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1. Light scattering of a biomolecule inside a nanochannel 
 
1.1 Scattering intensity 

 
Elastic scattering of light is a fundamental process in light-matter interactions. For three-
dimensional nano-objects, such as biomolecules or nanoparticles, whose size is much smaller 
than the wavelength of the incident light (l), this process is known as Rayleigh scattering. 
From here forward we explicitly refer to biomolecules only. However, we highlight that the 
solution we have developed is generic and also applies to other nano-objects equally well. The 
total scattering intensity (power), that is collected by the optical system, 
 

𝑃! = 𝑐𝐼"𝜎!, 
Equation 1 

 
is determined by the incident intensity (I0), the collection efficiency (𝑐), and the scattering 
cross-section of a biomolecule (𝜎!), defined as1 
 

 𝜎! = #!

$%
|𝛼!|&, 

Equation 2 
 
where 𝑘 = 2𝜋𝑛 𝜆⁄  is the wavenumber of light in the medium with refractive index n, and 𝛼! 
is the polarizability of the biomolecule,  
 

𝛼! = 𝑉!
𝑛!& − 𝑛&

𝑛& + 𝜈(𝑛!& − 𝑛&)
 

Equation 3 
 
where 𝑛! is the refractive index of the biomolecule, V is its volume, and 𝜈 is the depolarization 
factor, depending on its shape (for a sphere 𝜐 = 1 3⁄ , for an ellipsoid 𝜐 ranges between 0 and  
1 2⁄  depending on the ratio of its semiaxis).  
 
A nanochannel, which is an object of finite (subwavelength) size in only two dimensions, can 
scatter light as well. It can be approximated as a cylinder with cross sectional area (A) and 
length that is much larger than √𝐴. The refractive index of the inside, ni, is lower than the 
refractive index of the outside, no. The scattering intensity is constant along the length of such 
a nanochannel, and the total scattering intensity can be written as   
 

𝑃' = 𝑐𝐼"𝐿𝜎' , 
Equation 4 

 
where L is the length of the nanochannel from which the scattered light is collected and 𝜎' is 
the scattering cross section of the nanochannel. For a nanochannel having circular cross-
section, 𝜎' can then be determined by the analytical expression presented by Mie1. For a 
nanochannel with √𝐴 ≪ 𝜆 (Rayleigh limit), and light incidence angle perpendicular to its long 
axis, the solution can be simplified to1 
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𝜎' 	=
𝑘()

4
|𝛼'|&		 

 
Equation 5 

 
where ko is the wavenumber in the medium outside the nanochannel, 𝑘( = 2𝜋𝑛( 𝜆⁄ , and  
 

𝛼' = 𝐴
𝑛*& − 𝑛(&

𝑛(& + 𝜈(𝑛*& − 𝑛(&)
 

 
Equation 6 

 
is the one-dimensional polarizability of the nanochannel, where 𝜈 is the depolarization factor 
that depends on the shape of the nanochannel (for a cylinder with aspect ratio equal 1, 𝜐 = 0 
for TM polarization, 𝜐 = 1 2⁄  for TE polarization). 

 
 
Fig. S1. Schematic of the assumed scenario: a cylindrical nanochannel with a single 
biomolecule inside. 
 
When a biomolecule is present inside such a nanochannel (Fig. S1), the combined scattering 
by the nanochannel and the biomolecule becomes a complex canonical problem of scattering 
by a sphere embedded inside a cylinder. The analytical solution to this problem was recently 
presented, based on the expansion of cylindrical waves into spherical ones and vice versa2. 
However, it leads to a series of rather complex expressions, from which it is difficult to draw 
a more generalized conclusion. Therefore, we instead employ the Clausius-Mossotti relation 
that describes the relation between the microscopic quantity — polarizability — and the 
macroscopic quantity — dielectric function. It states that the contribution of biomolecules 
enclosed in a cavity can be described in terms of a bulk optical property of the material inside 
the cavity — the effective permittivity3 
 

𝜀∗ ≈ 𝑛*& A1 +
𝛼!𝑛,

1 − 𝜐𝛼!𝑛,
B, 

Equation 7 
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where nV is the volume density of the biomolecules, 𝑛, = 𝑁 𝑉⁄ , where N is the number of 
biomolecules in the volume V.  
 
Using the expression for the polarizability of a cylinder (Equation 6), where the refractive index 
of the inside is assumed to be 𝑛* ≈ √𝜀∗ (Equation 7), the total polarizability of a nanochannel 
comprising a single biomolecule can then be written as 
 

𝛼-./ 	= A E
𝑛*&

𝑛(&
− 1 +

𝑛*&

𝑛(&
𝑛,𝛼!F		 

Equation 8 
 
for a cylinder with circular cross-sectional and TM polarization and 
 

𝛼-.0 		= A

⎣
⎢
⎢
⎢
⎡2 𝑛*

& − 𝑛(&
𝑛*& + 𝑛(&

+ 𝑛,𝛼!

1 + 𝑛,𝛼!2
𝑛*& − 𝑛(&
𝑛*& + 𝑛(&⎦

⎥
⎥
⎥
⎤
 

Equation 9 
 
for a cylinder with circular cross-sectional and TE polarization. 
 
For biomolecules with low polarizability that are sparsely distributed inside the nanochannel, 
𝑛,𝛼! ≪ 1, and a small difference between the refractive indexes of the outside and inside of 
the nanochannel, (𝑛*& − 𝑛(&) < (𝑛*& + 𝑛(&), the second term in the denominator in Equation 9 
can be neglected and polarizability of the nanochannel containing the biomolecule (Equation 
8 and Equation 9) can be written as 
 

𝛼- = 𝛼' +𝑚𝛼! 𝐿⁄ , 
Equation 10 

 
where 𝑚 = 1 for TE polarization and 𝑚 = 𝑛*& 𝑛(&⁄  for TM polarization. The scattering cross 
section of the nanochannel containing the biomolecule can then be written as  
 

𝜎- 	=
𝑘()

4
|𝛼-|&.		 

Equation 11 
 
In order to confirm the conclusions of the analytical theory presented above, we have carried 
out finite-difference time-domain (FDTD) simulations. They were performed using the 
Lumerical FDTD Solutions software package. The simulated structure — a cylindrical 
nanochannel with radius rc — was placed into a 3D simulation cell of the size L ´ 0.5 ´ 0.5 
µm3. The refractive indexes of the inside and outside of the nanochannel correspond to water 
(ni = 1.33 RIU) and SiO2 (no = 1.46 RIU), respectively. Biomolecules were simulated as 
dielectric spheres with refractive index nm = 1.43 and radius rm. Periodic boundary conditions 
were set in the x direction and perfect matching layer absorbing boundary conditions were set 
in the y and z directions. The mesh step was 1 nm. Light was introduced as a linearly polarized 
plane wave via a total-field/scattered-field source with normal incidence. If not stated 
otherwise, the wavelength of the incident light was l = 500 nm. The scattered light was 
collected from 4 near-field monitors surrounding the nanochannel in all directions.  
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Fig. S2.  Simulated relative difference between the scattering cross section of a nanochannel 
containing a biomolecule, and an empty nanochannel — (𝝈𝒕 − 𝝈𝒄) 𝝈𝒄⁄ . A calculation using 
an analytical model (Equation 10 and Equation 11) is compared with FDTD simulations. The 
insets in the figures show schematics of the different calculated/simulated scenarios in a cross-
sectional view. (A) Dependency of (𝜎- − 𝜎') 𝜎'⁄  on the linear density of biomolecules (nL= 
N/L) for a nanochannel with radius rc = 50 nm for TM and TE polarization and for a range of 
biomolecules defined by their radius (rp). The biomolecules were assumed to be in the centre 
of the nanochannel. (B) Dependency of  (𝜎- − 𝜎') 𝜎'⁄  on the radius of a nanochannel (rc) for 
TM and TE polarization and a biomolecule with rp = 3.6 nm and nL = 10 µm-1 inside for 
different geometric scenarios with respect to the position of the molecule inside the channel 
(see inset): (i) in the centre, (ii) at the top, (iii) at the side and (iv) averaged over all possible 
positions. (C, D) Dependency of (𝜎- − 𝜎') 𝜎'⁄  on the (C) horizontal and (D) vertical position 
of a biomolecule with rp = 3.6 nm and nL = 0.1 µm-1 inside a nanochannel with rc = 100 nm 
for TM and TE polarization.  
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Fig. S2 shows the results of the FDTD simulations compared with the results of the analytical 
model (Equation 10 and Equation 11), presented as dependency of the relative difference of 
the scattering cross section of a nanochannel containing a biomolecule and an empty 
nanochannel, (𝝈𝒕−𝝈𝒄) 𝝈𝒄⁄ , on a variety of properties of the nanochannel and the biomolecule: 
polarizability (radius) and linear density of biomolecules (𝒏𝑳 = 𝑵 𝑳⁄ ) (Fig. S2A), cross-
sectional dimension of the nanochannel (Fig. S2B), and axial position of the biomolecule inside 
the nanochannel (Fig. S2B, C, D). The overall trend captured by both approaches is in excellent 
quantitative agreement (Fig. S2A). However, the FDTD results show an additional dependency 
on the axial position of the biomolecule inside the nanochannel that is neglected by the 
analytical model and that originates from the phase difference between the light scattered by 
the nanochannel and the biomolecule (Fig. S2B, C, D). As a result, when a biomolecule freely 
diffuses inside the nanochannel, the scattering cross section randomly fluctuates over time, 
with the frequency depending on the diffusivity of the molecule (D). However, the mean value 
over all possible locations is very close to the analytical model (Fig. S2B). This means that if 
the mean travel distance, √2𝐷Δ𝑡, within one integration time step (Δ𝑡) is much larger than the 
dimensions of the nanochannel cross section, the phase differences are effectively averaged, 
and the obtained scattering cross section value corresponds very well to the analytical model. 

 

 
 
Fig. S3. Simulated dark-field image of (A) a biomolecule, (B) a nanochannel, (C) the 
biomolecule inside the nanochannel. (D) The differential dark-field image obtained by 
subtracting an image of the empty nanochannel from the image of the nanochannel with the 
biomolecule inside. (E) Intensity profile of the differential dark-field image normalized by the 
intensity profile of the dark-field image of an empty nanochannel. Its integrated value 
corresponds to the integrated optical contrast (iOC) that is directly connected to polarizability 
(Equation 17) and can be used to estimate the molecular weight of a biomolecule (Equation 
30). The nanochannel was simulated as a cylinder with rc = 50 nm, ni = 1.33 RIU, and no = 
1.46 RIU. The biomolecule was simulated as a spherical particle with rp = 3.6 nm and nm = 
1.46 RIU. The polarization was set to TM and NA = 1.  
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The total scattering intensity, 𝑃- = 𝑐𝐼"𝐿𝜎-, that is collected from a region of a nanochannel of 
the length 𝐿# = 3𝜋 (2𝑘(𝑚)⁄  containing a biomolecule can be written as  
 

𝑃- = 𝑃' + 𝑃! + 2sign(𝑛* − 𝑛()[𝑃'𝑃!, 
Equation 12 

 
using Equation 10 and Equation 11, where 𝑃' and 𝑃! correspond to the total scattering intensity 
of the nanochannel (Equation 1) and the biomolecule alone (Equation 4), respectively. Here, it 
has to be noted that the scattering intensity collected from a typical biomolecule (Fig. S3A) is 
several orders of magnitude lower than the scattering intensity collected from a typical 
nanochannel (Fig. S3B), 𝑃' ≫ 𝑃!, because the volume contributing to the detected intensity is 
much larger than the molecular volume, 𝐿#𝐴 ≫ 𝑉!. Therefore, the scattering signal stemming 
from the biomolecule that resides inside the nanochannel is not directly distinguishable (Fig. 
S3C), 𝑃- ≈ 𝑃'. However, the scattering intensity integrated from the differential image (Fig. 
S3D) that is obtained by subtracting the scattering image produced by the empty nanochannel 
from a scattering image of the nanochannel with the biomolecule inside, 𝑃- − 𝑃' ≈ −2[𝑃'𝑃!, 
can be several orders of magnitude higher than the scattering intensity collected from the 
biomolecule alone, had it been outside the nanochannel, 2[𝑃'𝑃! ≫ 𝑃!.  
 

1.2 Integrated optical contrast 
 
The intensity profile of a nanochannel image (defined as the collected scattering intensity 
integrated along the y-axis) is constant along the x-axis and can be written as 𝐼'(𝑥) = 𝑐𝐼(𝜎'. 
The intensity profile of the differential image contains an intensity modulation stemming from 
the biomolecule that resides inside the nanochannel (Fig. S3E). The integrated optical contrast 
(iOC) that we here define as  
 

𝑖𝑂𝐶 = a
𝐼-(𝑥) − 𝐼'(𝑥)

𝐼'(𝑥)
𝑑𝑥,

4

56"
 

Equation 13 
 
represents an integrated value of the intensity profile of the differential image normalized by 
the intensity profile of the empty nanochannel. As ∫ 𝐼-(𝑥)

4
56" = 𝑐𝐿𝐼(𝜎-, Equation 13 can be 

written as 
 

𝑖𝑂𝐶 = 𝐿 A
𝜎-
𝜎'
− 1B 

Equation 14 
 
or, by using Equation 5, Equation 10, and Equation 11, as 
 

𝑖𝑂𝐶 = 2𝑚
𝛼!
𝛼'

+ 𝐿 A𝑚
𝛼!
𝛼'
B
&
. 

Equation 15 
 
For small biomolecules (𝛼! ≪ 𝐿𝛼'), this can be simplified to 
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𝑖𝑂𝐶 = 2𝑚
𝛼!
𝛼'
. 

Equation 16 
 
that can be expressed in terms of the refractive indexes and the cross-sectional area of a 
nanochannel using Equation 6 as 
 

𝑖𝑂𝐶 =
𝑛d
𝐴 ∙ 𝛼!, 

Equation 17 
 
where 

𝑛d.0 = 2𝑛*& (𝑛*& − 𝑛(&)⁄  
Equation 18 

for TE polarization and  
𝑛d./ = (𝑛*& + 𝑛(&) (𝑛*& − 𝑛(&)⁄  

Equation 19 
for TM polarization.  
 
Here, it has to be noted that the intensity profile of the nanochannel can be modulated by the 
profile of the incident beam (I0 is not constant along the nanochannel). Nevertheless, the 
normalization by the intensity profile of the empty nanochannel from the same spot, as 
suggested in Equation 13, corrects for that. Moreover, as the biomolecule moves, the created 
image is altered by the motion blur resulting from time-averaging within one frame. However, 
as iOC represents the integrated value over the length of the nanochannel (Fig. S3E, Equation 
13), it is not dependent on the shape of the intensity modulation stemming from the 
biomolecule and thus it is not altered by the motion blur. Moreover, iOC does not vary with 
the distance of the nanochannel from the focal plane, the wavelength, or NA of the imaging 
system. All of the aforementioned facts thus guarantee a high robustness and high precision of 
the measurement.  
 
In order to confirm the conclusions of the analytical theory presented above, we have again 
carried out FDTD simulations. Compared to the model presented in the previous chapter, the 
size of the simulation cell was fixed to 3 ´ 3 ´ 0.5 µm3 and near-field data collected in the 
backward direction with respect to the incident field were used to simulate the dark-field image 
by the following procedure. First, near field monitor data were decomposed into series of plane 
waves that propagate at different angles using a built-in function of the software package. Any 
plane waves with angles outside of the specific NA were then discarded. Finally, the remaining 
light was re-focused onto the image plane using the chirped Z-transform. Fig. S3 shows 
corresponding examples of simulated dark-field images of a biomolecule (Extended Data Fig. 
3A), a nanochannel (Fig. S3B), and a biomolecule inside a nanochannel (Fig. S3C). Fig. S3D 
shows a differential image obtained by subtraction of the image of the nanochannel containing 
a biomolecule from the image of the empty nanochannel. iOC was then calculated by 
integrating the intensity profile of the normalized differential image (Fig. S3E) using Equation 
13.  
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Fig. S4. Simulated iOC. Dependency of iOC on the polarizability (bottom x-axis) and radius 
(upper x-axis) of a single biomolecule for nanochannels with different radius (rc) and different 
polarization. The corresponding results of FDTD simulations are compared to the analytical 
model (Equation 17). 
 
The simulations were performed for a series of nanochannels with rc = 10 – 50 nm and 
biomolecules with rp = 2 – 20 nm, numerical apertures NA = 0.4 – 1, and wavelength l = 500 
– 1000 nm. Fig. S4 shows a comparison of iOC calculated from FDTD simulated dark-field 
images and iOC calculated using the analytical model (Equation 17). Only the results for NA 
= 1 and l = 500 nm are shown, however, the results for other combinations of NA and l do 
not differ by more than 5 %. The analytical model is in excellent quantitative agreement with 
the FDTD simulations. 
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2. Light scattering of a biomolecule inside a coated nanochannel 
 
Some NSM applications require surface modification of the channel walls, e.g., coating with a 
supported lipid bilayer (SLB) to prevent positively charged molecules from binding to the 
channel walls4. These modifications change the optical properties of the nanochannel and thus 
the optical contrast of the biomolecules inside it. Therefore, the translation of iOC to MW has 
to take the effect of such a coating into account when it is used. 
 
To theoretically analyze the impact of the coating, a coated nanochannel can be described as a 
core-shell cylinder with one-dimensional polarizability 1 
 

𝛼'7 = 𝐴
(𝑛8& − 𝑛(&)[𝑛8& + 𝜈(𝑛*& − 𝑛8&)(1 − 𝑓)] + 𝑓𝑛8&(𝑛*& − 𝑛8&)

[𝑛(& + 𝜈(𝑛8& − 𝑛(&)][𝑛8& + 𝜈(𝑛*& − 𝑛8&)(1 − 𝑓)] + 𝜈𝑓𝑛8&(𝑛*& − 𝑛8&)
, 

Equation 20 
 
where ni, ns, no are the refractive indexes of the inner core, the shell, and the outside medium, 
respectively, A is the total cross-section area, Ai is the cross section area of the inner core, 𝑓 =
𝐴* 𝐴⁄  is the fraction of the total cross-section area occupied by the inner core, and 𝜈 is the 
depolarization factor (𝜐 = 0 for TM polarization, 𝜐 = 1 2⁄  for TE polarization).  
 
The one-dimensional polarizability for TM polarization can therefore be written as 
 

𝛼'7
./ = 𝐴* i

𝑛*&

𝑛(&
− 1j + (𝐴 − 𝐴*) i

𝑛8&

𝑛(&
− 1j 

Equation 21 
and for TE polarization as 
 

𝛼'7
.0 =

2𝐴*
𝑛*& − 𝑛8&
𝑛*& + 𝑛8&

+ 2𝐴𝑛8
& − 𝑛(&
𝑛8& + 𝑛(&

1 + 2𝑓 𝑛*
& − 𝑛8&
𝑛*& + 𝑛8&

𝑛8& − 𝑛(&
𝑛8& + 𝑛(&

, 

Equation 22 
where the second term in the denominator can be neglected for low f and small differences 
between the refractive indexes, 𝑓(𝑛*& − 𝑛8&)(𝑛8& − 𝑛(&) ≪ 1.  
 
When a biomolecule is present inside such a nanochannel, its contribution can be described in 
terms of increased effective permittivity of the inner core (Equation 7) and the total 
polarizability of a nanochannel containing a biomolecule that can then be written as 
 

𝛼-7
./ 	= 𝐴* E

𝑛*&

𝑛(&
− 1 +

𝑛*&

𝑛(&
𝑛,𝛼!F 	+	(𝐴 − 𝐴*) i

𝑛8&

𝑛(&
− 1j, 

Equation 23 
 

𝛼-7
.0 		= 𝐴*

⎣
⎢
⎢
⎢
⎡2 𝑛*

& − 𝑛8&
𝑛*& + 𝑛8&

+ 𝑛,𝛼!

1 + 𝑛,𝛼!2
𝑛*& − 𝑛8&
𝑛*& + 𝑛8&⎦

⎥
⎥
⎥
⎤
+ 2𝐴

𝑛8& − 𝑛(&

𝑛8& + 𝑛(&
. 

Equation 24 
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For biomolecules with low polarizability that are sparsely distributed inside the nanochannel, 
and for a small difference between the refractive indexes, 𝑛,𝛼!(𝑛*& − 𝑛(&) ≪ 1, the second 
term in the denominator in Equation 24 can be neglected and the polarizability of the 
nanochannel containing the biomolecule (Equation 8 and Equation 9) can be written as 
 

𝛼-7 = 𝛼'7 +𝑚𝛼! 𝐿⁄ , 
Equation 25 

 
where 𝑚 = 1 for TE polarization and 𝑚 = 𝑛*& 𝑛(&⁄  for TM polarization. Note that the 
expression for the total polarizability of a core-shell cylinder  (Equation 25) corresponds to the 
total polarizability of a cylinder without a shell (Equation 10), and therefore, Equation 11 to 
Equation 17 are valid for the core-shell cylinder as well. The value of the parameter 𝑛d in 
Equation 17 is, however, different, as it accounts for the presence of the additional layer. It can 
be written as  
 

𝑛d7 = 𝑛d
𝛼'
𝛼'7
= 𝑛dk

𝐼'
𝐼'7

 

Equation 26 
 
where 𝐼' 𝐼'7⁄  is the ratio between intensity of the scattered light from a cylinder with and without 
a coating (additional layer). 
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3. Polarizability of a protein 
 
The fact that the refractive index of a protein solution increases linearly with the (mass) 
concentration of the protein (c) and that the specific refraction increments 𝑑𝑛 𝑑𝑐⁄  have almost 
the same value for a large number of different proteins (𝑑𝑛 𝑑𝑐⁄ = 0.185	mL ∙ g9:) has been 
pointed out by many studies5.  
 
Using the Clausius-Mossotti relation  
 

(𝑛∗)& ≈ 𝑛& p1 +
𝛼!𝑛,

1 − 𝛼!𝑛,3
q, 

Equation 27 
 
that describes the relation between the polarizability of biomolecules present in solution (𝛼!), 
volume density of the biomolecules (𝑛,), refractive index of the medium in which the 
biomolecules are present (𝑛), and the (effective) refractive index of the solution 𝑛∗, the relation 
between refractive index increment (𝑑𝑛 𝑑𝑐⁄ ), molecular weight (MW), and the polarizability 
of a biomolecule normalized by MW can therefore be expressed as 
 

𝛼!
𝑀𝑊 =

2
𝑛𝑁;

𝑑𝑛∗

𝑑𝑐 = 0.46
	Å)

Da, 

Equation 28 
 
where 𝛼!𝑛, ≪ 1 was assumed, 𝑛 = 1.33 RIU (water), 𝑐 = 𝑀𝑊 ∙ 𝑛, 𝑁;⁄ , and 𝑁; =
6.022	 × 10&) is Avogadro’s number.  
 
Interestingly, the same value of 𝛼! 𝑀𝑊⁄  can be derived from a calculation of the properties 
over 171,729 different proteins presented by Young et al. that determined the mean specific 
volume of a protein (defined as volume per mass) as Vsp = 0.7446 mL g-1 and the mean 
refractive index of a protein as nm = 1.5867 RIU. Using the electrostatic approximation 
(Equation 6), the polarizability of a protein can then be expressed as  
 

𝛼!
𝑀𝑊 =

3𝑉8<
𝑁;

𝑛!& − 𝑛*&

𝑛!& + 2𝑛*&
= 0.46

	Å)

Da. 

Equation 29 
 
Since iOC is linearly proportional to the polarizability of a biomolecule (Equation 17), and 
since the polarizability of a biomolecule is linearly proportional to the molecular mass 
(Equation 28 and Equation 29), the molecular mass of a biomolecule inside a nanochannel can 
indeed be directly determined from iOC as 
 

𝑀𝑊 = 𝑖𝑂𝐶 ∙
𝐴
𝑛d𝑎
, 

Equation 30 
 
where 𝑎 = 𝛼! 𝑀𝑊⁄ = 0.46	Å) ∙ Da9: and 𝑛d, A are constants related to the properties of the 
nanochannels that can be determined prior to the measurements. In this study, the parameter A 
was determined from SEM images of the nanochannel cross section (Extended Data Fig. 3). 
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Parameter 𝑛d = −10.25 was calculated from Equation 18 and Equation 19, where 𝑛* = 1.33 
RIU (water), 𝑛( = 1.46 RIU (SiO2) and even representation of TE and TM polarization was 
assumed, 𝑛d = 0.5(𝑛d.0 + 𝑛d./). For nanochannels coated with a lipid bilayer, a modified 
parameter 𝑛d7 = 𝑛d[𝐼' 𝐼'7⁄  was used (Equation 26), where 𝐼' 𝐼'7⁄ = 1.7 for Channel VI was 
determined from the intensity of scattered light from the nanochannel before and after the 
deposition of the lipid bilayer. 
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4. Error estimate of size determination due to partial-slip boundary 
condition  
 

The size of individual particles is related to the diffusion constant through the Stokes-Einstein 
relation corrected for the hindrance effect due to the small nanochannel size as  

𝑅8 = 𝐾 ∙
𝑘=𝑇
6𝜋𝜂𝐷, 

Equation 31 

where K is the hindrance factor6, 𝐾 = (1 + 9𝜆 ∙ ln𝜆 8⁄ − 1.56𝜆 + 0.53𝜆& + 1.92𝜆) −
2.81𝜆> + 0.27𝜆? + 1.1𝜆$ − 0.44𝜆@)/(1 − 𝜆)&, and 𝜆 = 𝑅8 𝑟⁄ , 𝑟 = [𝐴 𝜋⁄  is the radius of a 
circle defined by an area A. This expression assumes that the flow velocity at the boundary of 
the nanochannel vanishes, known as the “no-slip” condition. Recently, it was demonstrated7 
that SLB do not obey the no-slip condition. This can be taken into account by introducing a 
“slip length” 𝑙, which denotes the distance below the surface of the bilayer at which the flow 
profile vanishes by extrapolating the flow profile. For bilayers, this was found to be around l = 
5 nm. In order to account for this effect, we first note that the hindrance factor 𝐾 is obtained 
by averaging the influence of the hindrance on the nanoparticle diffusion over a cross section 
of the nanochannel, 

𝐾(𝑟) = 2/(𝑟 − 𝑅)& a 𝐷||(𝑟 − 𝜌; 𝑅)/𝐷B	𝜌	d𝜌
C9D

"

 

Equation 32 

Where 𝐷B is the bulk diffusivity, 𝑅 is the radius of the particle,  𝐷|| is the diffusion constant 
parallel to the boundary7 

𝐷||(𝑙; 𝑅) = 1 −
9
16 A

𝑅
𝑙 B +

1
8 A
𝑅
𝑙 B

)

−
45
256 A

𝑅
𝑙 B

>

−
1
16A

𝑅
𝑙 B

?

, 
Equation 33 

 

To lowest order, the effect of the slip length can be taken into account by extending the 
dimension of the channel to 𝑟´ = 𝑟 + 𝑙, while taking into account that the channel wall at 𝜌 =
𝑟 still constitutes the physical boundary. The integral boundaries therefore do not change, but 
the integrand changes to 𝐷||(𝑟 + 𝑙 − 𝜌; 𝑅)/𝐷B. The effective hindrance factor can then be 
approximated as 
 

𝐾�(𝑟) ≈ 𝐾(𝑟 + 𝑙) − A
𝑙
𝑟B𝐷||

(𝑙; 𝑅) 𝐷B� . 
Equation 34 

 
The resulting effective hindrance factor relevant for Channel V (AV = 225 ´ 200 nm2) is shown 
as a function of particle radius in Fig. S5, normalized to the hindrance factor assuming no-slip 
condition, 𝐾� 𝐾⁄ . For particles up to 70 nm diameter (range of the BNPs detected in Channel 
V), it ranges between 0.96 – 1.01. This suggests that the estimated error in size determination 
of BNPs presented in the context of the analysis of the conditioned cell culture medium (Fig. 
4C-F) is lower than 4% and therefore the effect of the partial-slip boundary condition can be 
safely ignored.  
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Fig. S5. Normalized hindrance factor (𝑲� 𝑲⁄ ) as a function of particle radius for Channel V 
(AV = 225 ´ 200 nm2) that takes into account the partial-slip boundary condition relevant for 
SLB. 
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5. Removal of the background  
 
To visualize the biomolecules and their trajectory inside a nanochannel in the form of 
kymographs (Fig. 2), the data acquired by the CMOS camera were processed using the 
following procedure.  
In the first step, the raw images of the nanochannel in every frame were integrated along the 
short axis of the nanochannel and averaged using convolution with a Gaussian function with 
18 pixels width. This step results in time series of an intensity profile of the nanochannel, 𝐼*(𝑥), 
where i stands for i-th time frame and x is a spatial coordinate.  
In the second step, the nanochannel's profile was corrected for spatial and intensity 
instabilities. At first, to correct for the spatial instabilities (vibrations of the system), the image 
profile in every i-th step spatially shifted by Δ* was estimated using spline interpolation 
(Matlab). After that, to correct for the intensity instabilities, the normalized differential image 
profile (𝐼E�(𝑥)) was calculated as 
 

𝐼E�(𝑥) =
𝐼*(𝑥 + Δ*)
𝐼*F:(𝑥)

− 1, 

Equation 35 
from which the low frequency modulation was filtered using  
 

𝐼E∗�(𝑥)	 =
𝐼E�(𝑥)

𝐼E�(𝑥) ∗ ℎ(𝑥)
, 

Equation 36 
 
where the denominator in Equation 36 stands for the convolution of 𝐼E�(𝑥) with a step function 
ℎ(𝑥) with width 𝐴5 = 200 pixels, defined as  
 

ℎ(𝑥) =
1
𝐴5
, 	|𝑥| ≤ 𝐴5 2⁄  

ℎ(𝑥) = 0, 	|𝑥| > 𝐴5 2⁄  
Equation 37 

 
The spatial shifts in every i-th step, Δ*, were found in an iterative procedure based on the 
Newton-Raphson method that finds a minimum of the function 
 

𝑓(∆*) = a |𝐼E∗�(𝑥 + ∆*)|𝑑𝑥
4"#$

56"
, 

Equation 38 
 
where 𝐿G(H is the length of the field of view. More specifically, a refined n-th guess, ∆*I, is 
estimated from two previous guesses ∆*I9: and ∆*I9&, as  

∆*I=
∑ 𝑤(𝑥) ∙ 𝛿(𝑥)5

∑ 𝑤(𝑥)5
 

Equation 39 

𝛿(𝑥) = ∆*I9& −
(∆*I9: − ∆*I9&) ∙ 𝐼E∗�(𝑥 + ∆*I9&)
𝐼E∗�(𝑥 + ∆*I9:) − 𝐼E∗�(𝑥 + ∆*I9&)

 

Equation 40 
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where 𝑤(𝑥) = �𝐼E∗�(𝑥 + ∆*IF:)∗ − 𝐼E∗�(𝑥 + ∆*I)� is the weight function. The iterative process 
described in Equation 39 and Equation 40 is repeated until a minimal value of 𝑓(∆*) (Equation 
38) is reached with sufficient precision. 
The time series of corrected nanochannel profiles, 𝐼*∗(𝑥), is then calculated from 𝐼E∗�(𝑥), 	as 

𝐼*F:∗ (𝑥) =
𝐼*∗(𝑥 + Δ*)
𝐼E�(𝑥) + 1

, 

Equation 41 
and 𝐼:∗(𝑥) = 𝐼:(𝑥). 
 
In the third step, the background (intensity profile of an empty nanochannel), 𝐼*J, is estimated 
from corrected image profiles, as 
 

𝐼*J�𝑥K� = median �𝐼��𝑥K�� , 𝐼� = {𝐼*9;%/& … 𝐼*F;%/&}, 
Equation 42 

 
where a window of size At = 100 frames was used, whose size was truncated at the endpoints. 
Kymographs are then obtained by subtracting the background followed by normalization by 
the background, as 
 

𝐼*#(𝑥) =
𝐼*∗(𝑥) − 𝐼*J(𝑥)

𝐼*J(𝑥)
. 

Equation 43 
 
In the fourth step, the positions of the biomolecule are found using the particle tracking 
algorithm, described in detail in SI section ”Particle tracking” and a matrix 𝑀*(𝑥) was created 
for which 𝑀*(𝑥) = 𝐼*#(𝑥) when the i-th time frame and x position correspond to a found 
particle, and 𝑀*(𝑥) = 0 otherwise. 
In the last step, all the four steps are repeated, but the intensities that were identified by the 
particle tracking algorithm as responses corresponding to biomolecules are excluded from the 
process by diving the time series of an intensity profile of the nanochannel, 𝐼*(𝑥), by the matrix 
𝑀*(𝑥). The last step is repeated iteratively until convergence is achieved, i.e., the difference 
between 𝐼*#(𝑥) derived in the subsequent iteration steps is not larger than the standard deviation 
of 𝐼#. 
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6. Particle tracking 
 
To find the positions of a biomolecule and link them to a trajectory, we have used the particle 
tracking algorithm described in 8. In order to improve the performance for biomolecules with 
low iOC, we have modified some parts of the algorithm, as described below.     
To detect possible biomolecules, all the minima in every time frame of the kymograph (𝐼#) 
were found and their zero order intensity moments (m) and positions (x) were determined using 
a procedure described in 8. In the next step, the found minima were used to create all possible 
short trajectories with temporal length of 8 frames for which the difference of the positions 
between two subsequent frames were lower than 3[2∆𝑡𝐷M*!*-, where ∆𝑡 is the time difference 
between two subsequent frames and 𝐷M*!*- is an optional parameter setting the highest 
diffusivity of a biomolecule that would be found by the algorithm. In all presented cases we 
have used a 𝐷M*!*- = 50 µm2/s. The mean value of m (𝑚�𝑡N�ddddddd), standard deviation of m 
(𝜎!�𝑡K�), and the diffusivity (𝐷�𝑡K�) of every trajectory 𝑡K that is composed of 8 found minima 
(possible biomolecules, 𝑝*) is calculated according to  
 

𝑚�𝑡N�ddddddd = :
O
∑ 𝑚(𝑝*)O
*6: , 

𝜎!�𝑡K� = �
1
7 �𝑚(𝑝*) − 𝑚�𝑡N�ddddddd�

&
O

*6:

 

𝐷�𝑡K� =
1
7 

�𝑥(𝑝*F:) − 𝑥(𝑝*)�
&

2∆𝑡

@

*6:

 

Equation 44 
 
To evaluate the characteristics of the noise, we followed the same procedure for a kymograph 
with inversed intensity (−𝐼#), i.e., we find all minima, create all possible short trajectories (𝑡KI) 
and calculate the mean value and the standard deviation of m that correspond to the noise 
(𝑚�𝑡NI�dddddddd, 𝜎!�𝑡KI�). From the set of the values 𝑚�𝑡NI�dddddddd we determine its mean value and standard 
deviation, and define a limiting value 𝑚ME!E-dddddddd = mean �𝑚�𝑡NI�dddddddd� − 4std �𝑚�𝑡NI�dddddddd�. In a similar 
fashion, from a set of values 𝜎!�𝑡KI� we determine its mean value and standard deviation and 
define a limiting value 𝜎!M*!*- = mean �𝜎!�𝑡KI�� + 4std�𝜎!�𝑡KI�	�. All found possible 

trajectories for which 𝑚�𝑡N�ddddddd > 𝑚ME!E-dddddddd  and 𝜎!�𝑡K� > 𝜎!M*!*- are then considered to be noise 
and are discarded. All the remaining trajectories (with temporal length of 8 frames) are 
combined into all possible trajectories of longer temporal lengths and their cost function is 
calculated as 
 

𝜙K = 𝐷�𝑡K� ∙ 𝜎!& �𝑡K�. 
Equation 45 

 
The complete set of single biomolecule trajectories is then selected from longest trajectories 
with lowest cost function while assuming that every found minima is assigned to only one 
biomolecule. Trajectories that were shorter than 40 frames were considered to correspond to 
noise and thus discarded.  
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In the last step of the algorithm, parts of the trajectories that correspond to the biomolecules 
that are bound to the surface (not diffusing) are found using the following procedure. We 
assume that if the biomolecule is bound to the surface (does not change its position), the 
standard deviation of the found position, corresponds to the (yet unknown) localization error, 
𝜎5 = 𝛿, that is related to the noise in the kymographs. The standard deviation of the spatial 
displacement in time then corresponds to 𝜎P5 = √2𝛿. Therefore, the ratio of the two standard 
deviations corresponds to 𝜎5 𝜎P5⁄ = 1 √2⁄ .	On the other hand, if the biomolecule is diffusing, 
the standard deviation of the displacement in time corresponds to 𝜎P5 = 2𝐷∆𝑡 + 𝛿, where D 
is the diffusivity of a biomolecule and ∆𝑡 is the time difference between two subsequent frames, 
and the standard deviation of the position corresponds to 𝜎5 = 𝐷∆𝑡√2𝑁 + √2𝛿 where N is the 
number of frames. Therefore, the ratio of the two standard deviations then increases with 
number of frames and for 𝑁 ≫ 𝛿 𝐷∆𝑡⁄ 	corresponds to 𝜎5 𝜎P5⁄ = √2𝑁 2⁄ . It can be seen that 
𝜎5 𝜎P5⁄  differs between the two states of the biomolecule (diffusing or bound) and can thus be 
used as merit to distinguish those two different states. Therefore, for every part of a trajectory 
with temporal length of N = 30 frames, 𝜎5 𝜎P5⁄  is calculated and if the derived value is lower 
than the threshold limit 0.9, the part of the trajectory is assigned to a biomolecule that is bound 
to the surface and it is discarded from the further analysis.  
 
The integrated optical contrast of every found minimum in the kymograph assigned to a 
biomolecule can be determined as 𝑖𝑂𝐶I = √𝜋𝑎𝑏 where the values a and b correspond to the 
values found by the least-square fitting of the gauss function 𝑎exp(− (𝑥 − 𝑥*)& 𝑏&⁄ ) (fit 
function from Matlab library) where 𝑥* corresponds to the position of the biomolecule 
determined by the particle tracking algorithm. Each single biomolecule is then represented by 
N values of iOCn. iOC pertaining to a single trajectory is then the mean value of iOCn. 
Alternatively, the values of 𝐼# from the interval of positions 〈𝑥* −𝑤Q4R, 𝑥* +𝑤Q4R〉 can be 
averaged over time frames corresponding to one trajectory that results in the time-averaged 
intensity profile of spatial length of 2𝑤Q4R. iOC can then be determined as 𝑖𝑂𝐶 = √𝜋𝑎𝑏 where 
the values a and b correspond to the values found by the least-square fitting of the gauss 
function 𝑎𝑒𝑥𝑝(−𝑥& 𝑏&⁄ ). Both of these approaches resulted in comparable results, however, 
the second one lead to an improved processing speed. 
The diffusivity was obtained from the statistical analysis of the spatial displacement in time 
determined by the particle tracking algorithm as9 
 

𝐷 = (∆𝑥I)&ddddddddd 2∆𝑡⁄ + ∆𝑥I∆𝑥IF:ddddddddddddd ∆𝑡⁄ . 
Equation 46 

 
It has to be noted, that the second factor corrects for both motion blur and the localization 
error9. 
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7. Machine learning (ML) analysis 
 
To track and analyze single biomolecules within the nanochannels using a method that is 
independent from the standard analysis (SA) presented in the SI sections “Removal of the 
background” and “Particle tracking” and therefore validate its results, we implemented a 
machine-learning (ML) analysis workflow10 whose results are summarized in Extended Data 
Fig. 4. It is comprised of five parts:  

1. Pre-processing of raw image data into kymographs. 
2. Image segmentation using a U-net neural-network11 to identify the position of the single 

biomolecules. 
3. Object detection using the YOLOv3 algorithm12 to identify the trajectories of the single 

biomolecules. 
4. Property calculation using a custom fully convolutional neural network (FCNN) with 

residual connections to determine the properties of the single biomolecules (𝑖𝑂𝐶 and 
𝐷). 

5. Conversion from 𝑖𝑂𝐶 to 𝑀𝑊 and from 𝐷 to 𝑅8. 
 

All intermediate results of the ML algorithm are described in the sub-sections below, and the 
whole pipeline is summarized in Fig. S6. 
 
 

 
Fig. S6. Machine learning (ML) analysis workflow. (A) Raw image data simulated for a 
single biomolecule with optical contrast 𝑖𝑂𝐶 = 5 · 109>	𝜇𝑚 and diffusivity 𝐷 = 10	𝜇𝑚&/𝑠. 
(B) Preprocessed kymograph with removed background. (C) Segmented image where the 
particle positions are detected using a U-net. (D) Single biomolecule trajectory identification 
using the YOLOv3 neural network. (E) Property calculation (𝑖𝑂𝐶 and 𝐷) using a custom fully 
connected neural network (FCNN). (F) Unit conversion from 𝑖𝑂𝐶 to molecular weight	𝑀𝑊 
and from 𝐷 to hydrodynamic radius 𝑅8 plotted in a 2D histogram for illustration purposes.  
 
 

1. Data pre-processing from raw data to kymograph 
The raw image data (Fig. S6A) was pre-processed to transform it into kymographs (Fig. S6B). 
First, the intensity of the raw CMOS image data was normalized according to  
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𝐼(̅𝑥, 𝑡) =
𝐼(𝑥, 𝑡) 	−	 〈𝐼(𝑥, 𝑡)〉

〈(𝐼(𝑥, 𝑡)〉  

 
where 𝐼(𝑥, 𝑡) is the intensity at position 𝑥 and time-frame 𝑡, and 〈𝐼(𝑥, 𝑡)〉 represents its time 
average. Second, a low-pass-filtered version of 𝐼(̅𝑥, 𝑡) was calculated by using two normalized 
sliding windows of sizes 200 × 1 and 1 × 200, and subtracted from 𝐼(̅𝑥, 𝑡). Finally, to obtain 
the kymographs used to calculate 𝑖𝑂𝐶, the resulting image was down-sampled by a factor of 4 
in the length dimension through mean pooling. To obtain the kymographs used to calculate 𝐷, 
the image was instead normalized by its standard deviation before being down-sampled by a 
factor of 4 in the length dimension through mean pooling. 
 

2. Image segmentation with U-net 
Image segmentation is used to make the value of each pixel of a given image more 
representative of a property of interest. In our case, we transform a kymograph where the value 
of each pixel represents intensity (Fig. S6B), to a segmented image where the value of each 
pixel represents the probability 𝑃S of the existence of a biomolecule in that location and time 
(Fig. S6C). We perform this transformation using a U-net11 implemented using the Python 
software package DeepTrack 2.010. The details of the U-net architecture are shown in Fig. S7A. 
The U-net was trained as part of a conditional Generative Adversarial Network (GAN)13. This 
GAN consists of two neural networks (Fig. S7B): a generator network (the U-net), which 
generates image segmentations based on input kymographs; and a discriminator neural 
network, which attempts to figure out whether the generated segmentations are the real 
trajectories of single biomolecules in the input kymographs. During the training process, the 
two networks compete against each other, so that the generator generates increasingly realistic 
trajectories, and the discriminator learns increasingly subtle ways to distinguish generated from 
real trajectories. Using this GAN for training was essential to achieve the required accuracy 
especially for smaller biomolecules, for which the low signal-to-noise ratio often results in 
trajectories being entirely overpowered by noise in several subsequent time frames. 
The U-net was trained on simulated kymographs (generated as described in subsection 1 and 
pre-processed as described in subsection 1) for which the corresponding ground-truth single 
biomolecule trajectory is known (using the ADAM optimizer14 with an exponentially decaying 
learning rate of 109$	, a decay rate of 0.9, and 50 decay steps). The U-net was trained using 
300,000 simulated kymographs with particle trajectories in the ranges 1 · 10	9?	µm	 ≤ 𝑖𝑂𝐶	 ≤
	3 · 10	9)	,	 1	 ≤ D	 ≤ 100	µm&/s. The input data during training are simulated images 
(kymographs) of size 128´2048 with a random number of trajectories and of output segmented 
images of equivalent size. The model is also train-validated every 120 epochs (=~30000 
simulated kymographs) against 150 simulated kymographs (of size 128´512, 128´1024, 
128´2048) with experimentally measured channel noise, using an 80-20 train-validation split.  
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Fig. S7. U-net for single biomolecule segmentation. (A) The U-net11 consists of a series of 
contraction convolutional layers, a bottleneck, and a series of expansion convolutional layers, 
as well as a series of skip connections between corresponding contraction and expansion 
convolutional layers to ensure that information learnt during contraction is not lost at the 
bottleneck. Each “2´ Conv” box represents a convolutional block corresponding to 2 
convolutional layers in sequence, and each “Conv T” box represents a single convolutional 
transpose layer as exemplified in the legend. Here, 𝑓 is the number of filters in each block, 𝑘𝑠 
is the kernel size, 𝑎 is the activation function, and 𝑑𝑟 is the dilation rate. The network is 
visualized with Netron15. (B) Block diagram of the conditional GAN training environment, 
where kymographs are fed both to a U-net generator network, which predicts a corresponding 
segmentation, and a Convnet (convolutional network) discriminator network, which takes both 
original kymographs and true segmentations as input to determine whether the predicted 
segmentation is correct. A basic Convnet consisting of 5 convolutional layers of size 4´4 and 
stride 1 connected to a single dense layer is used as discriminator network16. 
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3. Trajectory identification with YOLOv3 
As third stage of our analysis, we implemented a YOLOv312 (Fig. S6D) object detection  
algorithm in PyTorch17 to identify single biomolecule trajectories by separating a given 
kymograph into smaller ones, each corresponding to a single biomolecule trajectory. If a 
kymograph cannot be separated in this manner (for instance, as a result of two biomolecule 
trajectories strongly overlapping with each other), the YOLO algorithm instead counts the 
number of inseparable single biomolecule trajectories in the given kymograph and outputs this 
value. The network architecture behind this algorithm is visualized in Fig. S8. 
This algorithm analyses the segmented images obtained by the single-biomolecule-tracking U-
net described in subsection 2 to fit a minimally-dimensioned rectangular bounding box around 
each separate single biomolecule trajectory. If the minimal bounding boxes of two single 
biomolecule trajectories overlap more than the set threshold 𝑏- 	= 	60%, their bounding boxes 
are merged to a minimal rectangular bounding box around both of them that is labelled as 
containing two biomolecules. If three or more trajectories overlap, their bounding boxes are 
merged and labelled as three + biomolecules. 
The YOLOv3 algorithm was trained on simulated kymographs, generated in the same way as 
for the U-net (described in subsection 1 above), but where the input is a perfectly segmented 
kymograph and the outputs are minimally sized bounding boxes around each separate 
trajectory. Trajectories are considered separate in the training data if they are more than 𝑇/16 
frames apart, where 𝑇 is the total amount of frames in the kymograph. Images are continuously 
generated during training, such that each subsequent image is entirely unique and the risk of 
overtraining is avoided. The algorithm was trained using approximately 2 million such unique 
segmented images, where each image was generated with a diffusion in the range 𝐷 ≈
1	to	100	µm&/s (the optical contrast is not relevant here because we employ perfectly 
segmented simulated images) with the standard YOLO error function12 using the ADAM 
optimizer14 with a learning rate of 0.001. The input data during training are simulated images 
(segmented kymographs) of size 128´8192, down-sampled to 128´128 to improve 
performance, and the output is a list of YOLO-labels containing class, position, occurrence 
probability and class probability of each trajectory in the input image. 
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Fig. S8. YOLOv3 for trajectory identification. The YOLO algorithm is built upon a DarkNet-
53 backbone18, which consists of a neural network architecture comprised of 53 convolutional 
layers. This backbone feeds into three necks, each consisting of a sequence of 5 convolutional 
layers, which in turn feed into corresponding heads, which output bounding boxes at three 
different scales through YOLO detection layers12. Each neck is up-sampled and fed into its 
neighboring neck to make sure the last yolo detection layer benefits from information collected 
at every previous stage. Here, “Conv” represents a single convolutional layer, 𝑓 is the number 
of filters in each block, 𝑘𝑠 is the kernel size, and 𝑎 is the activation function. The network is 
visualized with Netron15. 
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4. Property calculation with FCNN 
To calculate 𝑖𝑂𝐶 and 𝐷 for each single biomolecule trajectory (Fig. S6E), we use a custom 
neural network architecture, which consists of a FCNN connected with residual blocks. The 
architecture itself is a sequence of convolutional layers followed by a max pooling layer, 
including short skip connections to preserve information, as shown in Fig. S9. The full 
architecture consists of seven of these blocks, culminating in a head module where the 
algorithm produces slightly different outputs depending on whether we are calculating 𝑖𝑂𝐶 or 
𝐷. 
To calculate the 𝑖𝑂𝐶, the head of the neural network returns three outputs: (1) The raw output 
𝐼UVWXYZ from the last convolutional layer of the neural network. (2) The mask, which is a down-
sampled representation of the original kymograph normalized by its pixel sum. This effectively 
gives us a weighted matrix, where each matrix element is the probability that the corresponding 
down-sampled region in the kymograph contains a biomolecule trajectory. (3) The calculated 
𝑖𝑂𝐶 for each kymograph, obtained by multiplying 𝐼UVWXYZ by the mask to produce a value of 
𝑖𝑂𝐶 for each pixel in the down-sampled kymograph weighted by the probability of said pixel 
containing a trajectory, and finally summing over the entire down-sampled image to obtain a 
single mean value of 𝑖𝑂𝐶 for the entire kymograph.  
Calculating 𝐷 works as for 𝑖𝑂𝐶, except that we use the down-sampled U-net biomolecule-
tracking algorithm’s pre-segmented image as the mask, instead of re-calculating it using the 
FCNN. This is done for two reasons: because the intensity network cannot be trained on 
segmented images since 𝑖𝑂𝐶 is entirely dependent on the noise in an image, and because the 
diffusion calculation is inherently sensitive to the quality of the single biomolecule trajectory 
tracking so that a more powerful segmentation model is needed. 
To train the intensity- and diffusivity-calculating FCNN models, we employed a curriculum 
learning scheme with intermittent checkpoints to be used for later ensemble modelling 
prediction. Specifically, the intensity-calculating model was initially trained only on a narrow 
range of high iOC trajectories, representing the highest SNR and in principle easiest case for 
the model to begin learning correlations, and then slowly curriculum-learned down to the 
lowest range of relevant iOC values. In each narrow range of iOC values, checkpoint models 
which are more accurate in that particular narrow range of values are saved separately. Upon 
model inference, an initial prediction is made with a model trained on the entire range of iOC 
values with the scheme described above, and then a second model trained on the narrower 
range of values makes a second prediction on the same trajectory to achieve higher accuracy. 
The process is equivalent for diffusivity, with the difference being that the range of D values 
being trained on increases rather than decreases during curriculum learning. 
These were all trained using the ADAM optimizer14 with a learning rate of 0.0001 on 
approximately 300,000 simulated kymographs in the same range as those employed for the U-
net. The input during training of the FCNNs are simulated images (kymographs) of size 
128´2048 with a single particle trajectory, and the output is a single value of either iOC or D 
of said trajectory, as well as the mask, which is a learnt downsampled representation of the 
original kymograph. 
We note here that the ensemble modelling technique adds yet another barrier against false 
signal detection, since if the epistemic uncertainty inherent in the data is high, which may be 
the case for very short trajectories or regions of unusually high noise, the two predictions will 
differ significantly and hence the prediction should be discarded. Of course, as is common in 
ensemble modelling 19, one can implement an even larger and finer-grained ensemble for even 
higher prediction accuracy and more accurate uncertainty estimation.  
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Fig. S9. FCNN for property calculation. The custom FCNN architecture is comprised of 
“Conv” blocks, which are singular convolutional layers, and a sequence of “Conv*” blocks, 
which consist of a sequence of convolutional layers followed by a max pooling layer and a skip 
connection, as exemplified in the legend. This sequence culminates into a custom property 
layer that calculates 𝑖𝑂𝐶 and 𝐷. Here, 𝑓 is the number of filters in each block, 𝑘𝑠 is the kernel 
size, and 𝑎 is the activation function. The network is visualized with Netron15.  
 
 

5. ML analysis results 
In Extended Data Fig. 4 we show the results using the ML analysis, which are in agreement 
with the results obtained using the SA analysis presented in Fig. 3. Note that, since the ML 
analysis retrieves longer trajectories that the SA analysis maximizing the available data for 
each data point, this results in fewer data points for the ML results than for the SA results, even 
though the total amount of data is the same for both methods. Since the ML analysis is 
completely independent from the SA analysis, the agreement between these two analyses 
further strengthens the confidence that these results are correct. The ML method is fully 
automatized and operates 1-2 orders of magnitude faster than the SA method.  
 

6. ML analysis of cell conditioned medium 
To analyze the cell conditioned media, the overall ML algorithm is the same as described 
above, with the exception that the YOLO is replaced with a thresholding function on the 
segmented kymographs and the U-net/FCNN models are trained in slightly different schemes.  
In general, YOLOv3 struggles to identify object boundaries in situations where several small 
objects are in very close proximity or even overlap, as has been shown consistently with, e.g., 
flocks of birds or other small animals20. As a result of the very high concentration of lipoprotein 
trajectories in the segmented kymographs, this limitation adversely affects EV analysis as 
lipoprotein trajectories may inadvertently be included in the bounding boxes of otherwise 
isolated EV trajectories and lead to inaccurate results. To avoid this issue, we implemented a 
simple thresholding function, which works by first identifying the starting point of each new 
trajectory (under flow) in a segmented kymograph (i.e., time 𝑡" where 𝑃S > 	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 at 
𝑥" = 0). Beginning with the first trajectory, we investigate all points in a square region of size 
𝑑- 	× 	𝑑- at (𝑥", 𝑡") where 𝑃S > 	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. If none of these points are of equal t and unequal 
x, or vice versa, we consider the box to only contain a single trajectory, and the process is 
repeated in a box of size 𝑑- 	× 	𝑑-	at (𝑥*, 𝑡*) where 𝑥*  =𝑥" + 𝑖𝑑-, 𝑡* = t(𝑥*) in iteration 𝑖. This 
forms a sequence of boxes [𝑏", 𝑏:, . . .		 , 𝑏*] which are considered to contain a single particle 
trajectory, until box 𝑏*F: either reaches the end of the kymograph or if two points in the box 
are of equal t but unequal x, or vice versa. If the latter occurs, the single particle trajectory is 
saved as contained in the aforementioned sequence of boxes, and the algorithm repeats by 
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forming a new sequence either from box 𝑏*F& or from the start of a new trajectory, if the end 
of the kymograph (lengthwise) has been reached. Hence, regions in which multiple trajectories 
cannot be separated by more than 𝑑- pixels are discarded. Since the optical contrast of EV 
trajectories is orders of magnitude higher than that of lipoproteins, the scattered light from 
lipoprotein trajectories in the near vicinity of EVs becomes vanishingly small after the pre-
processing steps described in Data pre-processing from raw data to kymograph, and hence 
each EV trajectory corresponds to a single EV.  
Additionally, the U-net and FCNN models are trained equivalently to the procedure described 
in Image segmentation with U-net and Property calculation with FCNN, with the following 
exceptions. First, to account for the induced flow in the channels, the models are trained on 
simulated particle trajectories within a large range of flow velocities and hence learn to ignore 
the effect of general flow on diffusion calculation. We note here that the accuracy of the 
diffusion calculation is dependent on flow velocity, as higher flow velocities in general lead to 
lower total measurement time of each separate biomolecule. This effect is however minimal in 
the low flow rates (~10𝜇𝑚/𝑠) used for cell conditioned media analysis. Second, the range of 
iOC values the models are trained on is considerably larger: 𝑖𝑂𝐶 ≈ 109>	to	109:	µm, and D 
values slightly smaller - 𝐷 ≈ 0.1	to	30	µm&/s. Additionally, to improve accuracy below 
𝑖𝑂𝐶	 = 2.5 ∙ 109)µm, we use the standard FCNN model described in Property calculation 
with FCNN in this regime. Third, since the channel size is larger and the trajectories of shorter 
length (in time), the models are trained on simulated kymographs of size 512x512 rather than 
128x2048.  
  



 28 

8. Evaluation of the data processing 
 
To evaluate the performance of the data processing described in the SI sections “Removal of 
the background” and “Particle tracking”, we have carried out benchmarking tests on ground 
truth data that were composed of experimentally recorded background signal, i.e., a time 
sequence of an intensity profile of a nanochannel filled with water (no biomolecules inside, 𝐼") 
combined with a generated response of biomolecules (𝐼C) with defined properties (iOCdef and 
Ddef) that was simulated by the following procedure. At time zero, the positions of 10 
biomolecules were randomly selected from the range of positions from -100 µm to +100 µm 
and their Brownian motion was recorded in time. At each time step (Δ𝑡), the position of each 
biomolecule was calculated from the previous position, as 𝑥*

< = 𝑥*9:
< + 𝑅[2𝐷[\GΔ𝑡, where R 

is a normally distributed random number with a mean of zero and a standard deviation of one. 
When a position of a biomolecule reached a value that was either lower than -100 µm or higher 
than +100 µm, it was reflected back in a specular fashion. The optical response of a 
biomolecule was then simulated as a gauss function, whose central position, width, and 
magnitude were defined by 𝑥*

<, width of the diffraction limited spot (𝑤Q4R), and iOCdef, 
respectively. To match the frame rate of the recorded data (200 frames per second) and to 
mimic the continuous illumination, every time frame of the simulated response with temporal 
length of 5·10-3 s was averaged over 100 time-steps (Δ𝑡 = 5·10-5 s) of the generated biomolecule 
positions, as  
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Equation 47 
 
where x is a space coordinate that corresponds to the space coordinate of the recorded data. 
For each combination of values of iOCdef = 10-4, 2·10-4, 5·10-4, 10-3, 2·10-3 µm, and Ddef = 10, 
20, 50 µm2/s, 10 different responses with a temporal length of 10000 frames were generated 
(selected examples are shown in Fig. S10). We note that the movement of a biomolecule within 
one time frame results in motion blur – broadening and shallowing of the intensity dip (insets 
Fig. S10).  
 
The generated response was then combined with recorded background signal (Fig. S11) as 𝐼 =
𝐼" ∙ 𝐼C and kymographs were created according to the procedure described in SI section 
“Removal of the background” (Fig. S12), positions of biomolecules were found using the 
algorithm described in SI section “Particle tracking algorithm”. In the first step of the 
algorithm, the positions of all minima in the kymograph were found and their zero order 
intensity moments (m) were calculated. Since the m-values are calculated as a sum of intensities 
of a fixed fraction of a peak, and since the shape of the peak varies due to motion blur, m-
values are also slightly dependent on the diffusivity (Fig. S13). Specifically, the mean value of 
m corresponding to D = 50 µm2/s is 15% lower compared to the mean value of D = 10 µm2/s. 
Nevertheless, motion blur has a minimal effect on determination of the iOC value, as it is 
calculated as integral value of the whole intensity dip that always remains constant. 
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Fig. S10. Examples of the simulated response of biomolecules defined by different 
combinations of iOCdif and Ddif. The simulated data contained 844, 1036, and 1745 trajectories 
for data set corresponding to Ddif = 10, 20, 50 µm2/s with various temporal lengths (N frames). 
Insets: intensity profiles at 5 selected points in time illustrating motion blur - the broadening 
and shallowing of the intensity dip for molecules with high D.  
 
 
 

 
 
Fig. S11. Example of kymograph corresponding to the experimentally recorded background 
signal from a nanochannel filled with pure PBS buffer, without the target molecules. When 
analysing this kymograph, correctly neither the standard algorithm nor the machine-learning 
algorithm identifies a molecule trajectory. 
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Fig. S12.  Examples of kymographs corresponding to the simulated response of biomolecules 
defined by different combinations of iOCdef and Ddef.  
 
 
 
 

 
Fig. S13. Examples of zero order intensity moment histograms obtained from a selected 
kymograph of 10000 frame temporal length corresponding to the simulated response of 
biomolecules defined by iOCdef = 5·10-4 µm and different Ddef (parts of the selected kymograph 
are shown on Fig. S12).  
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The determined values of iOC and D of all detected trajectories are shown as a scatter plot in 
Fig. S14A. The mean values of iOC and D (Fig. S14B) correspond to the position of the found 
peaks of the corresponding histograms of iOC (Fig. S14C) and D (Fig. S14D), where each 
trajectory is represented by N values of iOC and D, respectively. Clearly, the values identified 
by our procedure correspond to the ground truth very well, thereby corroborating the used data 
analysis protocol as a whole.  
 
We also highlight that none of these tests revealed any false signals — i.e., no trajectories other 
than those simulated were found by the particle tracking algorithm. In addition, analysis of 
experimentally recorded background signal from a channel filled with pure PBS buffer, without 
the target molecules, did not reveal any false signal either (Fig. S11). That is the consequence 
of the fact that the used particle tracking algorithm discards all trajectories that have lower 
signal than 4 STD of the noise. In the case of machine learning, the models are trained on a 
wide variation of simulated noise distributions and train-validated against experimental 
channel noise to ensure that they do not find false signals in the experimentally relevant 
conditions that they have been validated against. Furthermore, we highlight that if the 
experimental conditions and noise distribution were to substantially change, the model could 
quickly be retrained by transfer-learning using the first few seconds of measurement of an 
empty channel and thereby always prevent false signal detection. 
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Fig. S14. Analysis of the artificially generated data set comprised of experimentally recorded 
background signal and simulated response of biomolecules defined by a combination of values 
for iOCdef = 10-4, 2·10-4, 5·10-4, 10-3, 2·10-3 µm, and Ddef = 10, 20, 50 µm2/s. (A) Scatter plot of 
iOC and D. Each dot corresponds to the values extracted from a single trajectory. The intensity 
of the colour indicates the number of frames the corresponding trajectory is comprised of. The 
highest intensity corresponds to N = 3300 frames. (B) Mean value of iOC and D. Error bars 
correspond to the resolution in iOC and D defined as FWHM of the peaks of the histograms. 
The presented values were derived from n = 844, 1036, and 1745 trajectories for data set 
corresponding to Ddif = 10, 20, and 50 µm2/s, respectively. Examples of the (C) histograms of 
iOC and (D) histograms of D, corresponding to different combinations of iOCdef and Ddef. 
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9.  Noise analysis 
 
To evaluate the level of the noise in the system, we measured the standard deviation of the 
intensity in a kymograph corresponding to the background recorded from a nanochannel filled 
with pure PBS buffer (Fig. S11) over 500 s for a range of time frame averaging values 
(temporal length of one video frame). The camera was operated at 5400 frames per second. 
The experimental values are compared with the expected level of shot noise calculated as 
1 [𝑁-𝑁8𝑁\&⁄ , where 𝑁\& is the well depth of photoelectrons in a single pixel (𝑁\& = 33	𝑘𝑒9 
for the Andor Zyla CMOS camera), 𝑁8 corresponds to spatial averaging (the signal was 
averaged over a diffraction-limited spot, 𝑁8 = 20 × 20 pixels) and 𝑁- corresponds to the time 
frame averaging. Fig. S15 shows that the experimental values are very close to the theoretical 
shot-noise limit, which confirms that the measurement is shot-noise limited. 
 
 

 
 

Fig. S15. Noise analysis. Comparison of the experimentally measured standard deviation of 
the noise with the theoretical limit of the shot noise for a range of time averaging (temporal 
length of the video frame). The experimental values are very close to the theoretical limit, 
which confirms that the measurement is shot-noise limited. 
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10. Resolution in molecular weight and hydrodynamic radius 
 
The following section describes specific parameters and their interplay that influence the 
resolution of NSM in MW and RS. The values of MW and RS are inferred from the measured 
iOC and D, respectively. Therefore, we first discuss the factors that influence the resolution in 
iOC and D. 
 
The uncertainty in iOC determination for each trajectory (standard deviation of the estimate 
for iOC, 𝜎*_`) is expected to follow 
 

𝜎*_` = 𝜎*_`" k1
𝑁, 

Equation 48 
 
where 𝜎*_`"  is uncertainty in iOC determination from a single frame and N is the number of 
frames a single trajectory is composed of. The uncertainty in D determination for each 
trajectory (standard deviation of the estimate for D, 𝜎Q) can be written (to first order in 1 𝑁⁄ ) 
as9 
 

𝜎Q ≈ 𝜎Q"k
1
𝑁, 

𝜎Q" = 𝐷[6 + 4𝜀 + 2𝜀& 
 

Equation 49 
 
where 𝜀 = 𝛿& (𝐷Δ𝑡) − 2𝑅⁄ , 𝛿 is the localization error, and 𝑅 = 1 6⁄  is a contribution 
corresponding to a motion blur for continuous illumination. 
 
The resolution in iOC and D can be defined as the full-width-at-half-maximum of the peak in 
the histogram, where each detected trajectory from a data set corresponding to one type of a 
molecule is represented by N values of iOC and D, respectively. Since the number of frames 
varies stochastically, the width of the derived peak (and thus the resolution) depends on the 
distribution of the N values within one data set that can be described in terms of a probabilistic 
density function (𝑓a). 𝑓a depends on the diffusivity, temporal length of a time frame, and the 
length of the field of view, and can be characterized by the mean value of N, 𝑁� ≈ (𝐷∆𝑡)9: &⁄ , 
where ∆𝑡 is the time step between the subsequent frames. Assuming that the measured values 
of both iOC and D are normally distributed numbers with standard deviations equal to 𝜎*_`  and 
𝜎Q (Equation 48 and Equation 49), and that the number of the frames can be expressed in terms 
of the 𝑓a(𝑁), the expected histogram of iOC and D can be written in a general form as  
 

ℎ(𝑥) = a
𝑓a[𝑓a
𝜎5"√2𝜋

exp³−
1
2𝑓a i

𝑥 − �̅�
𝜎5"

j
&

´𝑑𝑁 

Equation 50 
 
where x stands for either iOC or D. At first, to predict the shape of ℎ(𝑥) that dictates the 
resulting resolution, we have simulated 𝑓a for scenarios that correspond to experimental 
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conditions using the following procedure. At time frame 𝑖 = 1, we have assumed a biomolecule 
at the position 𝑥: = 0. After that, the positios of the biomolecule in the subsequent time frame 
was calculated from the previous position, as 𝑥* = 𝑥*9: + 𝑅√2𝐷Δ𝑡, where R is a normally 
distributed random number with a mean of zero and a standard deviation of one, and where 
Δ𝑡 = 5 ms, and D =5 - 60 µm2/s is the diffusivity of the biomolecule. If 𝑥* < 0 or 𝑥* >	𝐿G(H = 
17.5 µm, the biomolecule was considered to be out of the field of the view and the temporal 
length of a trajectory, N = i, was recorded. The process was repeated for 104 molecules. 𝑓a was 
then plotted as the histogram of recorded N (an example for D = 20 µm2/s is shown on Fig. 
S16A) and the mean value of N (𝑁�) was calculated. Here we also take into account that all 
trajectories that have N < 40 are discarded by the particle tracking algorithm and are considered 
as noise. The obtained dependency of 𝑁� on D (Fig. S16B) was then fitted to the function  
 

𝑁� =
𝑎
𝐷J , 𝑎 = 1540, 𝑏 = 0.57. 

Equation 51 
 
Subsequently, the expected histogram ℎ(𝑥) for a general value (𝑥 − �̅�) 𝜎5"⁄  was calculated 
from the simulated 𝑓a using Equation 50 (Fig. S16C) and the FWHM of the peak 
(corresponding to 𝑤5 𝜎5⁄ ) was determined. Alternatively, the FWHM can be estimated from 
the gaussian fit, which can be highly relevant especially when evaluating statistics from a low 
number of trajectories. Interestingly, even though the shape of the peak is not strictly gaussian, 
the derived values of FWHM from the gaussian fit are very close to the real value (Fig. S16D). 
Therefore, we argue here that the gaussian fit can be used to estimate the resolution from the 
experimental data. The obtained dependency of 𝑤5 𝜎5⁄  on 𝑁� (Fig. S16D) was then fitted to the 
function  
 

𝑤5 ≈ 𝜎5"
𝑎

𝑁� + 𝑏
, 𝑎 = 33, 𝑏 = 62 

Equation 52 
 
which presents a phenomenological model of the resolution in both iOC and D. The resolution 
in iOC and D can then be written in terms of the mean number of frames, as 
 

𝑤*_` ≈ 𝜎*_`"
𝑎

𝑁� + 𝑏
, 𝑎 = 33, 𝑏 = 62 

Equation 53 
and 

𝑤Q ≈ 𝜎Q"
𝑎

𝑁� + 𝑏
, 𝑎 = 33, 𝑏 = 62, 

Equation 54 
 
respectively.  
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Fig. S16. Phenomenological model of the resolution. (A) Probability density function, fN, of 
temporal lengths of the trajectories (number of the frames, N) limited by the field of view Lfow 
= 17.5 µm that is recorded with the time step 𝛥𝑡 = 5 ms of a biomolecule with D = 20 µm2/s. 
(B) Dependency of the mean value of N on diffusivity of a biomolecule. (C) Expected histogram 
of a normalized value (𝑥 − �̅�) 𝜎5"⁄  for biomolecules with diffusivity D = 10, 20, and 50 µm2/s. 
(D) Dependency of the mean value of N on normalized FWHM of the expected histogram, 
𝑤5 𝜎5"⁄ . 
 
 
Having established the theoretical background, we now discuss the specific resolution in iOC 
and D obtained from three data sets analyzed by the standard analysis (SA), described in 
Methods: “Removal of the background” and “Particle tracking algorithm”: simulated data 
corresponding to biomolecules defined by the combinations of values iOCdef  and Ddef (Fig. 
S12, more details in section “Evaluation of the data processing”) and the experimental data 
obtained for different proteins and DNAs in Channel I and II (Fig. 2 in the main text). It can 
be seen that the resolution in both iOC and D exhibits a complex behavior. The resolution in 
iOC (Fig. S17A) increases both with diffusivity and iOC of a pertinent biomolecule, whereas 
the resolution in D (Fig. S17B) increases with diffusivity and decreases with increasing iOC 
of a pertinent biomolecule. To explain this behavior, we further discuss the main factors that 
influence both resolutions.  
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The resolution in iOC is directly proportional to the factor 𝜎*_`"  that relates to the noise in the 
kymograph and that can be calculated from 𝑤*_`  (Fig. S17A) and 𝑁� (Fig. S17E), using the 
phenomenological model (Equation 53). The values determined for each data set (Fig. S17C) 
are compared with the value corresponding to the ideal system that is limited by the shot noise 
and that can be estimated as 𝜎*_`" = 𝑤 [𝑁\&𝑁-𝑁8⁄ , where w = 1.18 µm (corresponding to 40 
pixels) is the length of the nanochannel from which the iOC is calculated, 𝑁- = 25 frames and 
𝑁8 = 40 × 20 pixels corresponds to temporal and spatial averaging, and 𝑁\& = 33	𝑘𝑒9 is the 
well depth of a single pixel. It can be seen that 𝜎*_`"  corresponding to the biomolecules from 
the data sets increases with iOC and the theoretical limit corresponding to the shot noise was 
reached only in the case of a biomolecule with the lowest iOC (200 bp DNA). That can be 
attributed to the additional noise introduced by the background removal algorithm. 
 
 

 
 
Fig. S17. Analysis of the resolution in iOC and D for a series of data sets corresponding to: 
simulated data corresponding to biomolecules defined by the combinations of values iOCdef 
and Ddef and the experimental data obtained for different proteins and DNAs in Channel I and 
II and analysed by SA. (A) Resolution in iOC (𝑤*_`). (B) Resolution in D (𝑤Q). (C) A factor 
𝜎*_`"  that relates to the noise in the kymograph and that was calculated from 𝑤*_`  and 𝑁� using 
Equation 53. The black line corresponds to the values expected for the ideal system limited by 
shot noise. (D) A factor 𝜎Q" 𝐷⁄  that relates to the localization error of the particle tracking 
algorithm and that was calculated from 𝑤Q and 𝑁� using Equation 54. The black line 
corresponds to the ideal system without the localization error. (E) The mean number of the 
frames from which the trajectories in a data set were composed of (𝑁�). The black line 
corresponds to the expected values (Equation 51).  
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The resolution in D is directly proportional to the factor 𝜎Q" that linearly increases with 
diffusivity and that is also related to the localization precision of the particle tracking algorithm 
(Equation 49), and that can be calculated from 𝑤Q (Fig. S17B) and 𝑁� (Fig. S17E) using the 
phenomenological model (Equation 54). The values determined for each data set (Fig. S17D) 
are compared with the values corresponding to the ideal system with no localization error (𝛿 =
0). It can be seen that for high iOC the determined values for the data sets are very close to the 
case of the ideal system that indicates that for this regime, the localization error is negligible. 
However, with decreasing iOC and decreasing D, the values of 𝜎Q" can be up to about 6 times 
higher compared to the ideal system which suggests that the localization error reduces the 
resolution in D in this regime. However, this behavior is expected for signals approaching the 
standard deviation of the noise in the system. 
 
Moreover, the resolution in both iOC and D are influenced by the distribution of the temporal 
lengths of the trajectories a pertinent data set is composed of and that can be characterized by 
𝑁�. The values of 𝑁� derived for each data set (Fig. S17E) are compared with the expected values 
calculated using the phenomenological model (Equation 51). It can be seen that the derived 
values are lower than expected and show additional dependency on iOC that is not expected. 
This can be attributed to the fact that the trajectories with higher iOC suffer from higher 
variation in iOC than expected (see Fig. S17D) and therefore failing to fulfil the condition set 
on variation of iOC expected from an identical molecule. As a result, a single trajectory is 
separated into multiple shorter ones. 
 
In addition, it has to be noted that the behavior for both simulated and experimentally obtained 
data sets are quantitively and qualitatively comparable, which confirms that the experimental 
data sets fulfil all the conditions that were applied to the simulated data set (e.g., free movement 
of the molecules). The exception is the ferritin and ADH systems, whose 𝑤*_`  (Fig. S17A) is 
about two times higher than for simulated molecules with comparable properties. This can, 
however, be attributed to the presence of additional populations containing different amounts 
of iron atoms in the case of ferritin (more details in the main text) and a possible population of 
dimers in the case of ADH.  
 
 

 
 
Fig. S18. (A) Resolution in molecular weight and (B) resolution in hydrodynamic radius for 
experimental data obtained for different proteins and DNAs in Channel I and II and analysed 
by SA. 
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The determined value of iOC can be translated into molecular weight using Equation 1 in the 
main text. The resolution in MW, 𝑤/c, is then linearly dependent on the resolution in iOC and 
linearly increases with the cross-sectional area of the nanochannel, 𝑤/c = 𝑤*_` ∙ 𝐴 (𝑛d𝛼/c)⁄ . 
We note here that these predictions assume that the shot noise level remains the same, i.e., the 
intensity and temporal averaging remain the same. In other words, downsizing of the 
nanochannel cross section improves the optical performance, but only to the level where the 
intensity of the scattered light saturates the camera at its maximal frame rate. In addition, 
downsizing the nanochannel cross section presents a challenge for nanofabrication, sets limits 
on the maximal size of molecules that can enter the channel and be analyzed, and increases the 
risk of clogging. However, in the section “Surface passivation by supported lipid bilayer” we 
show that the risk for clogging can be minimized by surface modification of the nanochannel 
walls by, e.g., a lipid bilayer, to avoid adsorption of molecules on the surface. In addition, in 
the section “Analysis of extracellular vesicles in conditioned cell culture medium” we show 
that the nanochannel dimensions can be tailored to accommodate even BNPs, such as EVs, 
without any obvious problems related to clogging. Looking forward, an analysis covering a 
wide range of molecular weights could be enabled by a series of nanochannels with varying 
sizes used in parallel. To prevent the clogging of the smaller nanochannels by larger molecules 
present in the sample, we propose that on-chip sorting systems21 could be utilized. 
 
The determined value of D can be translated into hydrodynamic radius using Equation 2 in the 
main text. The resolution in Rs, 𝑤D', is then linearly dependent on the resolution in D and is 
indirectly proportional to the diffusivity of the biomolecule, 𝑤D'~𝑤Q ∙ 𝐷

9:. Since the 𝑤Q~𝐷 
(Equation 49 and Equation 54) for systems with negligible localization error, the resolution in 
hydrodynamic radius for most of the studied molecules is around 2 nm (Fig. S18B). For the 
two smallest DNAs (200 kDa and 400 kDa) the resolution is worse (about 3 and 3.5 nm), due 
to the higher localization error specific for the regime of lower iOC and D. 
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11.  The ferritin system 
It is reported in the literature that the MW of ferritin may vary between 450 and 702 kDa, 
depending mostly on the amount of stored iron22. At the same time, exact and unbiased 
characterization of the MW of ferritin is challenging with existing methods, since its outer 
dimensions are independent of iron content22. Analysis is complicated further by the presence 
of reported up to five types of dimers with different interaction strengths23. This is unfortunate 
because accurate determination of iron content in ferritin from patients has recently been 
suggested as biomarker for clinical analysis of iron deficiency/overload related to infection, 
inflammation, and cancer24.  
We investigate the ferritin system in more detail in Fig. S19, and include data from experiments 
in two additional nanochannels (Channels III and IV, Extended Data Fig. 3C, D) with 
different cross-section areas (AIII = 100 ´ 15 nm2, and AIV = 145 ´ 27 nm2) analyzed by SA. 
The two-dimensional histogram of inferred MW and RS (Fig. S19A) and corresponding one-
dimensional histogram of MW (Fig. S19B) reveal three different populations, marked as M1-3, 
with MW ranging between ~ 500 and 900 kDa. Notably, they all have similar RS ~ 6 nm, 
agreeing well with reported values for ferritin monomers25,26. In addition, a small number of 
molecules with MW > 900 kDa can be seen (marked “Dim” in Fig. S19A). They exhibit a mean 
RS ~ 8 nm, agreeing well with the value reported for ferritin dimers26. This observation is 
further corroborated by plotting RS histograms for four different MW ranges that reveal a single 
RS population for the three MW populations “M1-3”, with very good agreement between the 
different nanochannels (Fig. S19C-E), and additional RS populations only for the data set 
obtained with Channel II (Fig. S19F), which had the largest cross-section. We thus conclude 
that the “M1-3” populations correspond to monomers with different amounts of iron, since this 
alters their polarizability27 and thus iOC and inferred MW, and that the “Dim” population 
corresponds to dimers. The reason why the “Dim” population is only present in the largest 
Channel II is likely that dimers are effectively filtered by Channels I, III and IV, due to their 
smaller cross-sections.  
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Fig. S19. Detailed analysis of the ferritin system. (A) Two-dimensional histograms of inferred 
MW and RS values of ferritin molecules detected in Channels I-IV using SA. (B) One-
dimensional histogram of MW from the data shown in (A). (C-F) Histograms of RS from data 
shown in (A) equidistantly separated into four regions with different ranges of MW, (C) MW1 
= 0.4 – 0.6 MDa, (D) MW2 = 0.6 – 0.8 MDa, (E) MW3 = 0.8 – 1 MDa, (F) MW4 = 1 – 1.2 
MDa. 
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12.  Characterization of the conditioned cell culture medium using 
Nanoparticle Tracking Analysis 

 
In order to validate the results of the NSM analysis of the conditioned cell culture medium, we 
have carried out a particle size distribution measurement of the same sample using 
Nanoparticle Tracking Analysis (NTA, Fig. S20), with which we identified a population of 
extracellular vesicles (EVs) whose mode value of RS = 37.9 nm is in very good agreement with 
the mode value identified by NSM (RS = 34 nm, Fig. 5D). The absence of the population of 
smaller particles (lipoproteins) in the NTA data is the consequence of these small particles 
being below the limit of detection of the method.  
  

 
 
Fig. S20. Size distribution of BNPs present in the conditioned cell culture medium 
characterized by NTA. The population of EVs is marked by the blue arrow. 
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