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Materials and Methods 
 
Epidemics and mutation analysis 
The genome surveillance data of SARS-CoV-2 was downloaded from the GISAID database 
(https://www.gisaid.org/) on April 29, 2022. We excluded the data of viral strains with the following 
features from the analysis: i) a lack of collection date information; ii) sampling in animals other 
than humans; or iii) sampling by quarantine. The data for South Africa, France, and the USA from 
January 13, 2022 to April 22, 2022 (100 days) were analyzed. The epidemic dynamics of BA.1, 
BA.2, Delta, and the Omicron lineages harboring L452R or L452Q mutations in spike (e.g., 
BA.2.11, BA.2.12.1, BA.4 and BA.5) are shown in Figure S1A. In this figure, the SARS-CoV-2 
lineages other than above were summarized as “others”. 
 Amino acid differences among the S proteins of BA.2, BA.2.11, BA.2.12.1, BA.4, and BA.5 
(Figure S1B) were extracted from the GISAID data above as follows: in the SARS-CoV-2 lineages 
above as well as BA.2, the prevalence of amino acid substitutions in spike compared to hCoV-
19/Wuhan/WIV04/2019 (GISAID ID: EPI_ISL_402124) spike were calculated. Subsequently, 
amino acid substitutions that were detected in any lineages with >50% prevalence were extracted. 
Finally, amino acid substitutions shared in all lineages above were excluded. 
 
Cell culture 
HEK293T cells (a human embryonic kidney cell line; ATCC CRL-3216) and HOS-
ACE2/TMPRSS2 cells (kindly provided by Dr. Kenzo Tokunaga),1,2 a derivative of HOS cells (a 
human osteosarcoma cell line; ATCC CRL-1543) stably expressing human ACE2 and TMPRSS2, 
were maintained in Dulbecco’s modified Eagle's medium (DMEM) (high glucose) (Wako, Cat# 
044-29765) containing 10% fetal bovine serum (FBS) (Sigma-Aldrich Cat# 172012-500ML), 100 
units penicillin and 100 ug/ml streptomycin (PS) (Sigma-Aldrich, Cat# P4333-100ML). 
 
Plasmid construction 
To construct the plasmids expressing anti-SARS-CoV-2 monoclonal antibodies (bamlanivimab, 
bebtelovimab, casirivimab, cilgavimab, etesevimab, imdevimab, sotrovimab and tixagevimab), 
the sequences of the variable regions of these antibodies were obtained from KEGG Drug 
Database (https://www.genome.jp/kegg/drug/) and were artificially synthesized by Fasmac. The 
obtained coding sequences of the variable regions of the heavy and light chains were cloned into 
the pCAGGS vector containing the sequences of the human immunoglobulin 1 and kappa 
constant region (kindly provided by Dr. Hisashi Arase). Plasmids expressing the SARS-CoV-2 
spike proteins of the parental D614G (B.1.1) and Omicron BA.2 were prepared in our previous 
studies.2,3 Plasmids expressing the spike protein of Omicron variants (BA.2.11, BA.2.12.1 and 
BA.4/5) and their derivatives were generated by site-directed overlap extension PCR using pC-
SARS2-S D614G2 as the template and the primers listed in Table S1. The resulting PCR fragment 
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was subcloned into the KpnI-NotI site of the pCAGGS vector4 using In-Fusion® HD Cloning Kit 
(Takara, Cat# Z9650N). Nucleotide sequences were determined by DNA sequencing services 
(Eurofins), and the sequence data were analyzed by Sequencher v5.1 software (Gene Codes 
Corporation). 
 
Preparation of monoclonal antibodies 
Eight monoclonal antibodies (bamlanivimab, bebtelovimab, casirivimab, cilgavimab, etesevimab, 
imdevimab, sotrovimab and tixagevimab) were prepared as previously described.3,5,6 Briefly, the 
pCAGGS vectors containing the sequences encoding the immunoglobulin heavy and light chains 
were cotransfected into HEK293T cells at 1:1 ratio using PEI Max (Polysciences, Cat# 24765-1). 
The culture medium was refreshed with DMEM (low glucose) (Wako, Cat# 041-29775) containing 
10% FBS without PS. At 96 h posttransfection, the culture medium was harvested, and the 
antibodies were purified using NAb protein A plus spin kit (Thermo Fisher Scientific, Cat# 89948) 
according to the manufacturer’s protocol. 
 
Neutralization assay 
Pseudoviruses were prepared as previously described.1,3,7-12 Briefly, lentivirus (HIV-1)-based, 
luciferase-expressing reporter viruses were pseudotyped with the SARS-CoV-2 spikes. HEK293T 
cells (1 × 106 cells) were cotransfected with 1 μg psPAX2-IN/HiBiT,13 1 μg pWPI-Luc2,13 and 500 
ng plasmids expressing parental S or its derivatives using PEI Max (Polysciences, Cat# 24765-
1) according to the manufacturer's protocol. Two days post transfection, the culture supernatants 
were harvested and centrifuged. The pseudoviruses were stored at –80°C until use. 
Neutralization assays were performed as previously described.3,6,7,9,11,12 Briefly, the SARS-CoV-
2 spike pseudoviruses (counting ~20,000 relative light units) were incubated with serially diluted 
monoclonal antibodies at 37°C for 1 h. Pseudoviruses without monoclonal antibody were included 
as controls. Then, an 40 μl mixture of pseudovirus and serum was added to HOS-
ACE2/TMPRSS2 cells (10,000 cells/50 μl) in a 96-well white plate. Two days post infection, the 
infected cells were lysed with a Bright-Glo luciferase assay system (Promega, Cat# E2620), and 
the luminescent signal was measured using a GloMax explorer multimode microplate reader 3500 
(Promega). The assay of each monoclonal antibody was performed in triplicate, and the 50% 
neutralization titer was calculated using Prism 9 (GraphPad Software). 
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Figure 1. Neutralization sensitivity of new SARS-CoV-2 Omicron subvariants to eight 
therapeutic monoclonal antibodies. (A) Epidemics of SARS-CoV-2 lineages in in France, the 
USA and South Africa. The data from January 13, 2022 to April 22, 2022 (100 days) for France, 
the USA and South Africa were analyzed. In this figure, the SARS-CoV-2 lineages other than 
Delta and Omicron are shown as “others”. 
(B) Amino acid substitutions in S. Heatmap shows the frequency of amino acid substitutions in 
BA.2.11, BA.2.12.1, BA.4, and BA.5 compared to BA.2. Substitutions detected in >50% of 
sequences of any lineage are shown. 
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(C) Virus neutralization assays. Assays were performed using pseudoviruses harboring the 
SARS-CoV-2 spike proteins of Omicron subvariants [BA.2.11 (BA.2 S:L452R), BA.2.12.1 (BA.2 
S:L452Q/S704L) and BA.4/5 (BA.2 S: HV69-70del/L452R/F486V/R493Q)], their derivatives (the 
BA.2 S bearing L452Q, S704L, HV69-70del, F486V or R493Q, respectively) or the D614G-
harboring B.1.1 lineage virus (parental virus). Eight therapeutic monoclonal antibodies 
(bamlanivimab, bebtelovimab, casirivimab, cilgavimab, etesevimab, imdevimab, sotrovimab and 
tixagevimab) and three combinations, casirivimab+imdevimab (Ronapreve), 
etesevimab+bamlanivimab, and cilgavimab+tixagevimab (Evusheld), were tested. The assay of 
each antibody was performed in sextuplicate at each concentration to determine the 50% 
neutralization concentration (ng/mL). The presented data are expressed as the average with 
standard deviation, and representative neutralization curves are shown. The red numbers in the 
panels indicate the 50% neutralization concentration (ng/mL). ND, not determined. Summarized 
data are shown in Table 1. 
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Primer name Sequence (5'-to-3')
Omicron universal Fw cactatagggcgaattgggtaccatgtttgtgttcctggt
BA2 Rv agctccaccgcggtggcggccgctcaggtgtagtgcagtttca
pC-S_BA2_L452Q-F caactacaactaccagtacagactgttca
pC-S_BA2_L452Q-R tgaacagtctgtactggtagttgtagttg
pC-S_BA2_L452Q_setSL-F gggagcagagaacctggtggcttacagca
pC-S_BA2_L452Q_setSL-R tgctgtaagccaccaggttctctgctccc
OptS L452R F caactacaactaccgttacagactgttcagg
OptS L452R R cctgaacagtctgtaacggtagttgtagttg
pC-S_BA2_6970del_F tggttccatgccatctctggcaccaatggc
pC-S_BA2_6970del_R gccattggtgccagagatggcatggaacca
pC-S_BA2_F486V-F tggagtggccggcgtgaactgttactttc
pC-S_BA2_F486V-R gaaagtaacagttcacgccggccactcca
pC-S_BA2_R493Q-F ttactttccactccaatcctatggcttca
pC-S_BA2_R493Q-R tgaagccataggattggagtggaaagtaa
pC-S_BA2_F486V_R493Q-F tggccggcgtgaactgttactttccactccaatcctatgg
pC-S_BA2_F486V_R493Q-R ccataggattggagtggaaagtaacagttcacgccggcca

Table S1. Primers used for the construction of SARS-CoV-2 S expression plasmids.
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