAGGGAGCACACCACAGAACGTTGTCTATAAC TTCCGCCGCCGCACCAGCAATGCCATTTCAATTTCCTTTCAGGCGGTTTTGATTAAAGCTAAATTAGGGAGTAAC GTGACCGGTGACGAAATGCTTTGGCGCCGGGTGTATGATGGCTTAGTGATTTTGTTCTACCAGTTCGGAGAACTG GTCCTGGGCCTGACTAAAAATACTGAAAAATACATGACGGTCATCACGGAATTACGCCTGTTGGGGTGCTTGTAT TGTATTGTAATTAACGATCTCTATAGCTACCACCGCGATAAGCTGGTCTCATCCGATAACATCATTAAGACCTGG CTGTTGGGCAAAGCAGTTAGCAATTTGAGCGAAGCCTCTTCGCGTTGCTGCGAAATCCTCGACGCTGTCATGCAG TATATGCACGAACGGGTGGAGCGCATTCGTCAAAGCCACCCTGGTTGTCCGGAATTGGAGGCCCTCCTGGAGACC ACTGTTTACACTACAGTAGGGTGGATTTTTGCTCACACTGCGGTGGTGCCACGTTACAGTGAAAGCCCATTAAAA GTACACCTTGTTGAAGTTGAGGAATCTGAGCTGCATACCTGGTTCTGTGAAAAAAACCATTATGGTCGCTCCGTT ATCGAAAAATTCCTGAAAGCTGTGAATGATGAAAAAACATAAAGGGATCCTGGACGCCCTGAGCGGGTTTGTGGAT GGCCGTGGGCAACTGTTAAAAACTCAGCTCTAA

>HcTC-3 amino acid

MSCSKEVRAPRKWVQRQREMQKVKVDDNLISMDELIELVVECGLCDEASVHKMYERTNTYQFMWTLIPTVPSDQW QFEIFKTSLHFLCALFLVDDAVESYSEKQMKEMSDAYDMLEKQVCENFPCFPSINEMKQSLKHLKNPFDIASITF CMHYVNKIASVLVNEGSTPQNVVYNFRRRTSNAISISFQAVLIKAKLGSNVTGDEMLWRRVYDGLVILFYQFGEL VLGLTKNTEKYMTVITELRLLGCLYCIVINDLYSYHRDKLVSSDNIIKTWLLGKAVSNLSEASSRCCEILDAVMQ YMHERVERIRQSHPGCPELEALLETTVYTTVGWIFAHTAVVPRYSESPLKVHLVEVEESELHTWFCEKNHYGRSV IEKFLKAVNDEKHKGILDALSGFVDGRGQLLKTQL*

>PbTC-1 nucleotide codon opt

ATGAGCTGCTCAAAAGAGATCCATGCGCCGCGCGCCGCTGGGTGGATCGTCATAAACAGATTCCCGGTATTGCCGCAG AACGCGGTGGAAAAACTGATCTCTATGAATGAACTGATCGAGCTGGTCATTGAGTGTGGCCTGTGCGATAAAACG TCGATTAATAAAATGTATGACAAGATTAACACTTACCAGTTTATGTGGTGCATCGTGGACACCGTCCCTGCGAGC CAGTACGCGGAAGAAATTTTCAAAAGCTCATTACATTTCTTGTGCGCCTTATTCTTAGTAGACGATGCCGTAGAA AGCTACAGTGCTAATGAGATGCAGGACCTCAGCCGTTCTTATGATACCCTGGAAAAAGAGGGTATGTAAAACCTTC CCGAACTTTCCGAGCATTAACGAAATGAAGGAGTCACTGATGCATCTGCGCAATCCGTTTGATCGTTCCTCCATT ACTTTTTGCATGCAGTATGTTAATAAGATTACAGCAATCCTGCTGGAAGAGGGAAACACGCCGCATCATGTAGTT TATAATTTGCGTCGCCGCACTTCGAACGCGATCTCTATTGCCTTTCAGGCAGTCCTGATTAAAAGCAAATGCGGC AGCATCATTACCAGCCACGAAATGCTGTGGCGTCGTGTTTTCGATGGACTGGTTATTTTATTCTATCAGTTTGGA GAACTGATCTCTGGTGCAACGGAGACGGCGCAGCAGCATATCGCAGTCGTTACGGAACTGCGCATGTTAGGTTGC CTGTATTGTATTGTTATCAATGATCTGTATTCGTATCAGCGTGACAAGCTGGCCTCCAGCGACAATATGATTAAA ACCTGGCTGCTGGAAAAAACAGTAAGCAGCCTGTCCGAGGCCACTGCGCGTTGTAGCCAGATCCTGGACGCCATC ATGAAATATATGTATCAGCGCGTCGAGCAATGTATCCAATCTAATCCGGGCTGCCCGCAATTGGAAAGCCTGTTG GAAACCACAATCTATACCACCGTTGGTTGGATTCGCTCTCATACGACGGTCGTTCCGCGTTACTCGGAAAGTCAA TTGAAAGTTGCACTGGTCGAGGTTGAAGAAGAAAGAACTGCCGAAGTGGCTCGCTGAAAAAGACGAATACGGCTGG AACGTTGTGGAAAAATTTGTCGAAACGCTGAATGACGAAAAACATAAGGGCCTGCTCGATGCACTCCAGGGCATT GCTGATGGGCGTGACCAACTGCTGAAGACCCAGCTCGATATTAGTTGA

>PbTC-1 amino acid

MSCSKEIHAPRRWVDRHKQIPVLPQNAVEKLISMNELIELVIECGLCDKTSINKMYDKINTYQFMWCIVDTVPAS QYAEEIFKSSLHFLCALFLVDDAVESYSANEMQDLSRSYDTLEKEVCKTFPNFPSINEMKESLMHLRNPFDRSSI TFCMQYVNKITAILLEEGNTPHHVVYNLRRRTSNAISIAFQAVLIKSKCGSIITSHEMLWRRVFDGLVILFYQFG ELISGATETAQQHIAVVTELRMLGCLYCIVINDLYSYQRDKLASSDNMIKTWLLEKTVSSLSEATARCSQILDAI MKYMYQRVEQCIQSNPGCPQLESLLETTIYTTVGWIRSHTTVVPRYSESQLKVALVEVEEKELPKWLAEKDEYGW NVVEKFVETLNDEKHKGLLDALQGIADGRDQLLKTQLDIS*

>RmTC-1 nucleotide codon opt

ATGCTTCGTACGGAAGTGAAGATTCCGGAAGTATGGTGTATCCCCTGTGATCTGAAATGCAGCACGCCACCGCAG CTGAAAAAGGATATTATCGATTGGTGCGTCCGCACCGGCATCACCGCCGACCGTCGTACAGCGGAGAAAGCCCTT GATCGTCTGAAACCGTATATGTATATGAAAATCTTGTTCCCAAAACTGAAACCGGATAACCCGTTGATTGCTTCA TTGTACGAACTGAACGCTAGCGTAATTGTTACCGGCTTCACCATGGACGATGTTCTGGAAACGTACACGCTGAGC GCCATTGAGGAGCTGGATCACACTTTTCGCGAAACTCAAAACTGGTTGTCACCGCTGCCCCCGAAGGACTACCCG GACTTGGATGCCATCCTCGACCACATTCCAAGCACAAAACCGCCTTATAGCCGGAGTGTTGTTGCCATGTTTACC GACTACTTTAACCGTTATTGTGCCGCGATTCATACCGCGTACAAACCCTCCGAAACGCGTTTGGGCGCGCTTTCGT CGCCGCCTGGCGGCGGCGGTAACCGCGTATCTGGAAATGGCCAAACGCAAACGTCGCCGCGACGGTAATCTGCAT GAGGAAGAATTCTTATGGCAACGCAGTGCTGATAACCTGAGCTTTCCGGTGCTCATGCTGGCAGAAGTCTTCACC GGAATCCTGGCGGATGCAGATGTCCCGTCGACTACCTTGCACTATTATCACTTTTACTCAAATTTATTCGCGATC GTACTGAACGATCTCAATAGCTATCATCGTGATAAAGATAACGACGACAACTCTCTCGTTAAACTGTGGCTTAAA ${\tt CTCGGCGTTGCTAAGGATTTTGATGATGCCGCCACGAAGATTATTGACTTTCTGAACTCTATTATGGTGCGGATG$ TATACGTTCAACGGTTGGATCCTGGTACATACAACCGCGGTTGAGCGTTACAAACTGAGCCCGTTCCAGACGGTG GTTGCGCCGGTGGCGCGCGGTAAAGAAGAAGTCTGGTTAAAGGGCGAAACGGCGTTTGGCAAACGGTGCGTTGCA ATGTTCGAAGAGCTGATGGGTGAACGTGCCGAAGAAATGAACAAGCTGTACGGGCTGGACTCCTAA

>RmTC-1 amino acid

MLRTEVKĪPEVWCĪPCDLKCSTPPQLKKDIIDWCVRTGITADRRTAEKALDRLKPYMYMKILFPKLKPDNPLIAS LYELNASVIVTGFTMDDVLETYTLSAIEELDHTFRETQNWLSPLPPKDYPDLDAILDHIPSTKPPYSRSVVAMFT DYFNRYCAAIHTAYKPSETRLGAFRRRLAAAVTAYLEMAKRKRRDGNLHEEEFLWQRSADNLSFPVLMLAEVFT GILADADVPSTTLHYYHFYSNLFAIVLNDLNSYHRDKDNDDNSLVKLWLKLGVAKDFDDAATKIIDFLNSIMVRM YVATKELLESNPENEPLRRFVEAVGYTFNGWILVHTTAVERYKLSPFQTVVAPVARGKEEVWLKGETAFGKRCVA MFEELMGERAEEMNKLYGLDS*

>TmTC-1 nucleotide codon opt

GATCCGGAGCTGTTCTCATTAGACGAATTGTGTGCGTGGTTAAAAGACCTGGATTTATGCAACGACAAATCTGAC GTGGAAAAATACGTGCTGGCTGTTCGCCCATATCATACGATGCGCTATCAGTTTGTCTTGCTCAGCCGCGAAGAT GCCTTATGTAAAAAATTATTTAAAATGTGGGCCCACACCGCGATTGCGGTTTTTATTTCAGATGACGTGCTTGAG TGCCTTTCGAAAACCGAAATGGGCCAGATTTGCAATGCATTCCAGTTGCTGGTGGAGAAAACGCGTCCCCAATTC TCACAATTCTCTACCATCGCGGAGATGAAACAGTTTCTCCTCTTACAGAAGGTGGATGTGAAGCTGATGCCTCAT ATTATCTATTTTCTTGATTTCGCAAATAATGTGGCAAAGCTTATCAACGAACAGGGCAATTACAGTAAGGAAGAC GTCTCGGATTACTGGCGCCGCCTGGTTGTTATGATTTCGCTGTATTACGAAGGTGTAAAGGTGGAGGTGAGCGGA ${\tt TCGGGGGGTAGTTACAGCAAGGACATTTGGACGCCGCCTGCTGGTGGTACCATGATTTGGCTGATTGCACAG}$ GAAGTCATGAGCGGCGCCCTGGGCAAGACTAGCGAGCATGCTAGTTTACTGAATGAGCTGTACTTCTTAGGCACT TTCTACAGCATGGTCCTGAACGATATCTATAGCCATAATCGCGAAAACGGTTTTCCATGGTTCTATTTGTAACCTT ${\tt CTGCAGACAATTGTGCGTTCAAAGGATGTTCCCGGTGAATTTGAAGCGGTCCTGAAATGCATTCAGATCCTCAAC}$ ACCGTTGTTAAACTGATGTACCAGAAGATTGAAACCGCCAAACAGAAAAATCTGGAGAATCGCGTCCTGTGTAAA TTACTGGACAACATTGGTATGACCACTACCGGATGCTATTTTTTTCATCATTACAGTCATCGTTATGATGACTCG GCATGGCGCCTTTCGTTGGTGGAAGTTGACGACGATGAACTGGCGGAATGGCAGAAGTGCGACGATGAAGAACAG GTTGTAAAAATTAACCGCCACTTTCGGCAATGA

>TmTC-1 amino acid

MACGKELRIPKEWSKYHHAIVNEPIDPELFSLDELCAWLKDLDLCNDKSDVEKYVLAVRPYHTMRYQFVLLSRED ALCKKLFKMWAHTAIAVFISDDVLECLSKTEMGQICNAFQLLVEKTRPQFSQFSTIAEMKQFLLLQKVDVKLMPH IIYFLDFANNVAKLINEQGNYSKEDVSDYWRRLVVMISLYYEGVKVEVSGSGGSYSKDIWTRLLAAGTMIWLIAQ EVMSGALGKTSEHASLLNELYFLGTFYSMVLNDIYSHNRENGFHGSICNLLQTIVRSKDVPGEFEAVLKCIQILN TVVKLMYQKIETAKQKNLENRVLCKLLDNIGMTTTGCYFFHHYSHRYDDSAWRLSLVEVDDDELAEWQKCDDEEQ LKEVMPLLLNYSQKANEISDTIKRGVVKINRHFRQ*

>TmTC-2 nucleotide codon opt

ATGTCGTGCAGCAAGGAGATCCGCATCCCATCTGACTGGGCAAGTGTCCAGCGTAAAAGTATGCAGGAGGGCCCG GATGAATCTCTGCTGGATTTTGAAGAACTTGCGAATTGGCTGCGTGAATGCGGCGTAACCGATGATCAATGCAAA GTACGTAAATATGTCGACGCGACGCGTCCGGTTTTAAGCATTCGCACCATTCTGCGTGTTTTTCCGAACAATACC CTCTGTCGCATGCATTTCAAATTCCTGACGCAGTACACCATTGGGATTTACATCGACGATGACGTGCTGGAATCC CATTATCCGCTGGAAGTCCTGAAAGAGATTTGCTACGAGTACGATCAGCTGGACGGTAAGCTGTTGGGCCAATTT CCGCAGATCCCGAGCCGTAAGGAACTCAAAAATTTTCTCGCACACTTAAAAAATGAAAAAGTGATCTCAACGGTT ACCTTTCATATGGACTTCGTCAATCGCGTGACTGTTAACATCCTCCAAAATGGTGATTTTTCGGAAGAAGCGGTG CTGGAATTTCGGCGTCGCCTGAGTAATAATATTCTTCTGTATCTGCAAGGTGTCCAGTATGAAAAACGTGGTGCG TTTGGGGAAGTCCCATCAGGTACTCTGGGCAAGATTGGCGAGCATATCACCCTGATCTCTGAACTGTACATCCTT TCAGCCCTGTACTGCATTGTGATTAATGATCTGTATAGTTACCATCGCGAAATCGATGCGGTGCCGACCGCCGGC GAGAACTTTGTTCGCGTGATGTTTAACCAAAAAGAGGTAGCCAACCTGACAGTCGCCGCCGGTAAAGTTGCGTCT ATCTTAAACGAGATTACCAAATACACATATGAGCAGGTTCGTGAGTTTAAAGCCTCATACCCGAACTCGTCTGAA ${\tt CTGCATCAACTGTTTGACGATATTGGGTGTGGTACCGTGGGCTGGTACTATTTCCACGAGTGTACCAACCCTCGT$ TATAAAGAGAGCAATGTTCGGATTAGTATGAAAGACGTAGACAAAAACGAAATCGAAGACTGGCTGTCGACTAAA GATAGTTATGGCTGGAATATCGTTAAACAGTTTCTGGCCTCCTACGATGCCAAAGCTAAGCGCCTGAACGATGCG GTCGCGTGTCGCATCCCGGCCTACGCTGAGACATTCTAA

>TmTC-2 amino acid

MSCSKEIRIPSDWASVQRKSMQEGPDESLLDFEELANWLRECGVTDDQCKVRKYVDATRPVLSIRTILRVFPNNT LCRMHFKFLTQYTIGIYIDDDVLESHYPLEVLKEICYEYDQLDGKLLGQFPQIPSRKELKNFLAHLKNEKVISTV TFHMDFVNRVTVNILQNGDFSEEAVLEFRRRLSNNILLYLQGVQYEKRGAGGKPSTVVEALWNRVFGGAAVTWRL FGEVPSGTLGKIGEHITLISELYILSALYCIVINDLYSYHREIDAVPTAGENFVRVMFNQKEVANLTVAAGKVAS ILNEITKYTYEQVREFKASYPNSSELHQLFDDIGCGTVGWYYFHECTNPRYKESNVRISMKDVDKNEIEDWLSTK DSYGWNIVKQFLASYDAKAKRLNDAVACRIPAYAETF*

>XsTC-1 nucleotide codon opt

ATGTCCGAAAAAAACGTGGTGCGTATCCCGATGAAGTGGGGTCGTATTGAGCGCGCAAATTTTAACACAGAACACC ATCCCCGAGCTTGTTGATACCAACCGTCTGATTAGTTGGGTTAAGGAATGCAATCTGGCTGATGAAGCACTGGTA ACTAAATACATGAACGTAATTCGGCCGTATCATTTTTCGCGGCTGGTTTTTCCGATTCTGCCCGACAAAGACGTC TGTCGTGAAGCGTTTGCAGTGTTTATTGAATTTCTGATCGTATTATATCTGTGTGATGACGAACTCGAGGCAAAA TGCAACCTGAATGAACTGGAAATCGTCTGTAGCGCGTACGATTTCTTAGATGAGAAGCTGAAACAATGTTTCCCG CGGATTCCTTCTGTTGAGGAACTGCGTAGCTTTCTGCCTCACGTTAAAAAAGAACGCCTGCTGGCACTGGTTGTG TCCTTGATCGACAGCGTGTCGCGGGTAGTCTCCCGTTACTGAAGTATAGCGTGTTTCCGCAGGAATCTGTATTT GGTGTAAGTGAAAACAAACTGCTGTGGCGTCGTATTTTTGAAGGGGCCCCCGATCACGTTTCTGATGTATTTAGAA ATTAGCTCCCTTTCAGTGACCGGTTCCAACAAACACATCCCGATTGCAACGGAGATGTACATTTTAAGCTCGCTG TGCTGCATGGTGACTAATGACGTGTACTCTTATCATCGTGAATGCAACGAAGGGCTGAAGGTTGATAATATTATT AGTCTCTGGCTGCATAATAAGCAGAATCGCGTCTGTAGCAGAAGGCGTGAGCCGTATTAGTCGCATTTTGAACTCC GCGGTCAAATATATGTTAGCCAAAGTAAAATCCATGAAAAGTGAATACCCCAATAATTTCAATGTGCAGACTTTG ACCGAGTTTATCGCGTTGAGCAGTGTGGGTTGGTTATATATGCACGACCAAGGCGTGCCTCGGTATTCCGATAGT CCATGGCGTCTGAACCTGGTCGATATTGAAGAATCGGACATTACCTCGTGGTTGGCTGAAAAAGATCCATACGCA GACGGCGTAATTGACCAATTTAAATACTCCAACCTGGACGCCAAAAAATTTATCGATTCTCTGTGCGAGAAGACC AGCGTTAGCGAGGAACAGTGGAATGACTGA

>XsTC-1 amino acid

MSEKNVVRIPMKWGRIEREILTQNTIPELVDTNRLISWVKECNLADEALVTKYMNVIRPYHFSRLVFPILPDKDV CREAFAVFIEFLIVLYLCDDELEAKCNLNELEIVCSAYDFLDEKLKQCFPRIPSVEELRSFLPHVKKERLLALVV SLIDSVSRVVSPLLKYSVFPQESVFDFRCRFSHSLGYNLKGVLHEKKMLGGVSENKLLWRRIFEGAPITFLMYLE ISSLSVTGSNKHIPIATEMYILSSLCCMVTNDVYSYHRECNEGLKVDNIISLWLHNKQIASVAEGVSRISRILNS AVKYMLAKVKSMKSEYPNNFNVQTLTEFIALSSVGWLYMHDQGVPRYSDSPWRLNLVDIEESDITSWLAEKDPYA DGVIDQFKYSNLDAKKFIDSLCEKTSVSEEQWND*

Supplementary References

- Jeon, Y. *et al.* The Draft Genome of an Octocoral, *Dendronephthya gigantea*. *Genome Biol. and Evol.* **11**, 949–953 (2019).
- Jiang, J. B. *et al.* A hybrid de novo assembly of the sea pansy (*Renilla muelleri*) genome.
 Gigascience 8, (2019).
- 3. Kayal, E. *et al.* Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. *BMC Evol. Biol.* **18**, 68 (2018).
- 4. Hu, M., Zheng, X., Fan, C.-M. & Zheng, Y. Lineage dynamics of the endosymbiotic cell type in the soft coral *Xenia*. *Nature* **582**, 534–538 (2020).
- Zhou, Y. *et al.* The first draft genome of a cold-water coral *Trachythela* sp. (Alcyonacea: Stolonifera: Clavulariidae). *Genome Biol. Evol.* (2020) 13, evaa265 (2021)..
- Ledoux, J.-B. *et al.* The Genome Sequence of the Octocoral *Paramuricea clavata* A Key Resource To Study the Impact of Climate Change in the Mediterranean. *G3: Genes, Genom., Genet.* 10, 2941–2952 (2020).
- Simion, P. *et al.* A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals. *Curr. Biol.* 27, 958–967 (2017).
- Zubìa, E., Spinella, A., Giusto, G. B., Crispino, A. & Cimino, G. A new diterpenoid skeleton from the Mediterranean octocoral *Alcyonium palmatum*: Structure of palmatol. *Tetrahedron Lett.* 35, 7069–7072 (1994).
- 9. Manzo, E. *et al.* A new xenicane norditerpene from the Indian marine gorgonian *Acanthogorgia turgida. Nat. Prod. Res.* **23**, 1664–1670 (2009).
- Rivera-García, L., Rivera-Vicéns, R. E., Veglia, A. J. & Schizas, N. V. De novo transcriptome assembly of the digitate morphotype of *Briareum asbestinum* (Octocorallia: Alcyonacea) from the southwest shelf of Puerto Rico. *Mar. Genom.* 47, 100676 (2019).

- Coval, S. J., Cross, S., Bernardinelli, G. & Jefford, C. W. Brianthein V, a New Cytotoxic and Antiviral Diterpene Isolated from *Briareum asbestinum*. J. Nat. Prod. 51, 981–984 (1988).
- Dookran, R. *et al.* Briarane and asbestinane diterpenes from *Briareum asbestinum*. *Tetrahedron* **50**, 1983–1992 (1994).
- DeLeo, D. M., Glazier, A., Herrera, S., Barkman, A. & Cordes, E. E. Transcriptomic Responses of Deep-Sea Corals Experimentally Exposed to Crude Oil and Dispersant. *Front. Mar. Sci.* 8, (2021).
- Khalturin, K. *et al.* Medusozoan genomes inform the evolution of the jellyfish body plan.
 Nat. Ecol. Evol. **3**, 811–822 (2019).
- Iguchi, K., Fukaya, T., Yasumoto, A. & Watanabe, K. New Marine Sesquiterpenoids and Diterpenoids from the Okinawan Soft Coral *Clavularia koellikeri*. J. Nat. Prod. 67, 577– 583 (2004).
- Iwashima, M., Matsumoto, Y., Takahashi, H. & Iguchi, K. New Marine Cembrane-type Diterpenoids from the Okinawan Soft Coral *Clavularia koellikeri*. J. Nat. Prod. 63, 1647– 1652 (2000).
- Pratlong, M. *et al.* The red coral (Corallium rubrum) transcriptome: a new resource for population genetics and local adaptation studies. *Mol. Ecol. Resources* 15, 1205–1215 (2015).
- Schwartz, R. E., Scheuer, P. J., Zabel, V. & Watson, W. H. The coraxeniolides, constituents of pink coral, *Corallium* sp. *Tetrahedron* 37, 2725–2733 (1981).
- Ma, A. *et al.* Dendronpholides A–R, Cembranoid Diterpenes from the Chinese Soft Coral Dendronephthya sp. J. Nat. Prod. 71, 1152–1160 (2008).
- Elkhayat, E. S., Ibrahim, S. R. M., Fouad, M. A. & Mohamed, G. A. Dendronephthols A– C, new sesquiterpenoids from the Red Sea soft coral *Dendronephthya* sp. *Tetrahedron* 70, 3822–3825 (2014).

- 21. Ryu, T. *et al.* First transcriptome assembly of the temperate azooxanthellate octocoral *Eleutherobia rubra. Mar. Genom.* **48**, 100682 (2019).
- 22. Lindel, T. *et al.* Eleutherobin, a New Cytotoxin that Mimics Paclitaxel (Taxol) by Stabilizing Microtubules. *J. Am. Chem. Soc.* **119**, 8744–8745 (1997).
- Fuess, L. E., Mann, W. T., Jinks, L. R., Brinkhuis, V. & Mydlarz, L. D. Transcriptional analyses provide new insight into the late-stage immune response of a diseased Caribbean coral. *R. Soc. Open Sci.* 5, 172062.
- 24. Look, S. A., Fenical, W., Zheng, Q. T. & Clardy, J. Calyculones, new cubitane diterpenoids from the Caribbean gorgonian octocoral *Eunicea calyculata*. J. Org. Chem. 49, 1417–1423 (1984).
- 25. Romiguier, J. *et al.* Comparative population genomics in animals uncovers the determinants of genetic diversity. *Nature* **515**, 261–263 (2014).
- 26. Mancini, I., Guella, G., Zibrowius, H. & Pietra, F. Configuration, Conformation, and Reactivity of Highly Functionalized Eunicellane Diterpenes Isolated from the Gorgonians *Eunicella cavolinii* and *Eunicella singularis* from Marseille. *Helv. Chim. Acta* 83, 1561– 1575 (2000).
- 27. Tsitsimpikou, C., Vagias, C. & Roussis, V. A New Epoxymuurolane Metabolite from the Soft Coral *Gorgonia Ventalina*. *Nat. Prod. Lett.* **14**, 17–23 (1999).
- Hongo, Y., Yasuda, N. & NagaI, S. Identification of Genes for Synthesis of the Blue Pigment, Biliverdin IXα, in the Blue Coral Heliopora coerulea. *The Biological Bulletin* (2017) doi:10.1086/692661.
- 29. Tanaka, J., Ogawa, N., Liang, J., Higa, T. & Gravalos, D. G. Helioporins: bioactive diterpenes from the blue coral *Heliopora coerulea*. *Tetrahedron* **49**, 811–822 (1993).
- DeLeo, D. M. *et al.* Gene expression profiling reveals deep-sea coral response to the Deepwater Horizon oil spill. *Mol. Ecol.* 27, 4066–4077 (2018).

- Reddy, N. S., Reed, J. K., Longley, R. E. & Wright, A. E. Two New Cytotoxic Linderazulenes from a Deep-Sea Gorgonian of the Genus *Paramuricea*. J. Nat. Prod. 68, 248–250 (2005).
- 32. Vargas, S., Zimmer, T., Conci, N., Lehmann, M. & Wörheide, G. Resilience to climate change in an octocoral involves the transcriptional decoupling of the calcification and stress response toolkits. *bioRxiv* 2020.07.15.202069 (2020) doi:10.1101/2020.07.15.202069.
- Barsby, T. & Kubanek, J. Isolation and Structure Elucidation of Feeding Deterrent Diterpenoids from the Sea Pansy, *Renilla reniformis*. J. Nat. Prod. 68, 511–516 (2005).
- 34. Liu, Z. *et al.* Capnosane-type cembranoids from the soft coral *Sarcophyton trocheliophorum* with antibacterial effects. *Tetrahedron* **70**, 8703–8713 (2014).
- Conci, N., Wörheide, G. & Vargas, S. New Non-Bilaterian Transcriptomes Provide Novel Insights into the Evolution of Coral Skeletomes. *Genome Biol. Evol.* 11, 3068–3081 (2019).
- Ahmed, A. F. *et al.* Oxygenated Cembranoids from a Formosan Soft Coral *Sinularia* gibberosa. J. Nat. Prod. **71**, 179–185 (2008).
- Iguchi, K., Mori, K., Suzuki, M., Takahashi, H. & Yamada, Y. New Marine Furanosesquiterpenoids, Tubipofuran and 15-Acetoxytubipofuran from the Stolonifer *Tubipora musica* Linnaeus. *Chem. Lett.* 15, 1789–1792 (1986).
- Cheng, Y.-B., Jang, J.-Y., Khalil, A. T., Kuo, Y.-H. & Shen, Y.-C. Xenicane-Type Diterpenes with Cytotoxicity from *Xenia florida*. J. Nat. Prod. 69, 675–678 (2006).
- Aaron, J. A., Lin, X., Cane, D. E. & Christianson, D. W. Structure of Epi-Isozizaene Synthase from *Streptomyces coelicolor* A3(2), a Platform for New Terpenoid Cyclization Templates. *Biochemistry* 49, 1787–1797 (2010).
- 40. Köksal, M., Chou, W. K. W., Cane, D. E. & Christianson, D. W. Structure of 2-Methylisoborneol Synthase from *Streptomyces coelicolor* and Implications for the

Cyclization of a Noncanonical C-Methylated Monoterpenoid Substrate. *Biochemistry* **51**, 3011–3020 (2012).

- Vedula, L. S. *et al.* Exploring biosynthetic diversity with trichodiene synthase. *Arch. Biochem. Biophys.* 466, 260–266 (2007).
- 42. Challis, R., Richards, E., Rajan, J., Cochrane, G. & Blaxter, M. BlobToolKit Interactive Quality Assessment of Genome Assemblies. *G3 Genes Genom. Genet.* 10, 1361–1374 (2020).
- 43. Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. *Nat. Methods* **18**, 366–368 (2021).
- 44. Nasuda, M., Ohmori, M., Ohyama, K. & Fujimoto, Y. Revision of the Stereochemistry of Elisabethatriene, a Putative Biosynthetic Intermediate of Pseudopterosins. *Chem. Pharm. Bulletin* 60, 681–685 (2012).
- 45. Coleman, A. C. & Kerr, R. G. Radioactivity-Guided Isolation and Characterization of the Bicyclic Pseudopterosin Diterpene Cyclase Product from *Pseudopterogorgia elisabethae*. *Tetrahedron* 56, 9569–9574 (2000).
- 46. Lazerwith, S. E., Johnson, T. W. & Corey, E. J. Syntheses and Stereochemical Revision of Pseudopterosin G–J Aglycon and Helioporin E. *Org. Lett.* **2**, 2389–2392 (2000).
- 47. Chen, B.-W. *et al.* Klysimplexins I–T, eunicellin-based diterpenoids from the cultured soft coral Klyxum simplex. *Org. Biomol. Chem.* **9**, 834–844 (2011).
- Rinkel, J., Lauterbach, L., Rabe, P. & Dickschat, J. S. Two Diterpene Synthases for Spiroalbatene and Cembrene A from *Allokutzneria albata*. *Angew. Chem. Int. Ed.* 57, 3238–3241 (2018).
- Huber, T., Weisheit, L. & Magauer, T. Synthesis of Xenia diterpenoids and related metabolites isolated from marine organisms. *Beilstein J. Org. Chem.* 11, 2521–2539 (2015).

- 50. Angulo-Preckler, C. *et al.* Gersemiols A–C and Eunicellol A, Diterpenoids from the Arctic Soft Coral *Gersemia fruticosa*. J. Nat. Prod. **79**, 1132–1136 (2016).
- 51. Meyers, A. I. & Bienz, S. Asymmetric total synthesis of (+)-Δ–9(12)-capnellene. J. Org.
 Chem. 55, 791–798 (1990).